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1. Introduction

Designing a numerical model for the mixed layer of the Western Equatorial Pacific
presents difficult issues for representing the various processes associated with the regional
maintenance of the SST. One clearly has to include the effects of buoyancy forcing (due to
the strong evaporation-precipitation contrasts) on the equatorial mixed layer property
budgets as well as the vigorous 3-dimensional circulation. Some studies have also
suggested that the heretofore neglected effect of the earth's horizontal component of
rotation (i.e., [he traditional approximation) should also be included (Garwood et aI.,
1985). The unique nature of the mixed layer in this region demands that the model be able
to distinguish the following: the interface between the South Equatorial Current and the
Equatorial Undercurrent, the interface between the turbulent mixed layer and the
thermocline, and the interface between a fossil isothermal layer and a fresh water cap that
appears to be embedded in the layer above the thermocline. The model must be able to
incorporate the property exchanges that take place amongst these very different physical
regimes. The choice of turbulent mixing parameterization (i.e., how the model numerically
"couples" these distinct regions) thus becomes the central issue. A successful model would
be required to explain why the surface waters of the region hover around 28°-30°C with
little variability and why the region is a "pool", i.e., lacking large horizontal variability
(Figure 1). Equally as important is the vertical structure and the explanation of the
isohaline-isothermal subsystem (Figure 2) and its effects on entrainment of cold
subthermocline waters.

This paper briefly reviews the issues mentioned above, as well as the added
complexity of the short time scale wind forcing and the western boundary currents, that one
must contend with in designing a mixed layer model of the region. I will argue that
although the problem seems to require a "kitchen sink" GCM, it would be dangerous to
rely on only such a modelling effort. We have to define testable hypotheses that are more
amenable to a process oriented modelling approach. In fact we already have a hypothesis
of the maintenance of the fresh water cap in an isothermal layer that provides a test for the
model. This is the idea of Lukas and Lindstrom (1987) that will be mentioned later. There
is also a need for very simple kinematical models that address fundamental issues like how
much of the pressure head is representable in terms of only the evaporation-precipitation
flux. Models that simply advect temperature and salinity as passive tracers are also quite
useful and could be quickly developed. Finally, one-dimensional mixed layer models
would be useful in helping to sort out the complex vertical structure of salinity and
temperature.

2. Modelling Considerations

There are a number of considerations in designing the mixed layer model that are
unique to the warm pool domain. In this section I briefly outline what I consider to be the
most important of these.
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FIG.2. Profiles of temperature (8, 'q, salinity (S, %.) and density at l'S-lSS'E from the WEPOCS
experiment. The temperature and salinity are plotted on scales such that equal abscissa variations will
result in similar variations of density. The upper ocean is clearly not mixed and shows an overlaying
structure of stable layers resulting from varitions in the salinity and temperature structure. 80% of the
WEPOCS stations in the western Pacific possessed similar structural complexity. (Lukas, personal
communication).
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2.1 Salinity Effects

Salinity effects have traditionally been "turned off" or at most used as passive
tracers in most numerical experiments of the equatorial circulation. If resolving the fresh
water cap and determiniing its influence on the SST is an important goal of the Coupled
Ocean-Atmosphere Response Experiment (COARE), then one must include a dynamically
active salinity component in the modelling effort.

It appears that salinity effects are most important in influencing the entrainment of
cold water from below the thermocline and not in directly forcing currents. From scaling
the relative importance of wind and buoyancy forcing, one finds that the buoyantly forced
currents are an order of magnitude smaller than the wind forced currents (Rothstein, 1984).
However, salinity is hypothesized to play an important role in DIRECTLY determining the
regional SST (Lukas and Lindstrom, 1987). In a one-dimensional model, Miller (1976)
found that the vertical salinity profile is crucial in the evolution of the mixed layer depth,
determining whether the mixed layer warms or cools under a given surface forcing. This
can be understood as follows. The mixed layer efficiently cools through entrainment of
thermocline water into the upper layer. The fresh water cap can provide a "barrier"
between surface forcing and entrainment cooling (Figure 2), effectively insulating the
waters of the thermocline from wind effects. With the additional stability provided by the
barrier layer, a given wind would find it more difficult to entrain cold thermocline waters
than in the absence of the barrier layer. Entrainment cooling, therefore, is only effective
when the winds are strong enough to erode the barrier layer. Turbulent mixing
parameterizations unique to the Western Equatorial Pacific are required.

2.2 Wind Forcing

We've just finished arguing for the relative unimportance of entrainment cooling
except for strong wind forcing. The COARE region, of course, happens to be a region of
strong wind forcing, albeit on relatively short time scales. Although southeast trades
prevail over the warm pool, sudden bursts of westerly winds exert more stress. The trades
are light and are interrupted by the westerly bursts between November and May. These
wind events usually last only a few days; however, some have been observed to persist for
a few weeks with amplitudes sometimes reaching 15 m/sec (Figure 3). These are
"downwelling" winds which can precondition the isothermal layer for the "upwelling"
trades. Since the location of the cold water source is important for SST prediction, how a
model handles detrainment due to these wind bursts appears to be a crucial issue.

2.3 Detrainment

For large heating rates or downwelling, the mixed layer depth becomes large and
surface layer turbulence cannot be sustained over the entire layer depth. The interface
between turbulent and non-turbulent fluid retreats, leaving behind a fossil turbulent layer
ABOVE the main thermocline. This fossil (detrained) mixed layer water needs to be
accounted for in the model and there are a number of possibilities. Mixing the detrained
water back into the (isohaline) mixed layer would correspond to a view of the ENTIRE
layer above the thermocline (isohaline and isothermal layers) as the mixed layer, clearly at
odds with COARE hypotheses. Mixing the fossil layer into thermocline waters would be
more consistent with the view of the isohaline layer as the mixed layer but this choice
would eliminate the possibility of resolving the isohaline-isothermal substructure. It seems
appropriate that this fossil layer should retain its own character, i.e., it should not be mixed
into the isohaline layer nor should it be mixed down into thermocline water.
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rig. 3 Composite zonal winds measured on islands near 1700E (kindly supplied by
R. Lukas). At the eastern end of the warm pool, the dominant winds are
easterly trades. Nevertheless, a very strong, sustained westerly burst
in late 1982 was associated with the intense 1982-1983 El Niio.
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Fig. 4 Evaporation-Precipitation balance expressed in milli
metres per year in the Western Pacific. (from WEARE
et al J 1981a)
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We conclude that a successful mixed layer model must be able to account for these
short time scale wind events and accurately represent the (NON?)mixing that goes with
detrainment. We again see that issues related to turbulent mixing are the central ones in
these models.

2.4 Mixing Parameterizations

Entraiment and detrainment are critical processes for the model to develop realistic
SST gradients. In fact, THE essential physics of SST evolution and mixed layer modelling
in the western equatorial Pacific could arguably be the influence of the fresh water cap on
entrainment cooling. In the central Pacific, the TROPIC HEAT experiment has shown us
that the mixed layer is about 40-50 meters deep, with a pronounced diurnal cycle of mixing
due to surface nighttime cooling and convective overturning (Gregg et al., 1985).
However, in the COARE region, the stratification is almost always stable due to the excess
precipitation (Figure 4). How, then, does one parameterize the mixing? This is perhaps
the crucial question for all of oceanography these days. The laws that ultimately govern the
coupling between the various layers of a mixed layer model are poorly known. We can
proceed on an ad hoc basis, trying different schemes (simple switches for entrainment
detrainment, Richardson number mixing, explicit Kraus-Turner turbulent mixing schemes,
etc.), but this phase of the modelling will have to be closely linked with the microstructure
observational component of COARE. I feel this is one of the central issues for the
experiment.

2.5 Other Considerations

There are a number of other items that one must contend with in the proper design
of a model to treat the mixed layer of the COARE region. In this section I briefly review
these issues.

2.5.1 Surface buoyancy forcing

In an active thermodynamic model like the one that is being designed for
COARE, one has to be able to locate a realistic surface buoyancy forcing. This takes the
form of both heat and fresh water flux at the surface. The algorithms presently used in
calculating the various contributions to the total surface heat flux should be checked against
COARE observations. In the early stages of the modelling effort, it would be useful to
force the model with various idealizations of the real forcing. For example, it would be
interesting to look for the response to a mean E-P pattern (Figure 4) in a decoupled
experiment, i.e., don't allow for the readjustment of heat and salinity by the dynamics (a
passive tracer experiment). After gaining confidence in the physics of the model (testing
the various paremeterization schemes), attempts can be made to activate salt and heat and
force the model more realistically, ultimately atttempting a coupling to a moist atmospheric
mixed layer model. The atmospheric model must be able to obtain intense, small scale
convection such as the model ofLau and Peng (1987).

2.5.2 Western boundary effects

The "boundary" of the western equatorial Pacific is not well defined, yet
theoretical and modelling studies have recently placed particular emphasis on the reflection
of equatorially trapped Kelvin waves as the mechanism by which a growing, coupled air
sea instability in the central and eastern equatorial Pacific is shut down (Schopp & Suarez,
1988). In fact, a COARE hypothesis is that the upwelling Kelvin wave necessary to shut
off the growing coupled air-sea instability is primarily influenced (generated?) by air-sea
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interactions in the warm pool region (wind burst forcing of Kelvin waves). It becomes
important to sort out the relative role played by all potential sources of Kelvin waves.
Furthermore, the western boundary acts as a conduit of information from higher latitudes,
i.e., the circulation associated with the western boundary can also play an important role in
the maintenance of the warm pool. All these issues need to be resolved properly in a mixed
layer model. Due to the geometrical complexity of the Indonesian archipelago, realistic
simulations must await finely resolved GCMs. However, simpler models with closed
sloping boundaries and artificial dampers would prove useful.

2.5.3 The traditional approximation

Garwood et al. (1985) argue for the importance of the "traditionally" neglected
horizontal component of the earth's rotation vector in affecting the depth of the mixed layer
on the equator. The interaction between the planetary rotation and zonal wind stress
increases the turbulent kinetic energy and is hypothesized to be the reason for the deep
isothermal mixed layer of the western equatorial Pacific. Their model does not include a
salt budget. These are interesting questions and the inclusion of these additional terms in
the model does not seem to require a tremendous amount of numerical effort, i.e., no new
time scales are introduced into the system.

3. The Subduction Hypothesis: Model Testing

As a first stringent test of any model that includes salinity, I would think that the
recreation of the isothermal-isohaline substructure would be an essential requirement.
There is a testable hypothesis for maintaining this structure; the subduction hypothesis of
Lukas and Lindstrom (1987). Put simply, the maintenance of the isothermal (and saltier)
layer below the fresh water cap is thought to be due to zonal advection from the east in the
Souh Equatorial Current. Due to excess evaporation in the central equatorial Pacific, the
water advected in this way is denser than the warm pool waters and upon encounter with
the warm pool the possibility exists that the denser waters would subduct. The meridional
circulation may also play a role. The elements of the model that I am building include all of
the physics that can adequately test this hypothesis. The proposed model follows.

4. The Model

To design a model short of a GCM we must make decisions to cut corners
somewhere. I propose to limit the number of degrees of freedom in the vertical to three
active layers overlying a motionless abyss. This is just sufficient to resolve the distinct
regimes reviewed in the introduction. The model is designed with the hypothesis that
horizontal advection is important. Again the important parametrizations appear as coupling
between the layers (the entrainment-detrainment process) and must be chosen with care.
Figure 5 is a schematic representation of the 3.5 layer model forced by a wind stress and
surface heat and fresh water fluxes. The equations governing the dynamics and
thermodynamics in each active layer are:

Layer J
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Layer 2

Layer 3

where

+ gB (S2-S3-S4) V (hl+h2+h3) + gB ~ V (S2-S3-S4)

Surface heat flux (Haney, 1971):
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B.C.

VI =V2 =V3 =0 (No slip); TIn == O(No flux); hl n =h2n =h3n =0 (mass conserved)
and Qd and Sd represent diabatic exchanges of heat and salt.

The model will be tested this fall and results reported shortly thereafter.

S. Conclusions

I have briefly presented the important issues and proposed a model for studying the
mixed layer physics of the COARE region. Space has not allowed me to discuss simpler,
one-dimensional models which I feel are necessary in the modelling hierarchy. At this time
I do not feel that GCMs have much to contribute simply because they are not efficiently
designed for hypothesis testing. The parameter space that must be explored for this
problem is simply too large for efficient use of a GCM.

An important numerical issue which I have not mentioned is the treatment of
surfacing layers. Clearly the isohaline layer is not a feature of the entire equatorial basin
and would seemingly surface to the east. Historically the surfacing of layers has been dealt
with in several ways. In most two-layer models the interface is kept from surfacing by
positioning it far below the sea surface. O'Brien et al. (1977), however, uses turbulent
entrainment of water to keep the interface submerged. Bleck and Boudra (1981) propose a
quasi-isopycnic vertical coordinate. These various methods will be investigated for specific
application to the COARE mixed layer model.
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