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I. INTRODUCTION

Since better understanding of 30-60 day oscillation can
lead to improvements in medium and long range weather pre
diction, thi~ phenomenon has attracted considerable attenti~n.
The 30-60 day oscillation was identified by Madden and Juhan
(1971, 1972) as the eastward propagation of a wavenumber I
disturbance in tropical, tropospheric zonal wind and surface
pressure fields. The range of the period of this disturbance
corresponds to a zonal phase speed of 10 to 15 m.- I. Other
observational studies have documented disturbances with a
similar period of 30 to 60 days in other physical fields. These
findings include the oscillations in atmospheric angular mo
mentum (Anderson and Rasen, 1983, and Risbey and Stone,
1988), convective activities and cloudiness (Vasunari, 198.0),
outgoing long wave radiation over the Indian-Western Pacific
Oceans (Murakami et el., 1986, among others) and perturba
tions in precipitation amount over the same area (Hartmann
and Gross, 1988). In addition to atmospheric phenomena,
30-60 day fluctuations of sea level height (Enfield, 1987, and
Mitchum and Lukas, 1987) and sea surface temperature (SST)
(Enfield, 1987) have also been found. From these studies it is
obvious that the 30-60 day oscillation is a complex process
involving disturbances in both the tropical atmosphere and
ocean.

Despite the multitude of observational studies, a satis
factory theoretical explanation of the 30-60 day oscillation has
yet to be agreed upon. Since Gill's (1982) finding, that the
phase speed of the tropical waves can be significantly reduced
due to reduction of the static stability (hence the equivalent
depth) of the atmosphere by latent heat release, the linear
tropical wave theory (Matsuno, 1966) after being refined by
the diabatic heating parameterization, has been widely ap
plied in explanation of the 30-60 day oscillation. For example,
Lau and Peng (1987) proposed the 'mobile wave CISK' mech
anism and Chang and Lim (1988) developed the 'Kelvin wave
CISK' theory. Although the selected or the newly generated
waves in these theories were indeed amplifying as propagating
eastward the phase speed of these waves was crucially depen
dent on the diabatic heating profile used in these models. In
order to have a phase speed close to the observed one the heat
ing profile has to have a peak in the lower troposphere. This
heating prolile, however, is more representative of situations
for the mid-latitude than of the tropics (Reihl and Malkus,
1958).

Attempts were also made to find new modes which
could be responsible for the observed 30-60 day oscillation.

Anderson and Stevens (1987), for example, specified several
slow poleward propagating unstable modes in their 2-D eigen
value model which included an equatorial symmetric Hadley
circulation.

Studies in which the intraseasonal oscillation was re
garded as an atmospheric response to a sporadic ext~rnal heat
ing with a 30-60 day period is another c~tegory m the .ap
proach. By postulating an oscillatory hea~mg as the forcmg,
many experiments with different atmoepheric models were able
to produce the expected lowfrequency oscillator~ features (Va
magada and Hayashi, 1984, and Salby and Gacia, 1987). The
lack of an explicit instability mechanism in this category of
explanation remains questionable,. ho~e~er, if one vi~ws t~e

30-60 day oscillation &8 purely an intrinsic atrnoepheric OSCil
lation.

The sporadic 'external' forcing may turn into an 'in
ternal' one when the ocean and atmosphere are considered
as one system. Krishnamurti et al. (1988) has found the
observational evidence of the air-sea interaction on the time
scale of 30-60 days. Emanuel (1987) and Neeling et al. (1987)
looked at the evaporation-wind feedback effect in an ocean
atmosphere system. They showed that the low frequency os
cillation can be amplified by drawing energy from the warm
ocean surface through this feedback. Although the existence
of the oscillation does not depend on the evaporation-wind
feedback (Neeling et sl., 1987) their studies certainly provided
a different perspective for understanding this problem.

In this study, we propose a new theory explaining the
origin of low frequency oscillations in the tropics. In our mod
els both the lower atmosphere and upper ocean layers are in
cluded and are treated as a fully coupled system. Based on
the model results, we suggest that the observed 30-60 day os
cillations in the tropical troposphere and in the ocean are the
manifestation of the cloud-radiation, atmosphere-ocean feed
back processes, and that their realization depends on the hy
drologic cycle in this system.

In the next section, the basic physical mechanism for
the 30-60 day oscillation in terms of the hydrologic cycle is
presented. Sections 3, 4 and 5 describe three different models
and their results. Our conclusions are summarized in Section
6.

2. MECHANISM

The tropical atmosphere above the warm ocean surface
is heated through the energy exchanges with the ocean. Mean
while evaporation from the ocean moistens the lower part of
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mixed layer through evaporation and the removal of this con
tent by precipitation; horizontal convergence and divergence
are neglected.

The temperature of the atmospheric mixed layer is
characterized by a near-surface atmospheric temperature Ta =
T, - tt.T(OC). Precipitation is assumed to take place when
the 'atmospheric moisture tolerance' is achieved. As an initial
approach we specify this critical condition as that when the
mixing ratio of the atmospheric mixed layer reaches 90% of
the saturation value at its temperature, Ta.

The amount of moisture evaporated in each time in
terval, tt.t, is calculated by

Here P represents the precipitation rate and is assumed as a
constant, 2.5mm/dalJ (Wang, 1988) during the model's rainy
period and H is the mixed layer depth.

By using a mean atmospheric moist state and the pre
cipitation rate, the model is integrated with a one hour time
interval for 1000 days.

b) Model Result aod Seosltlvlty

Fig. 2 shows the results of two model integrations.
Model parameters used in these integrations are listed in the
figure caption. The displayed field, extra water content, in
dicates the column moisture amount above an assumed back
ground state, which corresponds to a mixing ratio (q"lm) of
15g/lcg in the atmospheric mixed layer.

An ad hoe parameterization of the low-level wind, in- .
tended to represent the higher winds and associated transfers
between atmosphere and ocean during convection,

.. r:""'....,r"'"-.....,.......~'"T'.,..... .......,...............,.-~.......,

E(t) = PaCDlu,l!q,al(T,) - qalm(t)j (2)

(Neeling et al. 1987). In (2), Pa is the mean density of the
atmospheric mixed layer, CD is the surface drag coefficient and
is treated as a constant of 0.001. The parameter u, is the low
level wind at 10 meters above the sea surface, q,al(T,) is the
saturation mixing ratio of the atmosphere at temperature T,
and q"lm (t) is the actual mixing ratio of atmospheric mixed
layer at time t. The value of qalm is updated at time step
t + tt.t by an increment tt.q given by

Fig. 2: Predicted hydrologic circulation in the model atmosphere
ocean system. The model low level wind u used in (a~ is
a ~onstant of 2.0 m/s, and in (b) is that 'gi;~n in Eq. 4),
With u. = 2 m/8, Um = 12 m/8, and tot" = 13days. Ot er
model parameter values are T. = 28.5°C, T" = 28.0°C,
Halm = 1500m and P = 2.5mm/day.

z. Cl)

the tropical troposphere. The warmer the ocean mixed layer,
the more heat and more moisture are added into this part of
the atmosphere.

The removal of the accumulated 'extra' heat and mois
ture from the tropical atmosphere occurs through deep cu
mulus convection (Riehl and Malkus, 1958). This convection
is crucial in the hydrologic cycle of the tropical atmosphere
ocean system. When explaining the conditional instability in
the tropical atmosphere, Ooyama (1969) showed that the verti
cal temperature and moisture structures in the tropics POSSellll

a conditionally unstable character before the onset of convec
tion. However, this instability is realized only when the lower
troposphere is sufficiently moistened, through surface evapora
tion and/or large-scale convergence. This characteristic of the
tropical atmosphere is important as it highlights the key role
played by the moisture in the occurrence oftropical convection.
In our conceptual models, presented in the next two sections,
we will set a critical moisture value as the 'model atmospheric
moisture tolerance' to represent this thermodynamic feature
of the tropical atmosphere. This treatment principally follows
the philosophy in parameterizing cumulus convection (Kuo,
1975, and Stevens and Lindzen, 1978) and is based on empiri
cal evidence such as the observed moisture· changes in synoptic
scales.wave disturbances (Reed and Recker, 1971).

When the conditional instability is being released, the
convection not only diminishes the extra moisture in the at
mosphere through precipitation but, through cloud-radiation
interaction, also reduces the sea surface temperature by atten
uating the solar radiation energy available at the ocean surface.
The result of this is to return the extra water substance in the
atmosphere back to the ocean and to reduce the sea surface
temperature to its 'c1imatological' value.

In short, a natural cycle represented by the hydrologic
process in the atmosphere-ocean system is spontaneously car
ried on in the tropics. Our model shows that, simply restricted
by the 'moisture tolerance', such a cycle possesses an intrasea
sonal time scale.
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3. A SIMPLE MODEL WITH FIXED SST

a) The Model

In this section we demonstrate the existence of the hy
drologic cycle in a simple atmosphere-ocean system with fized
ocean parameters. The schematic structure of this model is
given in Fig. 1. As shown in Fig. 1 only thermodynamic pro
cess are considered in this model. Our attention is to describe
the accumulation of the extra water content in the atmospheric

Fig. 1: Schematic structure of the model (MDl) with a
fixed sea surface temperature (BST).
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Predicted period of hydrologic circulation with dif
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ities to the changes in precipitation rate P [unit:
mm{daY1and the model low level wind u, unit:
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the input solar energy at the ocean surface needs to be in
cluded. This input further varies with presence or absence
of cumulus convections through cloud-solar radiation interac
tion. On the other hand, the energy losses through infrared
radiation (IR) from ocean surface, and sensible and latent heat
exchanges with the atmosphere are also considered. Since ex
plicit prediction of key proceeses, such as cloud generation and
interaction of clouds with solar radiation, is beyond the scope
of this mechanistic study, we parameterize their effects. To ex
preBB the cloud influence on the solar radiation, for example,
we aBBume different values of the solar irradiance at the sur
face under varying convective cloud cover conditions. These
values are obtained from observationa and theoretical studies.
A similar method is also applied to represent the IR cooling
prOCeBB. The main reason for neglecting the detailed treatment
of these processes is to avoid the uncertainties associated with
complex processee involving multiple scales, some of which are
poorly understood, and therefore to concentrate more on the
basic physical mechaniams.

i
- 20

I

Fig. 3:

is used in getting the result in Fig. 2b. In this expression Ub

is the mean background wind speed and te is the time when
the atmospheric moisture tolerance is achieved. The maximum
wind speed, u'" is aBBumed to occur during the prescribed time
interval ~t", when deep cumulus convection is present. This
time increment is prescribed to be 2 days,

From the results shown in Fig. 2 the existence of the
hydrologic cycle operating in this simple atmosphere-ocean
system is clearly evident. Through the prccessee of evapora
tion and precipitation, which are constrained by the moisture
tolerance and its implied conditional instability, the hydro
logic cycle is naturally introduced in this system. Further
more, through a comparison of these two results, we see that
the presence of this cycle is independent of the detailed struc
ture of the low level wind. This independence suggests that
the oscillation in the low level wind field may be considered a
consequence of the hydrologic cycle. Since the time evolution
of the heating profile in the tropical troposphere is directly re
lated to the" different phases of the hydrologic cycle, this cycle
provides an exiernal heat/energy source for the atmosphere.
This source disturbs the energy state of the tropical atmo
sphere to which the wind and maBB fields of the atmosphere
then adjust. Thus this hydrologic cycle is a plausible mech
anism for initiating oscillationa of similar frequency in wind
and maBB fields in the tropical atmosphere. The influence of
the varying low level wind field on the frequency of the hydro
logic cycle is also noticeable in Fig. 2, although it is does not
determine the existence of the cycle ptr s«.

Results of model integrations with different model pa
rameters are presented in Fig. 3. These results were obtained
with the same low level winds as used to produce Fig. 2b. A
significant characteristic shown in this figure, is that the period
of the resultant hydrologic cycle in this system increases with
increasing model SST. This result is consistent with the obser
vation that low frequency oscillations are preferred in regions
of warmest SSTs (Webster, 1987).

The model sensitivities to different low level wind
speeds and values of precipitation rate are also illustrated in
Fig 3.

4. COUPLED INTERACTIVE ATMOSPHERE-OCEAN
MIXED LAYER MODEL

The existence of the hydrologic cycle and its relation
ship to the low frequency oscillation in the tropical troposphere
have been shown by the one-way interaction model (hereafter
MOl) of Section 3. Since a fixed SST was applied in MOl, the
question of how this cycle as well as its time scale is influenced
by a time varying SST still remains. In this section we addrese
some aspects of this issue.

a) The Model

The model structure and the major physical processes
are schematically illustrated in Fig. 4. As in MOl, we focus
on the thermodynamics of this atmosphere-ocean system and
ignore any detailed dynamics. The model's ocean mixed layer
prOCeBB follows that in Kraus and Turner (1967), and Denman
(1973) .

In this model to incorporate in the model SSTs whIch
vary in time, a detailed energy budget in the ocean mixed
layer is required. As the only energy source in this budget,
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The solar irradiance at the ocean surface are specified
by the step function

Fig. 4: Schematic structure of the fully coupled atmosphere
ocean mixed layer model (MD2).

Table I lists some of the model experiments we con
ducted. The physical parameters, their values, and the model
predicted quantities are included in this table.

5. ONE-DIMENSIONAL GCM AND RESULTS

To test our hypothesis in a more complete manner dif
ferent experiments have also been conducted with the one
dimensional version of the UCLA/CSU GCM (Randall and
Oazlich, 1989). This 1-0 model includes the full radiation and
moist physics parameterization of the GCM, and is coupled
to a slab of ocean of fixed depth. The slab ocean does not
exchange energy with deeper ocean layers; its temperature is
controlled entirely by the surface energy flux.

At this stage some very preliminary results from ex
periments with this 1-0 GCM model have been obtained and
are shown in Figs. 7 and 8. These results support the ma
jor findings from our previous conceptual models. When run
with a ocean slab depth of 60rn, the model produces obvious
oscillation of sea surface temperature, with amplitude OA"C
and a period of 60 days (Figs. 7a and 8a). This oscillation is
accompanied by 60-day fluctuations of the surface energy flux,
precipitation rate and cloudiness (Figs. 7b, 7c and 8b). The
changes in the surface energy flux are due to changes in the ab
sorbed solar radiation, which are controlled by the cloudiness
fluctuations or model convections.

During the warming phase of the oscillation, the sea
surface temperature and the convective precipitation rate
gradually increase. Eventually the cloudiness increases to the
point that the solar radiation absorbed by the ocean is reduced,
allowing the ocean to begin cooling. This cooling is followed
by a reduction in the model convective activity, which leads
to a reduction in the cloudiness. The absorbed solar radiation
then increases, and the model hydrologic cycle is re-initiated.

Since only thermodynamic and turbulent mixing pro
cesses in the two mixed layers are considered, only a few
of these experiments reach a steady or an equilibrium state
through the period of integration. Fig. 5 shows the result from
one of the experiments (experiment I in Table I) in which an
equilibrium state has been reached. From this figure we see
that the oscillation of the extra water content in the atmo
spheric mixed layer still experienced when the model has vary
ing SST. This oscillation, through the coupling and feedback
with the solar radiation and hence the surface energy process,
influences the processes in the ocean mixed layer (Figs. 5b,c
and d). The time scale of these oscillations predicted by the
model is 33 days.

As we have discussed in Section 2, in the process of
the hydrologic circulation a pulsating energy disturbance is re
leased in the convection phase. This disturbance then causes
dynamic perturbations in the atmospheric momentum and
mass fields (Salby and Garda, 1987). The observed oscillation
in the atmospheric relative angular momentum (Anderson and
Rosen, 1983) may also be related with this pulsating energy
disturbance. On the other hand, this energy disturbance, in
addition to the change in the solar energy input, affects the
energy budget of the ocean mixed layer. As a consequence
of the hydrologic circulation in the atmosphere-ocean system,
the 30-60 day oscillations therefore appear in both the tropical
atmosphere and ocean.

Because the thermodynamic processes depend on SST
in a highly nonlinear fashion, the results illustrated in Table I
differ from those obtained from MOl. In Fig. 3, a higher SST
in the one-way model causes a dramatic increase in the period
of the model's hydrologic circulation. Results from the fully
coupled model, however, are not as simple. Using 29°C as the
initial SST, the hydrologic cycle reaches a steady period of 35
days (experiment 2 in Table I). This period is quite close to
that predicted in experiment I where the initial SST is 28°C.
However when a colder SST is used to start the model run,
the predicted result are distinctly different (Fig. 6).

Results presented in Table I also show the model sen
sitivity to other model parameters.

(7)

(6)

non-convective;
convective,

non-convective;
convective.

R - {R7n'
In - R'fn'

R = { R:""
"AI R:.,)

In the model atmosphere, the process is similar to
MOl. The moisture amount transferred into the model at
mospheric mixed layer is calculated again using the bulk aero
dynamic formula

E(t) = P..CD [u, (t)1 (9", IT,(t)] - 9"'111 (t)) . (5)

Here, 9,a.[T, (t)l is time dependent as SST varies with time in
this model. A Bowen ratio of 0.2 is used to obtain the value of
the sensible heat flux required as an input to the ocean model.

(DEEP 0CEAN1
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j
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where the values for R7n and R~n are based on a study by
Stephens et al. (1981).

b) Model Results

The values in (6) are based upon the satellite and observational
data analyses by Gautier and Katsaros (1984), Gautier (1986)
and Gautier (1988). With these values, the bulk features of
the influence of deep cumulus convection on the solar radiation
transfer in the atmosphere have been included. Likewise the
step function for IR change is
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Table 1: Model Experlmeut. ud Re.u1t1 - Amonl the output quantities, r ia the
predicted period of the model hydrololical circulation. Eq is the maximum extra water
amount accumulated in the model atmoephere before convection atarta. ti.T and ti.h are
respectively the amplitudes of chanles in the SST and depth of ocean mixed layer in a
hydrological circulatiOD. When a ateady atate ia not reached in a model run, these quantities
are given from a nominal cycle in model intelration.

.------ Experimental ValuePhysical
Parameter 1 2 3 4 s 6

R;w (W/m') 250 250 250 2&0 2&0 260'

Riw (W/m') 120 120 120 120 120 lOS'

R7R(W/m') 40 40 40 40 40 40

R1R(W/m') 40 40 40 40 40 40
u, :

(2, 12, 13.0) (2, 12, 13.0)(Ut,U"',ti.t..) (2, 12, 13.0) (2, 12,11.&') (2, 12, 15.0') (2, 12, 13.0)

P(mm/dov) 2.5 3.0' 2.5 2.5 2.& 2.5

T,(t =OWC) 28.0 29.0' 26.0' 28.0 28.0 28.0

T_,,(t =OWC) 25.0 26.0' 23.0' 25.0 2&.0 25.0

Output
Quantity Model Predicted Result

the 5th: 23 the 5th: 33 the 5th: 33
r (daya) 33 35 the 9th: 1& the 20th: 37 the 20th: 26 31

Eq(cm/m') l.49 1.51 the 9th: 0.35 the 20th: 1.70 the 20th: 0.80 1.40

ti.T,(OC) 1.68 1.63 the 9th: 0.83 the 20th: 1.67 the 20th: 1.41 1.83

ti.h(m) 21.85 21.39 the 9th: 13.51 the 20th: 21.48 the 20th: 19.50 24.93

e • Parameter value different from that iD the controUed experiment (experiment I).



490

aM

i

I Ill •

• ...
I a...
I ...
I .......
s

to I:~
I ID

I • ~Ia ~ ...
§ .. ..... ...
g-

• • • • • • • 11 •
IIIfIIIl

.... Ill. IPH VIIU£· 171.42

b...
g

.1-

I...
a
g-

0.000 60.0 120 180 240
mAE (DAYS)

300 360

Fig. 5: Model results from experiment 1 in Table 1.

1

I•
I
I
I

0.000 60.0 120 180 240
nWE (DAYS)

.100 .1&0

Fig. 6: Temporal variation of the extra water content in
the model atmosphere from experiment 3 in Table
1.
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tlon absorbed at the ocean surface, and (c) daily
precipitation from the 1-D GeM.
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6. CONCLUDING REMARKS

In this study we have shown that the 30-60 day oscilla
tions in the tropical atmosphere and ocean can result from the
hydrologic circulation in a coupled atmosphere-ocean system.
This circulation is intrinsic to this system and is a consequence
of the energy exchange and energy balance in this system.

The time scale of this circulation can be determined
in a simple coupled atmosphere-ocean model when the role
of moisture played in the atmosphere is incorporated in the
model. By parameterizing this role in terms of the 'model
atmospheric moisture tolerance' in our conceptual models we
showed that the hydrologic cycle is spontaneously carried on
in the tropical atmosphere-ocean system. Its existence was
basically independent of the variations of the low level wind.

Our hypothesized relationship between the hydrologic
circulation and the intraseasonal oscillation in the tropical at
mosphere and ocean was also examined in a 1-0 GCM. The
model results were positive in supporting this relationship.
Meanwhile, the analysis of the thermodynamic process in the
1-0 GCM illustrated the mechanism we proposed.

Based on our results we conclude that the hydrologic
cycle in the tropical atmosphere-ocean system is fundamen
tal to the observed intraseasonal oscillations in the tropics.
The physical restriction of the accumulation of latent heat
in the lower tropical troposphere and the reduction of the
source supply of energy to the tropical atmosphere-ocean sys
tem, through cloud-solar radiation interaction, are crucially
important to the presence and time scale of this hydrologic
cycle.
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