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1. INTRODUCTION

The only practical way of determining large-scale air-sea exchanges in momentum,
heat and moisture is through the bulk formulae which link the microscale turbulent transfer
to macroscale parameters measured routinely. The coefficients used in these formulae were
derived and verified with observations taken in moderate wind conditions (4-15 m/s) under
near neutral condition. Over large areas in the tropical Pacific, the mean wind is weak « 3
m/s) and the sea-air humidity difference reaches above 7 g/kg (e.g., Hsiung 1986). The
moisture induced buoyancy destabilizes the atmosphere and increases evaporation. The
characteristics of the coefficients under these conditions will be discussed

Except near coastal area and in major shipping lanes, meteorological reports are
sparse in the tropical ocean. In situ measurements are not adequate to delineate the
temporal and spatial variabilities of the fluxes. Spacebome sensors provide repeated and
uniform coverage. A method of computing the moisture flux using spacebome sensors
will be described and examples of scientific application will be presented.

2. FORCED CONVECTION

The bulk parameterization formulae are

t = p Co U2 (la)

Ob)

(lc)

where t is the wind stress, H is the sensible heat flux, E is the moisture flux, p is surface
air density, c is the isobaric specific heat. The latent heat flux (LE) is the product of E and
the latent heat of vaporization. The measurements required are the sea surface temperature
(Ts) , the wind speed (U), the temperature (T), and the specific humidity (Q) measured on
board ships. The specific humidity at the air-sea interface (Qs) is generally taken to be the
saturation value at T, and Q can be derived from the dew-point temperature measured. The
transfer coefficients (Co, CH and CE) used are generally assumed to be constant and
determined by regression of spot measurements (10 min to 1 hr time averages at a fixed
location). The coefficients, in theory, depends on the reference height, the stability and
surface roughness. Liu et al. (1979) developed a model to account for these variabilites.
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In the model of Liu et al. (1979), which is a physical approach to bulk
parameterization, the three non-dimensional profiles based on similarity theory are solved
simultaneously. The similarity relations are,

UIU. = 2.5(z/lo - 'Vu) = CD-l/2, (2a)

(2b)

(2c)

By definition, U*, T*, Q* are function of r, H, and E. The 'Vu, 'VT, and 'VQ are function
of the stability parameter (9 and can be expressed in terms of the three fluxes. The lower
boundary parameters Zo, ZT, and zQ are functions of 't and fluid propenies. The three
unknowns t, H, and E can be determined by solving the three implicit equations. This
method is similar to that used by Deardorff (1968) to account for the effects of stability on
the values of the transfer coefficients and is equivalent to using (1) with variable
coefficients.
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Under neutral stability ('VU='VT='VQ=O), the variabilities of the coefficients are
governed by the variabilities of Zo, ZT, and ZO. The three parameters reflect the transport
processes near the surface. The velocity and and temperature distributions measured in
smooth channels by Reichardt (1940) and Deissler & Eian (1952) are shown in Fig. 1.
Away from the surface, the flow is turbulent and the measurements follow a logarithmic
law. Near the surface, viscosity and conductivity become important and the profiles agree
with the postulation based on a surface renewal model by Liu et al.(1979). The imagery
height at which the V-Vs=O along the extrapolaiton of the logarithmic profile is Zo. The
interpretation of ZT and ZQ are the same except for temperature and specific humidity.
Schlichting (1968) suggested that a surface is aerodynamically rough when the roughness
elements penetrate the viscous sublayer and it is smooth if the sublayer covers the
roughness elements. The scaling depth of the sublayer is v/U«, where v is the kinematic
viscosity. Alternatively, rough flow can be viewed as the state when the local velocity
scale and the characteristic scale of the roughness elements, ~, combined to form a
roughness Reynolds Number (~V ./v) that exceed a critical value. The velocity
measurements in pipe flow by Nikuradse (1933) are shown in Fig. 2A. ~ is the actual
mean diameter of the the sand-grains used as roughness elements. The measurements of
Kondo (1975) at an air-sea interface are shown in Fig. 2B and ~ is the square root of the
integral of the one dimensional wave spectrum between two selected frequencies. In
smooth flow, ~ cc v/U«, momentum is mainly transported by viscosity, z, is proportional
to v/V., and, therefore, CD increases with decreasing V.. In rough flow, ~»v/U ... ,
momentum is mainly transported by pressure force on the roughness element and the flow
is independent of v, and Zo is proportional to c. In the case of a rough sea surface, ~

increases with wind and, therefore, CD increases with wind. Charnock (1955) postulated
that Zo is proportional to V.2/g where g is the acceleration due to gravity.

When the interface is smooth, momentum, heat and water vapor are all transported
by molecular processes near the interface and the variations of Co. CH, and CE should
share the same characteristics, i.e., increases with decreasing winds. When the roughness
of the surface increases, turbulent transport is facilitated and the transfer coefficients
increase with wind speed. While momentum can be transported by pressure forces on the
roughness elements independent of viscosity, the slow molecular diffusion is the only
process which transport heat and mass at the interface. Increase in roughness increases the
sheltering effect and the fluid stays longer in contact with the surface before turbulence
carries it away. The opposing effects on the CE is shown in Fig. 3. The thick curve
represents CEat neutral stability from the model of Liu et al. (1979). At low wind speed, it
decreases with increasing wind speed, having the characteristics of smooth flow described
above. The behavior of CE at low winds was recently supported by the measurements of
Bradley et al. (1989) in the Brismack Sea. As the wind speed increases and the surface
becomes rough, the opposing effects of increase stirring and sheltering balance out and the
CE remains rather constant at 1.3x10·3 in good agreement the empirical values (shown as
dashed lines) by Anderson and Smith (1981) (A&S) and Large and Pond (L&P). The
value given by Bunker (1976) (B), however, increases with wind speed, following the
characteristics of CD.

In (2), 'Vu, 'I'T, and 'VQ are functions of the stability parameter (~== z/L), where Zis
the height and L is the Monin-Obukhov length. The parameter is the ratio of turbulence
production by buoyancy to those by shear. Assuming CO=CH=CQ=C, it can be
approximated (Deardorff, 1968) by
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kgz (6T + 0.6196Q)

~eU2
(3a)

where k is the von Karman's constant, l1T:; T, ~ T, l1Q a Qs - Q, and e is the average
absolute temperature. As the flux-profile relations, initially developed over land, are
extended over water, the effects of humidity fluctuation on buoyancy is often overlooked.
Bunker (1976), for example, tabulated the values of the transfer coefficients according to
classes of U and l1T but not l1Q. In the extratropical oceans, the effects of humidity
fluctuations may be small compared with the effects of temperature fluctuations. But in the
tropical oceans, due to the rapid increase of saturation humidity at high temperature
(Clausius-Clapeyron Equation), humidity fluctuations can have significant effects on
atmospheric stability and the variability of the transfer coefficient. Fig 4 shows the ratio of

~I ~* where,

kgz6T
~* - ..re e U2

(3b)

at various T, and two values of l1T, assuming C=1.3 xlO-3, U=7 mls and a relative
humidity of 80%. It is obvious that the error for omitting l1Q can be larger than 50% over
warm water (>25°C). In the western tropical Pacific and eastern Indian Ocean, with a
typical wind speed of 4 mls, and a typical sea-air humidity difference of 6 glkg (Hsiung,
1986), the coefficient is approximately 1.8xlQ-3 as shown in Fig. 3. This will give a latent
heat flux approximately 40% higher than the value given by a neutral coefficient of 1.3x10­
3. The typical l1T may be small and the temperature induced buoyancy alone cannot
adequately account for the stability effect on CE.
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Fig.3 Variation of the moisture transfer coefficient Fig 4. The ratio of the stability parameter including
with wind and sea-air humidity difference computed humidity effects to the stability parameter excluding
with model of Liu et a1. (1989), with the thick line humidity effects as a function of temperature for two
representing values at neutral stability. cases of sea-air temperature differences (AT).
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3. FREE CONVECTION

(4)

The bulk formula (1) imply that there is no heat and moisture transfer at zero wind speed
which, of course, is not true. Convection caused by buoyancy force as a result of heating
or concentration gradient will transport heat and moisture. The similarity profiles (2) are
not valid under free convection when buoyancy dominates over shear in turbulence
production. In open oceans, free convection is rare and is not well studied. However,
there are many studies of free convection of homogeneous fluids, particularly in laboratory
Liu (1984) gave a detailed review. Krishnamurti (1973) showed that the circulation in a
fluid goes from laminar to fully turbulent as the Raleigh number for temperature (RaTE
ag~Td3/ (KTV» increases. In the definition of RaT, a is the coefficient of thermal expansion
and KT is the thermal conductivity. When the flow is fully turbulent, theoretical and
empirical studies suggest that the heat transport is governed by

Nu =A RaTl13

where Nu=Hd/(pc~T) is the Nusselt number, and A depends on the Prandtl Number
Pr=v/lCT. Fig. 5, from Liu (1974), shows the results of an experiment with a deep well­
insulated tank of water under an evaporating free surface Surface heat flux is equated to
water heat loss derived from calorimetry. Water surface temperature was measured both by
an Barnes PRT-5 radiometer mounted above the tank and by moving a 25 micron diameter
resistant film probe across the surface. The bulk temperature was measured by a
thermometer, The 110 pairs of data have a correlation coefficients of 0.997 and the linear
fit corresponds to a relation Nu= 0.156RaT Eqn (4) can be reduced to
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(5)

(6a)

The relation between Q and AT is independent of the depth of fluid. For a inhomogeneous
fluid like the atmosphere over ocean, (4) can be generalized to include moisture transport,

[
3/2]1/3

Nu =A RaT + RaQ(~)

Af 3/2]1/3
Sh = L RaQ + RaT~~) (6b)

where Sh=Ed/(p"QAQ) is the Sherwood number, SC=V/KQ is the Schmidt number, KQ is the

diffusivity of water vapor, R3.Q=~gAQd3/1CQv is the Raleigh number for humidity, and Pis
the expansion coefficient due to water vapor. The heat and moisture fluxes can be reduced
to functions of AT and AQ. Fig. 6, from Golitsyn and Garchov (1986), compared field
measurements of heat and moisture fluxes to those predicted by (6).

Wyngaard et al. (1971) recognized that the similarity theory breaks down when
there is no mean wind and introduce a free convection scale for the atmospheric mixed layer
with depth d

(
a gdH)I/3

Ur= ­
cp

(7)

and Businger (1973) postulated that convection will induce local surface friction velocity,
U* and U*lUf is a decreasing function of d/~. Assuming

U* d -1/3

Ur cc ( ~) (8)

and that the resident time scale of the fluid at the surface is equal to the Kolmogorov time
scale, Liu et al. (1979) derived (4) from (8). Schuman (1988) suggested that (4) is
applicable only to smooth flow. In rough flow, he suggested

(10)

Under free convection conditions, the flow is always smooth over the ocean. The
independence of heat flux from any depth scale.as in (6), remains to be vigorously tested.

4. LATENT HEAT FLUX FROM SATELLITE DATA

Of the three parameters required to compute LE, spacebome sensors can measure
Tsand U, but cannot measure Q. It was found that at the monthly time scale, atmospheric
water has a single dominant mode of variability and Q can be derived from the columnar
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water vapor (W) measured by microwave radiometers. A statistical Q-W relation was
established using 17 years of radiosonde reports from mid-ocean meteorological stations
(Liu, 1986). This relation was found to be adequate in describing the seasonal and
interannual variations over global oceans except in high latitudes during summer, with
accuracy estimated to be 0.4-0.8 g/kg. With this relation, monthly fields of LE from 1980
to 1983 in the tropical Pacific were computed using data from Nimbus/SMMR. In
comparison with monthly data from equatorial moorings and atolls, the scatters were found
to be 0.6 m/s in U, 0.8°C in T, and 0.4 g/kg in Q. The random error in LE is estimated to
be 26 W/m2 (Liu, 1988). The errors for T, and LE were likely to be overestimated since a
200x200 km satellite average was compared with a spot measurement in an area of very
large meridional gradient.

Fig. 7 shows the time-longitude distribution of Ts' U, W, and LE centered on the
equator between 900W and the date-line. The 1982-83 ENSO episode is envisioned as an
apparent eastward migration of the warm water pool marked by the 28°C isotherm starting
in June 1982. This results in a reverse of zonal T, gradient near the date-line. The
organized deep convection marked by high W also moves east from the date-line starting
June 1982, leaving dry air behind. The seasonal cycle of U is disrupted by the eastward
migration of low wind center representing surface convergence associated with the
organized convection at the eastern terminal of anomalous westerlies. During April 1983,
zonal belts of high Ts' high Wand low U stretch across the entire equatorial Pacific.
Detailed evolution of these three parameters during the episode is described in Liu (1989a).
Despite the warm water, LE is below normal due mainly to the low U near the convergence
center. The annual October high does not reach the expected level.
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Fig.7 Time-longitude variation, centered on the
equator, of (A) sea surface temperature, (B) surface
wind speed, (C) columnar water vapor, and (D)
latent heat flux. The intervals between isolines are
1°C, lrn/s, 0.5 g/cmt. and 25 W/m2 respectively.
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The change of heat storage in the upper ocean is governed by the balance of heat
gain from the surface and the loss through ocean dynamics. Fig. 8A shows the distribution
of the contemporary correlation coefficient, at 2° latitude by 2° longitude grids. between LE
and the time rate of change of sea surface temperature (aTJot) for the period between
February 1980 and September 1983. including an intense El Nino and Southern Oscillation
episode. The gradient of the linear regression for three consecutive months of Ts is used to
represent aTJi1t. The 44 months of LE and aTs/dt fields were reconstructed from the first
three empirical onhogonal functions accounting for 60% and 83% of the variance
respectively. The low correlation in the near equatorial regions (left) is due the cloud and
insolation variabilities in areas of organized convection and surface convergence (e.g.•
ITCZ) and due to ocean upwelling (along the equator). Off phase moisture variation is
likely to be cause of low correlation at 200N. Outside of these regions. the correlations are
significant. indicating dominant influence of surface latent heat flux in upper ocean heat
balance. By adding the surface shortwave radiation derived from observations from the
VISSR (Visible Infrared Spin Scan Radiometer) (Liu and Gautier, 1989) to the latent heat
flux. the area of low correlation is concentrated in a narrow belt around the equator (Fig.
8B) showing that in this equatorial wave guide. ocean dynamics plays a dominant role.
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s. CONCLUSION

CE is constant only as a crude approximation. Most values used in the past led to
underestimation of E in the western tropical Pacific (where winds are very light) because
they do not account for the smooth flow characteristic of increasing values with decreasing
winds and they neglect the moisture-induced instability. A scheme for parameterization
under free convection is also described which still needs further validation.
Inhomogeneous and non-stationary conditions, related to thermal plumes or convection, are
not addressed 'and required more studies and scrutiny.

A method of estimating E with observations from spaceborne microwave is
described. Application has been confined to monthly means but extension of the technique
to higher temporal frequencies is being explored (Liu, 1989b). Combination of LE with
surface shortwave radiation demonstrated the ocean's response to surface thermal forcing.
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