Observations of Air-Sea Interactions in the Western Pacific Warm Pool During WEPOCS

Roger LUKAS

Joint Institute for Marine and Atmospheric Research
University of Hawaii, 1000 Pope Road
Honolulu, Hawaii, 96822 - U.S.A.

I. Introduction

The meteorological observations made during the Western Equatorial Pacific Ocean Circulation Study (WEPOCS) show the complex nature of air-sea interaction occurring in the western equatorial Pacific warm pool. The winds in the core of the western Pacific warm pool are usually light (cf. Sadler et al., 1987). During these low mean wind speed conditions, a radiative-convective equilibrium (cf. Sarachik, 1978; Betts and Ridgeway, 1988) seems to hold in which the strong coupling between atmosphere and ocean, controlled by local convective processes, provides a negative feedback that stabilizes the system with near-zero net heat flux. Recently, the importance of the hydrological cycle in this coupling has become apparent, both in observations (Lukas, 1989) and in simple models (Garwood and Chu, 1989; Stevens et al., 1989).

Strong winds, associated with synoptic disturbances such as monsoon surges and westerly wind bursts, appear to be responsible for most of the transfer of heat from the western Pacific Ocean to the atmosphere. The character of the convection and air-sea interaction during these disturbances is different from the low mean wind speed conditions (Keen, 1988; Lander and Morrissey, 1988; Lau et al., 1988; Lukas, 1988), involving spatial scales of thousands of kilometers, versus the 10-100 km scales seen during the low mean wind speed conditions. The transition from the local 1-dimensional balance to the fully 3-dimensional interaction of the ocean and atmosphere in the western equatorial Pacific is of particular interest, as the latter thermodynamics is relevant to ENSO onset.
II. Data

A. WEPOCS

WEPOCS is a joint U.S.-Australian program to study the low-latitude western boundary currents of the Pacific Ocean, and to study the response of the warm pool of the western equatorial Pacific to the Northwest Monsoon (Lindstrom et al., 1987). Figure 1 shows the cruise tracks from WEPOCS I, II, and III, conducted in June-August 1985, January-February 1986, and June-July 1988 respectively.

Figure 1. Cruise tracks from the three WEPOCS expeditions. The heavy line is the track of R/V MOANA WAVE during WEPOCS III (19 June - 30 July, 1988). Leg 1 is that portion to the east of Palau and north of New Guinea; the portion around Mindanao and west of Palau is Leg 2. The large solid circle indicates the location of the equatorial surface mooring during WEPOCS I, and the small solid circles indicate hydrographic station positions.
B. Observations

During WEPOCS III, hourly shipboard observations were made of sea surface temperature (SST) at 0.5 m depth, wet- and dry-bulb air temperature (from sling psychrometer at 3 m height), and wind speed and direction at 10 m (Fig. 2). Cloudiness observations were made every 3 hours and during hydrographic stations.

![Hourly shipboard meteorological observations made during WEPOCS III, Leg 1 (top) and Leg 2 (bottom).](image_url)
Figure 3. Time series of wind, air temperature, and sea surface temperature from the WEPOCS equatorial surface mooring of the equator at 150°E.
An Eppley full-sky radiometer was mounted on the ship's stern A-frame, and data were recorded at 1 minute intervals, but only a partial record was obtained because of data logging problems.

Wind and temperature measurements were also made from the surface buoy on the equatorial current meter mooring deployed during WEPOCS I in 1985 (Fig. 3). Winds and air temperature are from a height of 3 m, and SST is from 1 m below the surface.

During WEPOCS II and III, R/V MOANA WAVE was equipped with a thermostalinograph in the intake to the cooling pump for the hydrographic winch. The water was drawn continuously from a depth of 4 m. Seabird temperature and conductivity sensors were used, and the system sampled every 20 seconds. After editing, and calibration of salinity against water samples, the data were smoothed and subsampled at 1 minute intervals.

C. Heat flux computations

The components of the net heat flux were computed from the hourly meteorological observations using the bulk formulae as per Stevenson and Niiler (1982) and Large and Pond (1982), and with direct measurements of solar radiation. When daily averages of these fluxes were compared to fluxes calculated using daily averaged variables (Table 1), the differences were generally small. Thus, heat fluxes from daily means are presented below, using cloudiness observations to estimate insolation because the radiometer records were not complete. Note that the net insolation parameterization used in these estimates was checked against the radiometer data and the calculated insolation is biased high by -26 W/m² for the 24 days of data. The insolation and net heat flux were not corrected for this bias. Also, low wind-speed modifications (Liu et al., 1979) were not made to the exchange coefficients. These computations will be made in the near future.

<table>
<thead>
<tr>
<th>day</th>
<th>ΔQh</th>
<th>ΔQs</th>
<th>ΔQb</th>
<th>ΔQh+Qs-Qb (W/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>172</td>
<td>-4.7</td>
<td>6.3</td>
<td>.6</td>
<td>-2.2</td>
</tr>
<tr>
<td>173</td>
<td>-2.3</td>
<td>4.4</td>
<td>.2</td>
<td>-2.3</td>
</tr>
<tr>
<td>174</td>
<td>-9</td>
<td>11.8</td>
<td>2.0</td>
<td>-12.8</td>
</tr>
<tr>
<td>176</td>
<td>-6.9</td>
<td>8.8</td>
<td>.4</td>
<td>-4.2</td>
</tr>
<tr>
<td>177</td>
<td>5.6</td>
<td>-7.0</td>
<td>.0</td>
<td>-12.2</td>
</tr>
<tr>
<td>179</td>
<td>3.1</td>
<td>2.1</td>
<td>.2</td>
<td>-3.0</td>
</tr>
<tr>
<td>180</td>
<td>1.2</td>
<td>1.2</td>
<td>.2</td>
<td>-1.6</td>
</tr>
<tr>
<td>181</td>
<td>-9</td>
<td>1.3</td>
<td>1.1</td>
<td>-7.7</td>
</tr>
<tr>
<td>182</td>
<td>2.9</td>
<td>2.0</td>
<td>.1</td>
<td>-3.0</td>
</tr>
<tr>
<td>183</td>
<td>-5</td>
<td>5.4</td>
<td>.4</td>
<td>-1.0</td>
</tr>
<tr>
<td>189</td>
<td>-5</td>
<td>.9</td>
<td>-5</td>
<td>1.3</td>
</tr>
<tr>
<td>190</td>
<td>.8</td>
<td>-2.0</td>
<td>-2.8</td>
<td>4.0</td>
</tr>
<tr>
<td>191</td>
<td>-1.1</td>
<td>7.7</td>
<td>.9</td>
<td>-7.3</td>
</tr>
<tr>
<td>193</td>
<td>4.6</td>
<td>4.4</td>
<td>.2</td>
<td>-7.8</td>
</tr>
<tr>
<td>194</td>
<td>6.5</td>
<td>1.9</td>
<td>.9</td>
<td>6.1</td>
</tr>
<tr>
<td>195</td>
<td>2.7</td>
<td>2.0</td>
<td>.2</td>
<td>-4.9</td>
</tr>
<tr>
<td>195</td>
<td>5.4</td>
<td>1.4</td>
<td>.6</td>
<td>-7.4</td>
</tr>
<tr>
<td>197</td>
<td>-2.5</td>
<td>1.3</td>
<td>.6</td>
<td>1.3</td>
</tr>
<tr>
<td>198</td>
<td>-3.1</td>
<td>1.1</td>
<td>.3</td>
<td>2.3</td>
</tr>
<tr>
<td>199</td>
<td>-7.2</td>
<td>1.3</td>
<td>1.1</td>
<td>4.9</td>
</tr>
<tr>
<td>200</td>
<td>2.0</td>
<td>6.6</td>
<td>.7</td>
<td>-7.9</td>
</tr>
<tr>
<td>201</td>
<td>-8.5</td>
<td>1.0</td>
<td>.9</td>
<td>6.5</td>
</tr>
<tr>
<td>203</td>
<td>.4</td>
<td>5.6</td>
<td>.2</td>
<td>-5.8</td>
</tr>
<tr>
<td>204</td>
<td>2.4</td>
<td>6.7</td>
<td>.4</td>
<td>-6.3</td>
</tr>
<tr>
<td>205</td>
<td>.9</td>
<td>1.8</td>
<td>.4</td>
<td>-10.1</td>
</tr>
<tr>
<td>206</td>
<td>-1.5</td>
<td>4.5</td>
<td>.6</td>
<td>-2.5</td>
</tr>
<tr>
<td>207</td>
<td>-1.2</td>
<td>-.1</td>
<td>1.1</td>
<td>-2.3</td>
</tr>
<tr>
<td>208</td>
<td>-1.1</td>
<td>4.6</td>
<td>1.0</td>
<td>7.4</td>
</tr>
<tr>
<td>209</td>
<td>.2</td>
<td>1.2</td>
<td>1.3</td>
<td>-1.3</td>
</tr>
</tbody>
</table>

avg -1.08 3.33 3.33 2.2 2.92
std 3.31 3.57 3.91 5.38
III. Results

A. Heat Fluxes

During Leg 1, the winds were usually less than 4 m/s, except during convective downdrafts and squalls (Fig. 2). Note the very high frequency variations in these hourly data, associated with convective activity, that can not be resolved with twice or even four times per day sampling. The mean air-sea temperature difference was 1.6°C during this period, and was as large as 3-4°C during the downdrafts. This large mean air-sea temperature difference is three times larger than climatological estimates for this region (Weare et al., 1981; Esbensen and Kushnir, 1981). This is probably due to biases in merchant ship temperature observations; large air-sea temperature differences have been observed on all three WEPOCS expeditions and from the WEPOCS moored buoy in the warm pool.

The time series from the WEPOCS mooring shows the light mean winds (speed less than 4 m/s most of the time, and variable direction) that are characteristic of the warm pool (Fig. 3). The air temperature is usually in the range 27-29°C, with negative excursions (attributed to convective downdrafts) below 24°C on occasion. The SST shows a strong (0.5°C amplitude) diurnal cycle during light winds (cf. Ostapoff and Worthem, 1974), and SST is usually warmer than the air temperature by 1.5-2.0°C (Lukas, 1987).

During Leg 2, the calm conditions of the warm pool region were disturbed by several surges of the Southwest Monsoon (Fig. 2). During these periods, the large air-sea temperature difference is reduced (cf. 25-30 July), and the diurnal cycle is suppressed.

The insolation and latent heat are the largest terms in the net heat flux, and they also have the largest variability (Fig. 4). The sensible heat flux is proportional to the air-sea temperature difference, which varied diurnally but not as much from day to day. Large negative excursions of dry air temperature are associated with convective gust fronts (squall lines) in which the air is cold and saturated. This air is brought rapidly to the surface in downdrafts inside the convective towers. Because of the large air-sea temperature difference at these times, a considerable sensible heat flux from the ocean to the atmosphere is occurring in the region of such downdrafts (eg. Gautier, 1978; Bean and Reinking, 1978).

Both wind and humidity changes were responsible for modulating the daily mean latent heat fluxes during Leg 1 of WEPOCS III, where the mean wind speed was less than 4 m/s. The net heat flux over 11 days was 40 W/m², with excursions between +130 and -30 W/m² for the daily values. During Leg 2, several surges of the Southwest Monsoon resulted in winds of 8-14 m/s for 2-3 days at a time, and an average wind speed of about 6 m/s. The large latent heat losses (200-270 W/m²) and reduced insolation during the monsoon surges resulted in net heat losses
from the ocean of 100-150 W/m\(^2\) during these periods, and an average over 23 days of -20 W/m\(^2\). Note that these net fluxes may be biased high by 20-30 W/m\(^2\) because the algorithm used to calculate insolation from daily cloud coverage is probably not applicable to the cloud types found in the western tropical Pacific.

B. Precipitation signatures

The thermosalinograph record from 21 July 1988 (near 8\(^\circ\)N, 128.5\(^\circ\)E), shows the effect of the strong precipitation and convective downdrafts, which is seen in the freshening of sea surface salinity, and the cooling of SST (Fig. 5). The width of this cold, fresh puddle is about 20 km, comparable to the scale of the convection cell. It is not clear whether the cooler water is due to cold rain, or to heat being extracted from the ocean by cold downdrafts, although previous observations (Greenhut, 1978) suggest the latter, which is consistent with the 1-dimensional radiative-convective equilibrium theory.

Temperature and salinity from the thermosalinograph on R/V MOANA WAVE during WEPOCS III Leg 1 show the aggregate effect of the mesoscale convection on the upper ocean temperature and salinity fields (Fig. 6). Individual convective cells freshen and cool the upper ocean as indicated by the heavy vertical lines. The
Figure 5. Segment of WEPOCS III thermosalinograph record (salinity at top, temperature at bottom) showing the depression of salinity and temperature as R/V MOANA WAVE passed through a convective cell. Approximate length scale associated with this large freshwater input is 20 km.

Figure 6. A two-day segment of the thermosalinograph record from R/V MOANA WAVE during the WEPOCS III expedition showing temperature (top) and salinity (bottom) at a depth of 4 m versus distance (km) along track. Note the general depression of salinity between 50 km and 550 km, as well as the more localized depressions (eg. 250-300 km).
Figure 7. Temperature-salinity diagram for thermosalinograph data from WEPOCS III for the same period as the observations in Fig. 6. Note the general tendency for low salinity to be associated with lower temperature.

Freshening of the sea surface between 100 and 550 km along track is attributable to a mesoscale convective complex of this spatial extent. The diurnal cycle in SST is seen in the apparent long wavelength variation.

A surface temperature-salinity diagram (Fig. 7) shows the strong correlation of SST and surface salinity variations, with cold, fresh "puddles" from mesoscale convection mixing with warmer, saltier waters. This good correlation suggests that the buoyancy forcing of the warm pool is dominated by mesoscale convection during the time of these observations. Elliot (1974) did not find such a good correlation during BOMEX, probably because the relative influence of wind and buoyancy forcing was so different from the western equatorial Pacific.

IV. Discussion

From the WEPOCS observations, it is clear that air-sea fluxes in the warm pool are dominated by processes associated with mesoscale convection. Thus, it is appropriate to review these processes here. The view of the tropical convective cell that arose from the intensive GATE observations is summarized by Bean and Reinking (1978). The complexity of the circulation and the vertical fluxes is substantial; a complete description is given by Leary and Houze (1979).

The heaviest rain occurs in the convective tower, but when weighted by area, the stratiform anvil contributes as much as 50% of the precipitation. Within the tower, strong downdrafts occur leading to the formation of gust fronts, and because of the rapid sinking, this air remains cold. Because of the very thick and dark cloud in the tower, incoming solar radiation is severely attenuated. In the regions outside of the convective cell, the cloud cover is generally thin stratocirrus cloud,
permitting solar radiation to reach the sea surface without much attenuation. This region is where cooler, drier air from the outflow regions of the convective cells returns to the near-surface layers (Betts and Ridgway, 1988).

The incoming solar radiation is primarily modulated by the diurnal cycle, and by the clouds associated with mesoscale convection. When the winds are light, and the skies are clear, the SST responds rapidly to the heating (Ostapoff and Worthem, 1974), as does the overlying atmosphere. This can be seen in Figs. 2 and 3, where the diurnal cycle of SST is as large as 1°C, and the diurnal cycle of air temperature is about 2°C.

According to bulk parameterizations, the latent heat flux depends on the vapor pressure difference between air at the sea surface temperature and that of the air above the sea surface, and on the wind speed. For the case of no wind, the bulk formula predicts no moisture flux. Liu et al. (1979) suggest that this is not the case, and that the exchange coefficient in this formula varies strongly with wind speed at low wind speeds, especially when the air-sea temperature difference is large. The subsiding air outside the convective towers is relatively dry (see the large difference between dry bulb and wet bulb air temperatures in Fig. 2), and is thus capable of picking up substantial moisture.

The heat flux depends on SST, but changes of SST depend strongly on mixed layer thermodynamics. The momentum and buoyancy fluxes at the sea surface, combined with the initial buoyancy profile, determine the evolution of the mixed layer and its heat budget. Thus, precipitation and salinity effects, through their influence on the buoyancy flux and the buoyancy profile, may exert a control on the mixed layer heat budget (Ostapoff et al., 1973; Miller, 1976), and thus on the flux of heat to the atmosphere.

V. Conclusions

The fluxes of heat and moisture in the western Pacific warm pool are generally controlled by mesoscale convection, with a quasi-one-dimensional radiative-convective equilibrium in which there is near-zero net heat flux on time scales longer than about one day (Godfrey and Lindstrom, 1989). This equilibrium is occasionally disturbed by synoptic scale atmospheric events; it is during these times that heat is effectively extracted from the warm pool by the atmosphere (Meyers et al., 1986). The horizontal scales of SST and sea surface salinity variability are controlled by the convective processes and the synoptic scale forcing.

Scale interactions occur when processes on at a particular time or space scale modulate the energy of processes on different time or space scales. This can arise only from nonlinear thermodynamics. The turbulent fluxes of heat, moisture, and momentum between the upper ocean and the lower atmosphere are nonlinear, and
are dependent on one another. Synoptic scale forcing modulates the atmospheric convection, and thus substantially modulates the air-sea fluxes (e.g. Seguin and Kidwell, 1980). It is this synoptic atmospheric forcing which can change the warm pool system from a nearly one-dimensional radiative-convective equilibrium into a fully three-dimensional system.

Acknowledgements

Mr. Toshiaki Shinoda computed the heat fluxes from WEPOCS III meteorological observations. Mrs. Mimi Baker processed and plotted the meteorological and thermosalinograph data. The author gratefully acknowledges the support of the National Science Foundation under grants OCE-8610458 and OCE-8716510 for the Western Equatorial Pacific Ocean Circulation Study (WEPOCS). This is Joint Institute for Marine and Atmospheric Research contribution No. 89-0177 and Hawaii Institute of Geophysics contribution No. HIG-2156.

REFERENCES

Garwood, R.W. and P.C. Chu, 1989: Hydrological effects on the air-sea coupled system. This volume.

WESTERN PACIFIC INTERNATIONAL MEETING
AND WORKSHOP ON TOGA COARE

Nouméa, New Caledonia
May 24-30, 1989

PROCEEDINGS

edited by

Joël Picaut *
Roger Lukas **
Thierry Delcroix *

* ORSTOM, Nouméa, New Caledonia
** JIMAR, University of Hawaii, U.S.A.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>RESUME</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1. Motivation</td>
<td>1</td>
</tr>
<tr>
<td>2. Structure</td>
<td>2</td>
</tr>
<tr>
<td>LIST OF PARTICIPANTS</td>
<td>5</td>
</tr>
<tr>
<td>AGENDA</td>
<td>7</td>
</tr>
<tr>
<td>WORKSHOP REPORT</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>19</td>
</tr>
<tr>
<td>2. Working group discussions, recommendations, and plans</td>
<td>20</td>
</tr>
<tr>
<td>a. Air-Sea Fluxes and Boundary Layer Processes</td>
<td>20</td>
</tr>
<tr>
<td>b. Regional Scale Atmospheric Circulation and Waves</td>
<td>24</td>
</tr>
<tr>
<td>c. Regional Scale Oceanic Circulation and Waves</td>
<td>30</td>
</tr>
<tr>
<td>3. Related programs</td>
<td>35</td>
</tr>
<tr>
<td>a. NASA Ocean Processes and Satellite Missions</td>
<td>35</td>
</tr>
<tr>
<td>b. Tropical Rainfall Measuring Mission</td>
<td>37</td>
</tr>
<tr>
<td>c. Typhoon Motion Program</td>
<td>39</td>
</tr>
<tr>
<td>d. World Ocean Circulation Experiment</td>
<td>39</td>
</tr>
<tr>
<td>4. Presentations on related technology</td>
<td>40</td>
</tr>
<tr>
<td>5. National reports</td>
<td>40</td>
</tr>
<tr>
<td>6. Meeting of the International Ad Hoc Committee on TOGA COARE</td>
<td>40</td>
</tr>
<tr>
<td>APPENDIX: WORKSHOP RELATED PAPERS</td>
<td></td>
</tr>
<tr>
<td>Robert A. Weller and David S. Hosom: Improved Meteorological Measurements from Buoys and Ships for the World Ocean</td>
<td>45</td>
</tr>
<tr>
<td>Circulation Experiment</td>
<td></td>
</tr>
<tr>
<td>Peter H. Hildebrand: Flux Measurement using Aircraft and Radars</td>
<td>57</td>
</tr>
<tr>
<td>Determination of Boundary-Layer Fluxes with an Integrated Sounding System</td>
<td></td>
</tr>
</tbody>
</table>
MEETING COLLECTED PAPERS

WATER MASSES, SEA SURFACE TOPOGRAPHY, AND CIRCULATION

Klaus Wyrtki: Some Thoughts about the West Pacific Warm Pool 99
Jean René Donguy, Gary Meyers, and Eric Lindstrom: Comparison of the Results of two West Pacific Oceanographic Expeditions FOC (1971) and WEPOCS (1985-86) ... 111
Dunxin Hu, and Maochang Cui: The Western Boundary Current in the Far Western Pacific Ocean ... 123
Peter Hacker, Eric Firing, Roger Lukas, Philipp L. Richardson, and Curtis A. Collins: Observations of the Low-latitude Western Boundary Circulation in the Pacific during WEPOCS III ... 135
Stephen P. Murray, John Kindle, Dharma Arief, and Harley Hurlburt: Comparison of Observations and Numerical Model Results in the Indonesian Throughflow Region .. 145
Christian Henin: Thermohaline Structure Variability along 165°E in the Western Tropical Pacific Ocean (January 1984 - January 1989) 155
David J. Webb, and Brian A. King: Preliminary Results from Charles Darwin Cruise 34A in the Western Equatorial Pacific .. 165
Warren B. White, Nicholas Graham, and Chang-Kou Tai: Reflection of Annual Rossby Waves at The Maritime Western Boundary of the Tropical Pacific .. 173
William S. Kessler: Observations of Long Rossby Waves in the Northern Tropical Pacific .. 185
Eric Firing, and Jiang Songnian: Variable Currents in the Western Pacific Measured During the US/PRC Bilateral Air-Sea Interaction Program and WEPOCS ... 205
John S. Godfrey, and A. Weaver: Why are there Such Strong Steric Height Gradients off Western Australia? ... 215
John M. Toole, R.C. Millard, Z. Wang, and S. Pu: Observations of the Pacific North Equatorial Current Bifurcation at the Philippine Coast 223

EL NIÑO/SOUTHERN OSCILLATION 1986-87

Gary Meyers, Rick Bailey, Eric Lindstrom, and Helen Phillips: Air/Sea Interaction in the Western Tropical Pacific Ocean during 1982/83 and 1986/87 .. 229
Laury Miller, and Robert Cheney: GEOSAT Observations of Sea Level in the Tropical Pacific and Indian Oceans during the 1986-87 El Nino Event ... 247
Thierry Delcroix, Gérard Eldin, and Joël Picaut: GEOSAT Sea Level Anomalies in the Western Equatorial Pacific during the 1986-87 El Nino, Elucidated as Equatorial Kelvin and Rossby Waves .. 259
Gérard Eldin, and Thierry Delcroix: Vertical Thermal Structure Variability along 165°E during the 1986-87 ENSO Event .. 269
Michael J. McPhaden: On the Relationship between Winds and Upper Ocean Temperature Variability in the Western Equatorial Pacific .. 283
THEORETICAL AND MODELING STUDIES OF ENSO AND RELATED PROCESSES

Kensuke Takeuchi: On Warm Rossby Waves and their Relations to ENSO Events ... 329
Yves du Penhoat, and Mark A. Cane: Effect of Low Latitude Western Boundary Gaps on the Reflection of Equatorial Motions ... 335
Harley Hurlburt, John Kindle, E. Joseph Metzger, and Alan Wallcraft: Results from a Global Ocean Model in the Western Tropical Pacific ... 343
John C. Kindle, Harley E. Hurlburt, and E. Joseph Metzger: On the Seasonal and Interannual Variability of the Pacific to Indian Ocean Throughflow ... 355
Antonio J. Busalacchi, Michael J. McPhaden, Joel Picaut, and Scott Springer: Uncertainties in Tropical Pacific Ocean Simulations: The Seasonal and Interannual Sea Level Response to Three Analyses of the Surface Wind Field ... 367
Akimasa Sumi: Behavior of Convective Activity over the "Jovian-type" Aqua-Planet Experiments ... 389
Ka-Ming Lau: Dynamics of Multi-Scale Interactions Relevant to ENSO ... 397
Pecheng C. Chu and Roland W. Garwood, Jr.: Hydrological Effects on the Air-Ocean Coupled System ... 407
Sam F. Iacobellis, and Richard C.J. Somerville: A one Dimensional Coupled Air-Sea Model for Diagnostic Studies during TOGA-COARE 419
Roland W. Garwood, Jr., Pecheng C. Chu, Peter Muller, and Nikias Schneider: Equatorial Entrainment Zone : the Diurnal Cycle ... 435
Peter R. Gent: A New Ocean GCM for Tropical Ocean and ENSO Studies ... 445
Wasito Hadi, and Nuraini: The Steady State Response of Indonesian Sea to a Steady Wind Field ... 451
Pedro Ripa: Instability Conditions and Energetics in the Equatorial Pacific ... 457
Lewis M. Rothstein: Mixed Layer Modelling in the Western Equatorial Pacific Ocean ... 465
Neville R. Smith: An Oceanic Subsurface Thermal Analysis Scheme with Objective Quality Control ... 475
Duane E. Stevens, Qi Hu, Graeme Stephens, and David Randall: The hydrological Cycle of the Intraseasonal Oscillation ... 485
Peter J. Webster, Hai-Ru Chang, and Chidong Zhang: Transmission Characteristics of the Dynamic Response to Episodic Forcing in the Warm Pool Regions of the Tropical Oceans ... 493
MOMENTUM, HEAT, AND MOISTURE FLUXES BETWEEN ATMOSPHERE AND OCEAN

E. Frank Bradley, Peter A. Coppin, and John S. Godfrey: Measurements of Heat and Moisture Fluxes from the Western Tropical Pacific Ocean .. 523
Richard W. Reynolds, and Ants Leetmaa: Evaluation of NMC's Operational Surface Fluxes in the Tropical Pacific .. 535
Stanley P. Hayes, Michael J. McPhaden, John M. Wallace, and Joël Picaut: The Influence of Sea-Surface Temperature on Surface Wind in the Equatorial Pacific Ocean .. 543
T.D. Keenan, and Richard E. Carbone: A Preliminary Morphology of Precipitation Systems In Tropical Northern Australia .. 549
Phillip A. Arkin: Estimation of Large-Scale Oceanic Rainfall for TOGA .. 561
Catherine Gautier, and Robert Frouin: Surface Radiation Processes in the Tropical Pacific .. 571
Roger Lukas: Observations of Air-Sea Interactions in the Western Pacific Warm Pool during WEPOCS .. 599

EMPIRICAL STUDIES OF ENSO AND SHORT-TERM CLIMATE VARIABILITY

Klaus M. Weickmann: Convection and Circulation Anomalies over the Oceanic Warm Pool during 1981-1982 .. 623
Claire Perigaud: Instability Waves in the Tropical Pacific Observed with GEOSAT .. 637
Ryuichi Kawamura: Intraseasonal and Interannual Modes of Atmosphere-Ocean System Over the Tropical Western Pacific .. 649
David Gutzler, and Tamara M. Wood: Observed Structure of Convective Anomalies .. 659
Siri Jodha Khalsa: Remote Sensing of Atmospheric Thermodynamics in the Tropics .. 665
Bingrong Xu: Some Features of the Western Tropical Pacific: Surface Wind Field and its Influence on the Upper Ocean Thermal Structure .. 677
Bret A. Mullan: Influence of Southern Oscillation on New Zealand Weather .. 687
Kenneth S. Gage, Ben Bastley, Warner Ecklund, D.A. Carter, and John R. McAfee: Wind Profiler Related Research in the Tropical Pacific .. 699
John Joseph Bates: Signature of a West Wind Convective Event in SSM/I Data .. 711
David S. Gutzler: Seasonal and Interannual Variability of the Madden-Julian Oscillation .. 723
Marie-Hélène Radenac: Fine Structure Variability in the Equatorial Western Pacific Ocean .. 735
George C. Reid, Kenneth S. Gage, and John R. McAfee: The Climatology of the Western Tropical Pacific: Analysis of the Radiosonde Data Base .. 741
Chung-Hsiung Sui, and Ka-Ming Lau: Multi-Scale Processes in the Equatorial Western Pacific ... 747
Stephen E. Zebiak: Diagnostic Studies of Pacific Surface Winds 757

MISCELLANEOUS

Rick J. Bailey, Helene E. Phillips, and Gary Meyers: Relevance to TOGA of Systematic XBT Errors ... 775
Jean Blanchot, Robert Le Borgne, Aubert Le Bouteiller, and Martine Rodier: ENSO Events and Consequences on Nutrient, Planktonic Biomass, and Production in the Western Tropical Pacific Ocean 785
Yves Dandonneau: Abnormal Bloom of Phytoplankton around 10°N in the Western Pacific during the 1982-83 ENSO ... 791
Cécile Dupouy: Sea Surface Chlorophyll Concentration in the South Western Tropical Pacific, as seen from NIMBUS Coastal Zone Color Scanner from 1979 to 1984 (New Caledonia and Vanuatu) .. 803
Michael Szabados, and Darren Wright: Field Evaluation of Real-Time XBT Systems ... 811
Pierre Rual: For a Better XBT Bathy-Message: Onboard Quality Control, plus a New Data Reduction Method ... 823