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ABSTRACT

Satellite estimates of ocean/atmosphere heat f1uxes were compared with surface measurements taken at
John Brewer Reef (18°38'5, 147°E) located80 km NNEof Townsville, Australia. For a 45 weekperiodall the
components of the surface heat f1uxes : net radiation, sensible and latent heat fluxes, were estimated from
surface observations and averaged on a weekly basis.Concurrent satellite observations in the vicinity of John
Brewer Reefconsisted of GMS visible reflectance data,NOAA-9 soundings of temperature and humidity, and
sea surface temperatures derived from a blendof ship observations and NOAA-9 data. Wind estimates were
derived from the Darwin Tropical Analysis. All satellite data were testedfor their ability to reproduce surface
heatfluxes,

The rms differences (measured versus modeled) between the weeldy averaged valuesof net radiation, the
turbulent heat flux (sensible plus latent) and the total ocean/atmosphere heat flux were 16 Wm-2, 45 Wm-2

and 48 Wm-2 respectively. Averaged over the 45 week period, a mean difference of 9 Wm-2

(measured-modeled) wasobtained for the totalocean-atmosphere heatexchange.

1. Introduction

Large scale studies of ocean/atmosphere heat fluxes are traditionally based upon marine
weather reports. However these data sets are scarce in many ocean areas not covered by
shipping routes. The reliability of monthly mean fluxes has been questioned in these areas,
as biases may result from the inclusion of temporally and/or spatially sparse data (Ramage,
1984; Sarachik, 1984).

It is within this framework that satellite data offer distinct advantages. Geostationary and
polar-orbiting satellites cover large areas of the globe at regular intervals, providing
information on the state of the atmosphere and ocean. In this study we assess the
applicability of satellite data to provide estimates of ocean/atmosphere heat fluxes at a
location in the tropical western Pacific ocean. The emphasis has been placed on long term
high quality surface measurements as opposed to short term ship estimates from a variety of
geographic locations.

The total ocean/atmosphere heat flux (QA) may be partitioned into its component fluxes
consisting in net radiation (Q.) and sensible (QH) and latent (QE) heat fluxes :

(1)

In turn the net radiation can be written in terms of the incoming (Ko) and reflected (Ku)
solar radiations fluxes and the incoming (Lo) and emitted plus reflected longwave radiation
fluxes (Lu) :

(2)



612

In this study all the terms in equations (l) and (2) with exception of Ku were obtained
from direct surface measurements. Similarly satellite data, or satellite related data, were
used to estimate all the component fluxes in the above equations.

2. Data acquisition

The measurement period encompassed the dates 1 June 1985 to 1 April 1986 (Figure 1).
Measurements were taken from a wooden floating pontoon, anchored to the reef bottom
(-7m depth). A tower was constructed on the pontoon and all atmospheric sensors were
located free from obstructions and 4.5 m above the platform and 5.5 m above the water. A
Campbell CR21X micrologger was used to record all data at a frequency of 0.5 seconds.
Table 1 provides details on all the meteorological variables that were measured.
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During the course of the measurement period, there were no weeks with predominantly
westerly of southerly winds which would have indicated the presence of air masses of
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continental origin. The reef coral was only partially exposed «10 percent) at extremely low
tides which occurred infrequently. Measurements of surface water temperature with an
infrared radiometer (1. Hacker, Flinders University of South Australia, pers. comm.) have
shown the lagoon to be occasionally 0.1 to O.3°C warmer than surrounding waters.

TABLE 1 Instruments used to measure ocean-atmosphere heat fluxes at John Brewer
Reef: 1 June 1985 - 1 April 1986

Instrument Measured Meteorological
Variable

Days Available

Kipp & Zonen pyranometer
Eppley precision pyrgeometer
copper/constantan thermocouples
copper/constantan thermocouples
Vaisala humidy sensor
Met One (3 cup) anemometer and
locally built (4 cup) anemometer

(a) incoming solar radiation 225
(b) incoming longwave radiation 107
(c) air temperature 225
(d) sea surface temperature 173
(e) relative humidity 225

(0 wind speed 225

Calculated Fluxes

incoming global radiation
outgoing global radiation
incoming longwave radiation
outgoing longwave radiation
latent heat
sensible heat

Relevant Meteorological
Variable(s)

(a)
(a)
(b)
(d)
(c),(d),(e),(O
(c),(d),(e),(O

Days Available

225
225
107
107
173
173

Table 2 provides details on satellite and related data that were used to derive the surface
heat fluxes. A continuous data set with no missing values would imply a total of 315 days
with GMS and NOAA/fOVS and NOANAVHRR data. This was not achieved.

Data for the GMS pixel closest to John Brewer Reef was manually retrieved on a daily
basis. NOAA/fOVS data containing three levels of precipitable water vapor and 15 levels
of air temperature, was obtained from NOAA-NESDIS (Washington, DC) as a TOVS
sounding data product. These data were retrieved in a box of 4° x 4° square with John
Brewer Reef being located in the southwest corner. On each day all soundings in the square
were averaged, with larger weighting applied to those soundings closest to John Brewer
Reef.

Sea surface temperatures were extracted from a monthly averaged data set consisting of a
blend of ship reports and NOAA-9 multi-channel sea surface temperatures (Reynolds,
1988). An average monthly sea surface temperature was estimated for the study area as a
weighted average of the three closest grid points, which were spaced at two degree
intervals. These monthly values were temporarily interpolated to provide mean weekly sea
surface temperatures. No satellite-derived estimates of near-surface wind were available. In
the absence of this important parameter, data from the Darwin Tropical Wind Analysis
were substituted. Values from the grid point at 17.5°S, 147.5°E were averaged to estimate
at mean weekly wind speed for the study area.
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Satellite and ancillary data used to estimate ocean-atmosphere heat fluxes
near John Brewer Reef: 1 June 1985 - 1 April 1986

Data Type Frequency Spatial Days with at least Related
Resolution one observation Heat Fluxe(es)

GMS visible 3 times daily 2.5 x 3km 303 Ko,Ku,Lo

NOAN 2 times daily 300 x 300 km 209 Lo,QE,QH
TOVS

NOAN monthly 10 x 10 interpolated Lu
AVHRRplus weekly
ship SSTs

Darwin 2 times daily 2.50 x 2.50 315 QE,QH
Tropical wind
Analysis
...•.•••.•.•.................•••••.•••..••..•.....••.....••....................•.••..•..•.••••..•....•...•••.•.•..•.

3. Analysis

The following relationships were derived to estimate surface heat fluxes from satellite
data.

a. Incoming Global Radiation
A relationship was defined between the daily transmissivity of global radiation (t) and

the satellite-determined earth-atmosphere reflectivity (aEA) . When applied to half the data
set the following relationship was obtained :

t = KIfKo=O.773-1.037 aEA; -y2 = 0.89 ; S.E. = 0.052 (3)

where Ko is the extra terrestrial global radiation, a function of latitude and time of year.
When tested on the remainder of the data, this relation could estimate Ko on a daily basis
with a mean difference of -2 Wm-2 (measured-predicted) and a rms difference of 28 Wm-2.
This rms difference represents an error of 11 percent in the mean measured value of 246
Wm-2.

b. ReflectedSolarradiation
The upwelling solar radiation from the water surface (Ku) can be written as :

Ku=awKo (4)

Due to measurement problems and the relative insensitivity of this term (Nunez et al.,
1972), the albedo term aw was determined from the tables of Payne (1972) corresponding
to a latitude of 200S. The resulting aw daily values were 0.07 for May through August and
0.06 for all other months.

c. Incoming Longwave Radiation
The LOWTRAN 6 model for atmospheric transmittance and radiance (Kneizys et al.,

1983) was applied on the daily TOVS data for the estimation of Lo.
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Reconstruction of the temperature and humidity profiles from TOVS data was based
upon the technique of Darnell et al. (1983), modified to include a well mixed planetary
boundary layer capped by an inversion. It is physically reasonable to treat the atmospheric
structure in this fashion since the area is subjected to winds with large oceanic fetches for
most of the study period. No distinction was drawn between winds of northerly and winds
of south-easterly origin. Below the inversion the atmospheric features constant potential
temperature and specific humidity, except in the surface boundary layer where the air
temperature and specific humidity, change to take the characteristics of the ocean surface.
Further details are provided in Michael and Nunez (1989).

The LOWTRAN 6 model solves for Lo for totally cloudy (Loc) and cloudless (Loo)
conditions..The actuallongwave radiation can then be given as :

Lo =(1-C) Loo+CLoc (5)

Values of C were derived using GMS visible data and tables presented by Taylor and
Stowe (1984) on low level and middle level cloud albedo. Denoting aL as the minimum
satellite reflectivity for the month, and aH as the threshold reflectance value for totally
overcast conditions, the following relations is obtained :

o
C =(aEA - aJ/(aH -aJ

1

aEA<aL
aL<aEA<aH
aH<aEA

(6)

Cloud heights were derived from the TOVS cloud top pressure, and assigned fixed
pressures of 850 hPa and 750 hPa for low and middle clouds respectively. No TOVS cloud
top pressures were consistent with the presence of clouds.

Pyrgeometer measurements were available during the summer and autumn period for a
total of 125 days. Of these, there were 107 days with concurrent pyrgeometer and GMS
data, and 57 days with additional TOVS data. For this 57 days period, the mean difference
produced by the model just described is 5 Wm-2 (the model under-predicts) and the rms
difference in the daily estimates ofLo is 14 Wm-2•

d. Outgoing Longwave Radiation
This term is mainly dependent on the satellite derived sea surface temperature. Best

agreement with surface measurements were obtained from the Reynolds blended
shipboardINOAA AVHRR data set (Reynolds, 1988). The outgoing longwave radiation can
be written as :

(7)

where Ts is the surface temperature, eis the Stefan-Boltzmann constant and e is the surface
emissivity which was taken as 0.97 (Davies et al., 1971).

e. Turbulent Fluxes
Both surface estimates and the satellite technique use the bulk aerodynamic formulae,

with stability-dependent bulk transfer coefficients as described by Large and Pond (1982) :

(8)

where p is the air density, L is the latent heat of vaporization of water, Cp is the specific
heat of air at constant pressure, CEand CHare the bulk transfer coefficients for sensible and
latent heat flux respectively, q and T are the specific humidity and temperature at the water
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surface (subscript "s") and 10 meter height (subscript "a") and U, is the wind speed at 10
meters.

Using the satellite technique Qs can be readily derived from the surface temperature, and
Ua is given by the Darwin Tropical Wind Analysis. The problems is to derive qa in terms of
the precipitable water vapor as obtained from TOVS. Various relationships were tested,
including that described in Liu (1986) for 40 stations in the mid-latitude and tropics. Also
tested was a simple linear relationship between W (precipitable water vapor) and qafor John
Brewer Breef. The best relationship was obtained by a plot of Qaversus l!i. q where l!i.q ='Is
-qa is treated as a dependent variable

l!i. q = 0.012 - 0.OOOI8Wo; r2 =0.27; S.E. =0.002 (9)

This relationship is statistically significant at the 1 percent level. Equations 8 and 9 were
applied for the 26 weeks in which QE values were available from measurements at John
Brewer Reef. The rms weekly difference is 40 Wm-2, which is considerably lower than the
value using the Liu (1988) technique (104 Wm-2) and the W versus qa linear regression (69
Wm-2) .

The lack of success of the polynomial regressions technique of Liu is probably a result of
fundamental differences between W supplied by NOAA-9rrOVS and by
Nimbus-7/SMMR. To ensure compatibility with radiosonde data, Liu (1988) describes how
empirical correction formulae for SMMR W data were determined for monthly or yearly
intervals. The TOVS data underwent no similar treatment so that it is possible that they
were not representative of the field of W which would have resulted from a network of
radiosondes in the study region. However comparison of our TOVS data with radiosonde
data from Willis Island (1608'S; 149°59'E) gave good results. Nevertheless there is need to
subject the TOVS data to the same spatial and temporal scales as that applied by Liu to the
Nimbus-7 SMMR data. It is likely that a similar relationship will be derived.

The sensible heat flux is a small term in the marine environment. The satellite technique
cannot be applied in equation 8 since near surface air temperatures are not available from
satellite data. Instead the Bowen ratio technique, which is deemed to be a function of
surface temperature (Priest! and Taylor, 1972; Hicks and Hess, 1977) was used. The Bowen
ratio can be described as :

~ =0.79 (<;/Ls) - 0.21 (10)

where S is the slope of the saturation specific humidity/temperature curve. The temperature
dependence of ~ comes mainly through S. The sensible heat QH can be given as

(11)

For each week, the blended sea surface temperature was used to determine the ratio
~s. ~ was obtained from equation 10 and applied in equation 11 to determine QH'

Few QH values exceed 10 Wm-2 in magnitude. The mean difference between surface
measurements and the predictions was -1.6 Wm-2, and the rms difference was 8.5 Wm-2, of
the same magnitude as the average weekly sensible heat flux. At this time scale QHare not
meaningful, although they are useful in providing an estimate of the correct order of
magnitude for the heat balance.

f. TimeSeriesofWeekly Heat Fluxes
Figure 2 shows how the weekly satellite estimates of the turbulent heat fluxes compare

with surface measurements. In deriving the net solar radiation flux, equations 3 and 4 were
applied to the entire data set. As may be noticed, both measurements and models agree
closely in the overall seasonal trend. The net longwave radiation flux is a conservative
quantity which does not show a seasonal trend.
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FIG.2. Weekly time series of net solar radiation flux (K*), netlongwave radiation flux (L*), total turbulent
heat flux (Qt) and the total ocean-atmosphere heat flux (Qa)' Surface measurements are represented by open
squares, and the sateUite-derived estimates are drawn as filled squares. Negative heat fluxes imply a heat loss
by the ocean. All units are Wm-2.

The form of the variations in outgoing turbulent flux <Or) indicate that wind speed is the
dominant influence. In winter (June-August) the south-easterly trade winds are strong and
the latent heat flux often exceeds 200 Wm-2 in magnitude. In summer the northerly winds
are moister and lighter; the magnitude of QE drops. In March as the winds strengthen, the
correspondence between the surface and satellite-bases fluxes is limited, a consequence of
the difficulty in reproducing the 10 meter specific humidity.
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The total ocean/atmosphere heat flux is dominated by the energy gain by solar radiation
and loss by latent heat flux. In winter QE is large and Q* is low so that the ocean is loosing
energy. By mid-August the ocean starts gaining energy. This pattern persists until
mid-December when a maximum heat gain of 180 Wm-2 is reported.

4. Conclusion

In summary, the rms differences (measured versus modeled) between the weekly
averaged values of net radiation, the latent heat flux and sensible heat flux were 16, 40 and
21 Wm-2 respectively. Combining all these terms, and assuming independence of errors, a
rms difference of approximately 48 Wm-2 was obtained in the weekly estimate of the total
ocean-atmosphere heat flux.

This paper demonstrates that is is feasible to estimate weekly ocean-atmosphere heat
fluxes at a point in the ocean based on satellite-derived quantities. Shorter time scales were
inaccessible, due to limitations imposed by the sea surface temperature and atmospheric
sounding data.

We conclude by advising of the need to test these empirical relationships in other
environments and synoptic situations. A general satellite-based method, well calibrated in a
number of locations would be a practical and powerful analysis tool.
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