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1. Introduction

Wyrtki (1974) and Meyers (1982) have indicated that the seasonal variation of
the thennocline depth and the sea level in the tropical Pacific Ocean, which can
represent the strength of major oceanic currents, are strongly influenced by the position
of the trade wind. Affected by the East Asian Monsoon, sea surface wind field has
apparently seasonal displacements in the western tropical Pacific. It appears that the
position of the Inter-Tropical Convergence Zone of the wind (ITCZ) has large seasonal
oscillation from about 15"S (February-March) to lOoN (September-October) as shown in
Donguy et al (1982). Responding to the seasonal oscillation of the ITCZ, some oceanic
thermal elements may have corresponding seasonal variations. Recently some research
works, e.g. Donguy et al. (1982) and White et al. (1985), showed the sea surface wind
field and the upper ocean thermal structure in the western tropical Pacific have
interannual variations corresponding with El Nino-Southern Oscillation phenomenon
(ENSO). Usually, anomalies of the wind field are leading ENSO by several months. Due
to a lack of wind field and subsurface temperature data sets, the effects of surface wind
field seasonal variations on the upper ocean thermal structure have not been clearly
described in the western tropical Pacific.

In this study, seasonal and interannual variations of sea the surface wind field
over the western tropical Pacific are described, using mean monthly sea surface pseudo
wind stress data series from Jan. 1962 to Jan. 1980, and mean seasonal subsurface
temperature data series from spring 1964 to winter 1980 (kindly provided by W. White
and sea-air interaction group, Second Institute of Oceanography, SOA). The effects of
the wind field on the upper ocean thermal structure are primarily analyzed.

2. Seasonal and interannual variations of the sea surface wind field

a. Seasonal variations.
The long-term monthly mean (1964-1980) zonal and meridional components

of pseudo wind stress along 155°E are shown in Fig.Ia-b. The zonal and meridional
components of pseudo wind stress are represented by

(1)

where u and v, are the surface wind velocity components. From these figures it is
apparent that the northeast and southeast trade winds are stronger in February to March
and August to September respectively. The interface of the opposite zonal and
meridional wind components may indicate the mean position of the ITCZ. The dashed
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line in Fig. 1 is the interface of the wind components and show that the mean position of
the ITCZ is near 13°S during January to February and near lOoN during August to
September, i.e., consistent with the indicationof Donguy et al. (1982).
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FIG.1. Long-term monthly mean of the zonal (a) and meridional (b) components of the pseudo wind stress
along 155·E. (in m2.s"2). The dashedlinesare the interface of the opposite windcomponents.

Monthly mean zonal and meridional wind stresses (t') can be represented by its
first and second harmonic coefficient,

t'= <t> + al cos COlt + bl sin COlt + ~ cos ~t + b2 sin ~t (2)

where at.' bl and aj, b2 are the first and second harmonic coefficients, respectively,
cot=21t/12, co2=21t76, t is the time in month, and <t> denotes the annual mean value of the
pseudo wind stress components. The harmonic coefficients together with the standard
error of estimate (J) and ratio of amplitude (s6/s12) of the pseudo wind stress in the
latitude bands of 0°-4ON and 8°_12°N along 15SOE are shown in table 1 where (J, s6 and
s12 are defined as:

12
(J = [(1/12) l:( tt Ctt)2]I12

1
(3)

(4)

here tt are the monthly mean values of the pseudo wind stress components.

al bl a2 b2 (J s6/s12 <t>
------------------------------------------------------------------------------

t X -3.3 - 5.2 0.7 -4.0 0.5 0.67 -6.4
0°·4°N

t Y - 8.6 - 4.0 -2.3 -0.8 4.9 0.26 - 1.3
------------------------------------------------------------------------------

t X -22.7 -17.1 -1.5 5.3 11.7 0.19 -35.4
00_8°N

t Y -14.7 - 8.2 -1.7 -0.4 12.1 0.11 -10.5

Table 1. Harmonic coefficients (a,.~. bl' b~. (J and s6/s12of the pseudo windstress along 155'E
(see text for definition).
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The standard errors (a) are smaller than the largest harmonic coefficient in both
latitude bands. The ratios of the second to the first harmonic amplitudes (s6/s12) in the
0°_4°N band are not negligible, particular for t X

• It shows that the semiannual variation is
apparently near the equator.

Fig. 2 represents the seasonal variations of the zonal pseudo wind stress (tX) as
calculated from equation (2). Near the equator (Fig.2a), the surface wind has apparent
semiannual variation. When the ITCZ shifts across 2°N during May to June and October
to November, it causes a decrease of the easterly wind. But near looN there is a marked
anuual cycle (Fig. 2b), because the ITCZ arrives nearly WON once a year.

,~
( b)

FlG.2. Seasonal variation of zonal pseudo wind stresscalculated from harmonic coefficients at 2°N ISsoE
(a) and looN ISsoE(b).
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FlG.3. Power spectraof monthly anomalies of the zonal pseudo wind stress for four latitude bands.along
15soE. The dashedlinesare confidence limitof 95% rednoise.
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b. Interannual variations.
Power spectrum of monthly anomalies of the zonal pseudo wind stress (tX

) for
four latitude bands (0°-lOOS, 100-200S, 0°-woN and 100_200N) along 155°E are displayed
in Fig.3. These spectra curves have a marked peak at 2-4 year period, it indicates that the
zonal wind over the western tropical Pacific has a main 2-4 year period of variation,
corresponding to that of ENSO events.
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FIG.4. Time series of the average zonal pseudo wind stress anomalies over 3°N-3°S; 140oE-170oW (solid
line) and Southern Oscillation Index (dashed line). Both curves have been smoothed with an ll-month
running mean.

The solid line in Fig.4 is the time series of the zonal pseudo wind stress
anomalies over 3°S-3°N and 1400E-1700W (±3°AtX) . The curve shows that there is a
strong westerly wind anomaly (>5m2.s·2) during ENSO years. The dotted line in Fig.4 is
the time series of the Southern Oscillation Index (SOl, taken from Parker (1983). Wind
anomalies (AtX

) over ±3° area closely related to SOL The monthly correlation coefficient
of these two time series is -.87.

c. Surface wind field anomalies during the ENSO period.
The time-longitude section of the composite monthly zonal wind stress anomalies

along the equator for four El Nino years (1965, 1969, 1972, 1976) is shown in Fig.5. The
composite span 36 months beginning 12 months before and ending 12 months after a
given El Nino year. Fig.5 shows anomalous variations of the surface wind field in the
period of ENSO event. Several months prior El Nino years, easterly winds are stronger
than normal, but in October to November preceding El Nino years, westerly wind
anomalies replaced easterly wind anomalies over the western edge of the tropical
Pacific, migrating eastward gradually. During March to April of El Nino years the
westerly anomalies covered all area of the western equatorial Pacific and the magnitude
can be above 20 m2.s·2• At the end of El Nino years, easterly wind anomalies are present
again.

The time-latitude section of the difference between t X for four El Nino years
(1965, 1969, 1972, 1976) and that of the long term monthly mean (1964-1980) along
155°E, is displayed in Fig.6. From Fig.6 it is apparent that during El Nino year westerly
wind anomalies are prevailing over the western tropical Pacific, particularly in the
lOOS-lOON. band. There are two periods in which westerly wind anomalies strengthen,
one is in the northern hemisphere during February to April, and the other is in the
southern hemisphere during August to October.
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3. Effects of the wind field on upper ocean thermal structure

a. Effect of the wind stress curl on the depth of thermocline.
Meyers (1975) used the following formula to approximately estimate the seasonal

variation of the depth of 14°Cisotherm

Wb =V X (t/pf) + V.Mg (5)

where t is the wind stress vector, f the coriolis parameter, p the density of the mixed
layer, VM the vector of horizontal geostrophic transport in the layer between the
surface and depth B, and Wb the vertical velocity at depth B. Donguy et al. (1982) used
Eq.5 and estimated and analyzed the seasonal and interannual variations of the depth of
the thennocline in the central tropical Pacific.

In our case, for lack of long-term salinity data, the term of the divergence of
geostrophic transport (V.Mg) is neglected. Since tY~ is much smaller than t X

y (see Table
2.) except at 16°N, during April to May, where both are small, equation (5) can be
reduced to:

(6)

According to long-term monthly mean (1964-1980) tx, one can estimate the
seasonal variations of the depth of the thennocline. The integrated curves of Wb
calculated by equation (6) are shown in Fig.7. At 8°N-155°E, the thennocline depth
displays semiannual variations that can be explained by seasonal oscillations of the
position of the ITCZ. In September-October, the ITCZ is situated in the 8°N band.
Therefore, zonal wind stress and its curl near 8°N are weaker than annual mean values.
The thennocline (or the isotherm in upper layer) descends from annual mean depth,
responding to weaker Ekman pumping. During June to July and November to December,
the ITCZ is south of 8°N, so the wind stress curl at 8°N is stronger than the annual mean,
the thennocline (also the isotherm line) is rising in response to stronger Ekman pumping.
In March the ITCZ is at its southemmost position (near 15°S), northeast trade are strong
but uniform near 8°N. So the thennocline descends in response to weaker wind stress
curl. Because sea level and thennocline depth are 180° out of phase in the equatorial
ocean, sea level data taken at station near the equator permit a test of the analyzed
thennocline (also isotherm depth in upper layer ocean). The dashed line in Fig.7 is Truk
island (7°28'N, 151°51'E) monthly mean sea level (after Meyers, 1982). It shows 180°
out of phase with the solid line (computed curve). The dotted line in Fig.7 is observed
long-term mean (1964-1974) seasonal variations of the 20°C isotherm depth, which is
similar to the computed curve.

1 2 3 4 5 6

14.2 13.8 7.2 19.3 15.3 14.9

t Y
x 2.6 0.9 2.8 0.7 1.5 0.7

t X
y 17.1 13.1 25.2 1.1 0.0 4.4

16°N------------------------------------------------------------
t Yx 1.8 1.3 1.5 0.7 1.1 0.2
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FIG.6. Time-latitude section of the difference between the monthly mean (zonal pseudo
wind stress) for four El Nino years (196S, 1969, 1972 and 1976) and that of long term
(1964-1980) monthly mean.

FIG.7. Seasonal variation of the thermocline depth at (a) at 8'N-1SS'E, (b) 16'N-1SS'E, as calculated by equation 6 (solid
line). The dotted line denotes the long-term mean depth of the 20'C isotherm. The dashed line denotes the long-term mean
sea level at Truk Island (7'28'N- lSl'Sl'E), after Meyers (1982).
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10

5.9

0.0

11

1.1

12

1.5

t X
y 7.2 10.5 12.0 14.2 2.2 3.9

16°N------------------------------------------------------------
t Yx 0.4 2.2 0.4 0.2 1.3 0.0

Table 2. Monthly mean value of t X
y and t Y

x at 8°N-155°E and 16°N-155°E (in
cm.day")

At 16°N-155°E, both computed and observed thermocline depth have only one
cycle per year (Fig.7b). During September to October the ITCZ reaches its northeast
position, and at 16°N the wind stress curl is stronger: isotherms rise in response to the
stronger Ekman pumping. In March, the ITCZ reaching its at the southeasternmost
position, wind stress curl is weaker at 16°N due to uniform wind field, and the isotherms
descend.

As described above, the effects of Ekman pumping produced by wind stress curl
on the upper ocean thermal structure are visible. It can explained mean seasonal
variations of the thennocline depth in the Western Tropical Pacific.

b. Effect of zonal wind stress on the Western Pacific Warm Pool.
In this section seasonal wind stress anomalies ~tX computed over ±3° area

(defined as in section 2), represent variations of zonal wind stress in the western
equatorial Pacific. We use the number of grid points at which the mean temperature from
sea surface to lOOm depth are wanner or equal to 28°C (west of 180° and north of the
equator), to represent the volume of the Western Pacific Warm Pool (the 1'28 time series
was taken from Lin, 1989). Its variations appear to be related to the equatorial zonal
wind stress. The correlation coefficient of these two seasonal mean time series is -0.70
(n=52 seasons).

c. Relationship between zonal wind stress and other thermal indexes of the western
tropical Pacific.

As indicated in Katz et al (1977), it is generally assumed in theoretical work that
the vertically integrated zonal pressure gradient (in the upper ocean) can be equated to
the zonal component of the wind stress. After analyzing the GATE's data, they showed
strong correlation between zonal pressure gradient and simultaneously observed zonal
wind stress. Donguy et al (1984) use zonal slope of thennocline to represent the zonal
pressure gradient, and analyze its relation to zonal wind stress in the central Pacific. In
the present study, zonal slope of the 20°C isotherm between 1400E and 180° in the
3°N-3°S band (020), from 1964-1974, is calculated. D20 seasonal time series appear to
be related to zonal wind stress anomalies (as calculated above), the correlation
coefficient between the two series is -0.52 (n=38 seasons).

We also use seasonal difference of the 20DC isotherm depth between 7.5"N and
2.5°N, along 155°E, to indicate the strength of the NECC. We define 1'27 as 1'28 except
for mean temperature higher or equal to 27°C, to indicate the mixed layer heat content in
the western tropical Pacific. All of these upper ocean thermal indexes are related to the
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wind field. Their cross correlation coefficients are shown in table 3. From table 3, it is
apparent that the sea surface wind field over the western equatorial Pacific plays an
important role in changing the upper layer ocean thermal structure.

-.86· -.45 -.52· -.58· -.70
(62,0) (31,1) (38,1) (52,0) (52,0)

T28 -.70· -.56· .43 .83
(52,0) (31.0) (38,0) (52,0)

T27 -.62· -.62· .51·
(38,0) (31,0) (38,0)

D20 -.37 -.14
(38,0) (30,0)

NECC -.21
(30,0)

Table 3. Cross correlation coefficients between the wind field and the upper ocean thermal
indexes (numbers in parentheses are the seasons of time series and lag). Stars denote significance at the
1% level.

4. Conclusion

The primary results of the present study are:
(1) The surface wind field over the western tropical Pacific have apparent annual

cycle. Near the equator, it has apparent semiannual variations, because the ITCZ
crosses the equator twice a year.

(2) The interannual variations of the surface wind field over the western tropical
Pacific present a main variation of 2-4 years, consistent with that of the ENSO
event. The zonal wind over the western equatorial Pacific is closely related to
SOl (correlation coefficient is -0.87).

(3) In the western tropical Pacific mean seasonal variations of the thermocline depth,
and of sea level near the equator can be explained by displacement of the surface
wind field (indicated by the ITCZ position).

(4) From correlation analysis of long-term historical data, it is apparent that the sea
surface wind field over the western equatorial Pacific plays an important role in
changing the upper layer thermal structure of the ocean.
The data sets used in this study have poor resolution but the interannual

variations of the wind field and the thermal structure are strongly related to ENSO
events. Therefore some primary results can be obtained as above. More complete data
sets are necessary to analyze more details. Wind field and upper ocean thermal structure
data sets will be greatly improve within the international TOGA programme.
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