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1. Introduction.

In the western equatorial Pacific, the net heat flux into the ocean is approximately
a balance between heat input due to solar flux and heat loss due to evaporative cooling.
Climatologies such as Weare et al. (1981) show the region west of the dateline from
WON to lOoS to be an area of net oceanic surface heating of from 30-60 W m-2• Although
much smaller in magnitude than the short-wave and latent heat fluxes, the longwave and
sensible heat fluxes can not be ignored, since the net flux is so small. The largest
discrepancies between climatologies of net heat flux in the western equatorial Pacific
[e.g., between Weare et al. (1981) and Wyrtki (1965)] occur in the estimation of the
latent heat flux.

Work by Meyers et al. (1986) has shown that anomalous cooling of the ocean
upper mixed layer during the 1982-83 ENSO episode was caused primarily by
anomalous evaporative cooling. Their work was confined, however, to a rather limited
spatial domain (i.e., 2°S-4°N and 150-1700E). Since the location of deep convection, and
the teleconnections to the mid-latitudes that can result in regional short-term climate
anomalies, are highly correlated to equatorial sea surface temperature, it is important to
monitor the larger temporal and spatial patterns associated with evaporative cooling
anomalies. Remote sensing is one means of obtaining the coverage necessary to
adequately monitor evaporative cooling anomalies.

2. Remote sensing of moisture and wind speed using SSMII.

The Special Sensor Microwave Imager (SSM/I) on the Defense Meteorological
Satellite Program (DMSP) polar-orbiting spacecraft has been operating since July 1987.
Similar instruments are planned to fly on all future DMSP spacecraft, offering the
possibility of two SSM/I instruments covering the earth in the future. SSM/I scans at
four frequencies; 19,22, 37 and 85 GHz as well as dual polarizations except at 22 GHz
(Hollinger et al., 1987). The SSM/I provides improved coverage, spatial resolution, and
accuracy over prior passive microwave intruments, but lacks the lower frequency
channels that allow sea surface temperature to be retrieved.

The 22 GHz channel is primarily used for estimating integrated water vapor
content, since it is located near the center of a weak water vapor absorption line. Dr. J.
Alishouse, NESDIS, has performed a statistical regression of eo-located radiosonde
estimates of integrated water vapor with observed SSM/I brightness temperatures
(Alishouse et al., 1989). These statistical results, as well as theoretical results, show that
the SSM/I 22 GHz channel has less sensitivity to high moisture concentrations due to a
nonlinear relation between moisture and the 22 GHz brightness temperature. This has
important consequences for remote sensing of moisture in the TOGA COARE region.
For example, using Alishouse et al. (1989) tropical nonlinear algorithm, the error in
retrieving moisture due to noise in the 22 GHz channel alone is only 0.6 kg m-2 in a
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typical subtropical atmosphere, while it is 1.22 kg m-2 for a moist tropical atmosphere.
The actual retrieval error is larger since additional channels are used in the regression to
account for attenuation in the atmosphere and emission from the sea surface.

TSURF. 300"K

250

240

~ 230:ll:
(!)
l&J 220e
l&J 210a:
~

~ 200
a:
l&J
e, 190
2:
l&J.... 180
Cl)
Cl)
l&J 170z....
x 160(!)

a:
CD 150

140

130
0 10 15 20 25

22V

3TV

19V

3TH

19H

30

WIND SPEED (m/sec)

FIG.I. SSM/Ibrightness temperature as a function of frequency and wind speed.

The physical basis for estimating wind speed from passive microwave data is
illustrated in Figure 1. At the SSM/I incidence angle (approximately 54°), vertically and
horizontally polarized microwave radiation have a differential sensitivity to wind
roughening of the sea surface. The sensitivity is greatest for the 37 GHz channels. The
effect on the 37 GHz channels, however, is not apparent until wind speeds are in excess
of 3 m s-l. This is important to TOGA COARE since some regions of the equatorial
western Pacific have mean wind speeds less than 3 m s-l. It may be possible to classify
these low wind speed regions by identifying unique signatures of SSM/I brightness
temperature profiles, but this has yet to be shown. Fortunately, we are interested in
anomalously large evaporative cooling events for which wind speeds should be great
enough for SSM/I to detect. We are using the revised statistical wind speed algorithm of
Goodberlet (1989) which was derived from regression of buoy wind speed observations
against eo-located SSM/I brightness temperature observations.

SSM/I estimates of both integrated water vapor content and surface wind speed
are degraded in the presence of large cloud water droplets (>100 microns) and
precipitation. Thresholds on the 19 GHz horizontally-polarizeed channel brightness
temperature and the difference 37V-37H channel brightness temperatures are used to
screen for such conditions. For this study, we have required that 19H < 185 K and that
37V-37H and that 37V-37H > 50 K.

Sixty days of SSM/I data, from mid-January through mid-March 1988, over the
western equatorial Pacific has been extracted, calibrated, and geo-located, Goe-locations
have been adjusted to agree with know landmarks using a correction algorithm provided
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by Dr. C. Swift. The data have also been quality controlled using reasonable bounds on
the derived brightness temperatures. The data were binned on a 50 km by 50 km grid
daily with only the single most recent sample in the bin being saved. Land areas and
areas with no retrievals, due to exceeding the cloud thresholds for all five days, are left
blank. The daily and five-day (pentad) average binned data were objectively analyzed
using a Barnes two-pass scheme on a 100 km by 100 km grid to produce the contour
maps shown.

3. Case study.

Using Outgoing Longwave Radiation (OLR) data, several convective events were
found during winter 1987-88 propagating eastward from the Indian Ocean through the
Indonesian area and into the western equatorial Pacific. These events were identified as
5-day mean OLR values of less than 200 W m-2 (Figure 2) and negative OLR anomaly
values of less than 20 W m-2• NMC 850 mb wind analyses showed that westerly winds
were associated with the movement of a convective event in late February, with peak
wind speeds of up to 15 m s-l located off the northeastern tip of Australia during the
pentad of February 20-24. COADs ship data, however, did not show such a dramatic
wind burst. SSM/I data were analyzed for the 60-day period in an attempt to capture the
characteristics of this event in passive microwave data.
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The long-term mean analysis of wind speed derived from SSM/I data (Figure 3)
shows a band of high wind speeds along 30"N, extending south along the coast of
southeast China toward the Philippines. A band of lower wind speeds is found along
20"N, while a broad zone of high wind speeds extends from 15"N to 5"N. A
crescent-shaped region of low wind speeds is seen around Australia. The long-term mean
integrated water vapor analysis (figure 4) shows a maximum along and south of the
equator with a split into the ITCZ and SPCZ in the eastern edge of the domain. Low
values of integrated water vapor are found north of 20"N.

Pentads of wind speed and integrated water vapor imagery, the objective
analyses, and the objective analyses of anomalies from the long-term mean are shown in
Figure 5. The wind speed analyses show a high degree of spatial variability. The first
clear evidence of increased wind speeds associated with the convective event is found in
the pentad of February 15-19 off northeastern Australia. In the following pentad, very
high winds are found surrounding an area blacked out due to persistent precipitation
during the five-day period. Wind speeds in this area are in excess of 11 m s- . High wind
speeds, but not as dramatic, propagate to the east in association with the convective
event in the next two pentads. Throughout this 6O-day period, the moisture field
undergoes a large oscillation. Prior to the convective event, large amounts of integrated
water vapor are found associated with the convective region over the western Pacific
warm water pool. At the height of and following the passage of the convective event,
dramatically less amounts of integrated water vapor are found over the equatorial region.

In order to better quantify the standing oscillation patterns, principal component
analysis has been used to examine the daily objectively analyzed fields of wind speed,
integrated water vapor, and a latent flux parameter (the wind speed multiplied by the
integrated water vapor concentration). Only the first principal component from each
variable is shown, and in each case this component is significantly different from random
noise at the 95% confidence interval.

The spatial pattern of the first EOF of wind speed (Figure 6) shows positive
centers of action located from IO"N to 20"N and 160"E to 190"E and south of the equator
from 160"E to 2oo"E. Negative centers cover much less area and occur off the coast of
southeast Asia and near IO"N, 120"E. The amplitude time series that modifies this spatial
pattern shows several oscillations over the sixty day period, with the highest values being
positive from days 55-65. This corresponds to the time of passage of the west wind burst.

The first EOF integrated water vapor spatial pattern (Figure 7) shows a maxima
center of action along the equator, extending north along the Phillipines, and curving
back to the east along 20"N. Negative centers are found off the coast of southeast Asia
and near 15"N, 16O"E. The associated amplitude time series shows an extreme negative
excursion between days 50-60, slightly leading the maxima in the wind speed EOF.

In a first attempt at inferring the latent heat flux from these data, an EOF analysis
was performed on the flux parameter wind speed times the integrated water vapor
content. This field was not standardized prior to calculating the EOF; standardizing does
not significantly change the results. Centers of action (Figure 8) are located in two zonal
bands; one from IO"N-20"N, the other 5"S-15"S. Positive centers are found between
120"E-140"E, and negative centers are found between 150"E-2oo"E. the largest
amplitudes are reached between days 53-63. This indicates enhanced positive values of
the flux parameter in the region of the convective event during the time of its passage.
There also seems to be a symmetric response in the northern hemisphere, although the
convective event was largely confined to the southern hemisphere.
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FIG.6. First EOF of SSM/I daily wind speeds.
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4. Continuing work and TOGA COARE pilot studies.

The objective of this work is to analyze moisture and latent heat flux variability
starting with a case study of a single convective event, but eventually we hope to extend
the analysis to the entire tropical oceans, using a method similar to Liu (1988). While the
improved accuracy and coverage of data provided by the SSM/I hold great promise,
several significant roadblocks remain. First, to estimate the latent heat flux on daily or
weekly time scales, a relationship between integrated water vapor content and surface
specific humidity, similar to that of Liu (1986) for monthly time scales, must be
established for the shorter time scales. Second, we must find a parameterization for the
latent heat flux in disturbed, convective regimes where precipitation interferes with
microwave observations of wind speed and integrated water vapor. Finally, since SSM/I
does not contain low frequency microwave channels, we must rely on other remote
sensing and in situ observations of sea surface temperature. We are continuing to work
on all theses issues.

I would hope that this work could be continued as part of a pilot study of
moisture and latent heat flux variability over the TOGA COARE region. For such a
study, the region should be expanded longitudinally in both directions to include all of
the Pacific and Indian oceans. The Indian ocean has been identified as being intimately
connected to atmospheric oscillations in the western equatorial Pacific.
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