ENSO Events and Consequences on Nutrient, Planktonic Biomass, and Production in the Western Tropical Pacific Ocean.

Jean BLANCHOT, Robert LE BORGNE, Aubert LE BOUTEILLER and Martine RODIER
Groupe PROPPAC, Centre ORSTOM, Nouméa, New Caledonia

ABSTRACT

ENSO events change the hydrographical structures and the planktonic biomass and production particularly in the low latitude region of the Pacific Ocean. We compare here the consequences of these variations at 165°E, in two opposite situations, i.e. during an ENSO event in September 1987 and during a non-ENSO event in September 1988.

Preliminary conclusions show: (i) for the nutrients in September 1987, a thick nutrient-depleted mixed layer (under detectable limits) along the transect, except at 10°S and 9°S and in September 1988, a wide upwelling between 5°S and 2°N with surface nitrate concentrations ranging between 0.3 and 2 mM; (ii) for phytoplankton, the abundance of cyanobacteria (procyrotes) and microalgae (eucaryotes) shows large changes both in cells abundance and depth distribution between the two periods. Overall, there is a close relationship between upwelling and increase of phytoplankton abundance and chlorophyll biomass. The integrated values over 0-120m are higher in September 1988 than in September 1987: 5 times for cyanobacteria cells, 3 times for microalgae and 1.4 times for chlorophyll between 6-5°S and 2°N; (iii) primary production maximum is deeper during ENSO event whereas it is shallow in the upwelling situation. The level of production increased during the upwelling: the integrated value in the 0-120 m averaged (n=7), about 150 versus 59 mg.Cm⁻²h⁻¹; (iv) for zooplankton (200-2000 mm), there is a significant increase due to the equatorial upwelling in non-ENSO period and none in ENSO event, although a biomass peak appears around 10°S together with the nutrient enrichment.

1. Introduction

14 transects were undertaken on the 165°E meridian between 20°S and 6°-10°N, from 1984 to 1989, within time frames of 3 to 6 months, under 2 ORSTOM programs PROPPAC and SURTROPAC. These cruises occurred during the El Nino/Southern Oscillation (ENSO) event and non-El Nino periods. Data collected in the 200m upper layer provide an important basis for the study of effects of long-term hydroclimatic variations on the chemical and biological structures in the open western tropical Pacific Ocean. We restrict our study here, to the comparison of two opposite situations, the first in September 1987 (PROPPAC 1 cruise) during an ENSO event, the second in September 1988 (PROPPAC 3 cruise) during a non-ENSO event.

2. Results

a. Physical and chemical environment

The main physical and chemical features during the two periods are presented Figure 1. In September 1987, low salinity waters water (<35.0) originating from the north of New Guinea and the Solomon islands were at the surface north of 14°S, associated with an eastward current. Deeper water originating from the south central Pacific between Tahiti and Easter island formed a tongue of high salinity (>35.5) between 20°S and 2°S. The core (>35.5) was located at 120 m at 8°S. The nutrients were absent at the surface along the
FIG. 1. Meridional profiles of salinity and nitrate along 165°E from 20°S to 6°N in September 1987 (top) and September 1988 (bottom).
FIG. 2. Meridional profiles of chlorophyll and cyanobacteria along 165°E from 20°S to 6°N in September 1987 (top) and September 1988 (bottom).
whole transect except at 10°-9°S where a slight enrichment, a consequence of the divergence between the South Equatorial Current (SEC) and the South Equatorial Counter-Current (SECC), could be observed.

In opposition with the above situation, high salinity surface waters (>35) were present between 5°S and 2°N in September 1988. This drastic change in sea surface salinity was the direct consequence of the equatorial upwelling. However, below 100 m, high salinity waters from the central Pacific (S>35.8), were observed as in the opposite situation. The 35.5 isohaline crossed 2°S as previously. Linked with high surface salinity, the nutrients concentrations were important from 5°S to 2°N, with values up to 2.29 mM at 1°S.

b. Biological consequences

* Chlorophyll concentrations

In September 87, surface values >0.2 µg.l⁻¹ were observed in the divergence zone around 12°S-10°S. A deep chlorophyll maximum >0.3 µg.l⁻¹ near 90m, occurred from 6°S to 6°N. In September 88, maximum chlorophyll concentrations were found in the equatorial upwelling, with concentrations higher than 0.2µg.l⁻¹ in the whole photic zone (Fig.2).

* Distribution and abundances of procaryotic chroococcoid cyanobacteria and eucaryotic microalgae.

The maximum abundance of phytoplankton cells always occurred at the same location as the maximum biomass of chlorophyll a. In September 87, the maximum cell abundances of cyanobacteria (>7 10⁶ cells l⁻¹) occurred from the surface to 80-90m, between 11°S and 6°S (Fig.2). The eucaryotes abundances were weak and located at several stations only at the bottom of the euphotic zone (Fig.3). In September 88, the maximum occurrence of cyanobacteria was observed in the equatorial area from 5°S to 2°N (Fig.2) coincident with increase of cyanobacteria abundances, one important zone of great abundance of microalgae occurred from the surface to the bottom of the euphotic zone in the equatorial upwelling (Fig.3).

* Primary production in the equatorial zone

Vertical profiles of dawn-to-dusk rates of in situ primary production showed that in the equatorial area, during EL NINO events, the maximum rate was observed at 60 m. Observations made in the equatorial upwelling in April 1988 (PROPPAC 2 cruise) showed that the maximum rate of primary production was just below the surface at 20 m (Fig.4)

* Zooplankton biomasses

In September 87, the zooplankton biomasses were weak and rather uniform (less than 1000 mg.m⁻²) except at 12°S where a slight enrichment was measured (Fig.3). A year later, a strong increase was measured between 5°S to 2°N. The maximum zooplankton biomass was 2500 mg.m⁻² at 1°N (Fig.3).

3. Discussion

Looking at all transects, a slight enrichment is often observed around 10°S in the SEC-SECC divergence zone. However, temporary surface nutrients are unusual and are observed only once in September 1987. This enrichment seems to be higher during ENSO events, and has a direct consequence on the increase of phytoplankton abundance.

During PROPPAC 3 (September 1988), when nitrates were present from the surface to the bottom of the photic zone, maximum chlorophyll concentrations were in this case at the same level than the maximum cell counts. Inputs of nutrients in the photic layer allow higher vegetal production and biomass-increases in upper levels of the food-web (here, zooplankton). Such inputs are very important during the NON-ENSO period, when the equatorial upwelling is present. No such a phenomenon, which may be seen on surface salinity nitrate or chlorophyll occurs during ENSO at the equator.
FIG. 3. Meridional profiles of microalgae and zooplankton along 165°E from 20°S to 6°N in September 1987 (top) and September 1988 (bottom).
The upwelling consequences are between 5°S and 2°N to 5°N:
- an increase of integrated chlorophyll (1.4 times), numbers of phytoplankton cells (5 times increase for cyanobacteria and 3 times for microalgae) and zooplankton biomass (2.5 times);
- a change of vertical profile of in situ primary production (most of phytoplankton production is achieved in upper layers);
- an increase of integrated primary production (2.5 times).

Nevertheless, equatorial upwelling in the western Pacific is not a general feature of NON-ENSO periods. Since SURTROPAC and PROPPAC transects started in January 1984, it has only been observed for the different parameters in April, July, September 1988 (Blanchot et al. 1988a,b) and January 1989. However in January and August 1984 a change of the salinity structure was reported (Delcroix et al., 1987; Eldin, 1989) and in February 1986 a chlorophyll signature was described by Barber and Kogelschatz, 1989. Intermediate situations during NON-ENSO periods are characterized by different increases of planktonic biomasses. The increases are directly dependent on the depth of the nutricline.

REFERENCES

WESTERN PACIFIC INTERNATIONAL MEETING
AND WORKSHOP ON TOGA COARE

Nouméa, New Caledonia
May 24-30, 1989

PROCEEDINGS

edited by

Joël Picaut *
Roger Lukas **
Thierry Delcroix *

* ORSTOM, Nouméa, New Caledonia
** JIMAR, University of Hawaii, U.S.A.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>RESUME</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1. Motivation</td>
<td>1</td>
</tr>
<tr>
<td>2. Structure</td>
<td>2</td>
</tr>
<tr>
<td>LIST OF PARTICIPANTS</td>
<td>5</td>
</tr>
<tr>
<td>AGENDA</td>
<td>7</td>
</tr>
<tr>
<td>WORKSHOP REPORT</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>19</td>
</tr>
<tr>
<td>2. Working group discussions, recommendations, and plans</td>
<td>20</td>
</tr>
<tr>
<td>a. Air-Sea Fluxes and Boundary Layer Processes</td>
<td>20</td>
</tr>
<tr>
<td>b. Regional Scale Atmospheric Circulation and Waves</td>
<td>24</td>
</tr>
<tr>
<td>c. Regional Scale Oceanic Circulation and Waves</td>
<td>30</td>
</tr>
<tr>
<td>3. Related programs</td>
<td>35</td>
</tr>
<tr>
<td>a. NASA Ocean Processes and Satellite Missions</td>
<td>35</td>
</tr>
<tr>
<td>b. Tropical Rainfall Measuring Mission</td>
<td>37</td>
</tr>
<tr>
<td>c. Typhoon Motion Program</td>
<td>39</td>
</tr>
<tr>
<td>d. World Ocean Circulation Experiment</td>
<td>39</td>
</tr>
<tr>
<td>4. Presentations on related technology</td>
<td>40</td>
</tr>
<tr>
<td>5. National reports</td>
<td>40</td>
</tr>
<tr>
<td>6. Meeting of the International Ad Hoc Committee on TOGA COARE</td>
<td>40</td>
</tr>
<tr>
<td>APPENDIX: WORKSHOP RELATED PAPERS</td>
<td></td>
</tr>
<tr>
<td>Robert A. Weller and David S. Hosom: Improved Meteorological Measurements from Buoys and Ships for the World Ocean</td>
<td>45</td>
</tr>
<tr>
<td>Peter H. Hildebrand: Flux Measurement using Aircraft and Radars</td>
<td>57</td>
</tr>
<tr>
<td>Determination of Boundary-Layer Fluxes with an Integrated Sounding System</td>
<td></td>
</tr>
</tbody>
</table>
MEETING COLLECTED PAPERS

WATER MASSES, SEA SURFACE TOPOGRAPHY, AND CIRCULATION

Klaus Wyrtki: Some Thoughts about the West Pacific Warm Pool .. 99
Jean René Donguy, Gary Meyers, and Eric Lindstrom: Comparison of the Results of two West Pacific Oceanographic Expeditions FOC (1971) and WEPOCS (1985-86) .. 111
Dunxin Hu, and Maochang Cui: The Western Boundary Current in the Far Western Pacific Ocean ... 123
Peter Hacker, Eric Firing, Roger Lukas, Philipp L. Richardson, and Curtis A. Collins: Observations of the Low-latitude Western Boundary Circulation in the Pacific during WEPOCS III .. 135
Stephen P. Murray, John Kindle, Dharma Arief, and Harley Hurlburt: Comparison of Observations and Numerical Model Results in the Indonesian Throughflow Region ... 145
Christian Henin: Thermohaline Structure Variability along 165°E in the Western Tropical Pacific Ocean (January 1984 - January 1989) 155
David J. Webb, and Brian A. King: Preliminary Results from Charles Darwin Cruise 34A in the Western Equatorial Pacific ... 165
Warren B. White, Nicholas Graham, and Chang-Kou Tai: Reflection of Annual Rossby Waves at The Maritime Western Boundary of the Tropical Pacific .. 173
William S. Kessler: Observations of Long Rossby Waves in the Northern Tropical Pacific .. 185
Eric Firing, and Jiang Songnian: Variable Currents in the Western Pacific Measured During the US/PRC Bilateral Air-Sea Interaction Program and WEPOCS .. 205
John S. Godfrey, and A. Weaver: Why are there Such Strong Steric Height Gradients off Western Australia? .. 215
John M. Toole, R.C. Millard, Z. Wang, and S. Pu: Observations of the Pacific North Equatorial Current Bifurcation at the Philippine Coast 223

EL NINO/SOUTHERN OSCILLATION 1986-87

Gary Meyers, Rick Bailey, Eric Lindstrom, and Helen Phillips: Air/Sea Interaction in the Western Tropical Pacific Ocean during 1982/83 and 1986/87 .. 229
Laury Miller, and Robert Cheney: GEOSAT Observations of Sea Level in the Tropical Pacific and Indian Oceans during the 1986-87 El Nino Event .. 247
Thierry Delcroix, Gérard Eldin, and Joël Picaut: GEOSAT Sea Level Anomalies in the Western Equatorial Pacific during the 1986-87 El Nino, Elucidated as Equatorial Kelvin and Rossby Waves .. 259
Gérard Eldin, and Thierry Delcroix: Vertical Thermal Structure Variability along 165°E during the 1986-87 ENSO Event .. 269
Michael J. McPhaden: On the Relationship between Winds and Upper Ocean Temperature Variability in the Western Equatorial Pacific .. 283
THEORETICAL AND MODELING STUDIES OF ENSO AND RELATED PROCESSES

Kensuke Takeuchi: On Warm Rossby Waves and their Relations to ENSO Events .. 329
Yves du Penhoat, and Mark A. Cane: Effect of Low Latitude Western Boundary Gaps on the Reflection of Equatorial Motions .. 335
Harley Hurlburt, John Kindle, E. Joseph Metzger, and Alan Wallcraft: Results from a Global Ocean Model in the Western Tropical Pacific .. 343
John C. Kindle, Harley E. Hurlburt, and E. Joseph Metzger: On the Seasonal and Interannual Variability of the Pacific to Indian Ocean Throughflow .. 355
Antonio J. Busalacchi, Michael J. McPhaden, Joel Picaut, and Scott Springer: Uncertainties in Tropical Pacific Ocean Simulations: The Seasonal and Interannual Sea Level Response to Three Analyses of the Surface Wind Field .. 367
Akimasa Sumi: Behavior of Convective Activity over the "Jovian-type" Aqua-Planet Experiments .. 389
Ka-Ming Lau: Dynamics of Multi-Scale Interactions Relevant to ENSO ... 397
Pecheng C. Chu and Roland W. Garwood, Jr.: Hydrological Effects on the Air-Ocean Coupled System ... 407
Sam F. Iacobellis, and Richard C.J. Somerville: A one Dimensional Coupled Air-Sea Model for Diagnostic Studies during TOGA-COARE ... 419
Roland W. Garwood, Jr., Pecheng C. Chu, Peter Muller, and Nikias Schneider: Equatorial Entrainment Zone: the Diurnal Cycle ... 435
Peter R. Gent: A New Ocean GCM for Tropical Ocean and ENSO Studies .. 445
Wasito Hadi, and Nuraini: The Steady State Response of Indonesian Sea to a Steady Wind Field .. 451
Pedro Ripa: Instability Conditions and Energetics in the Equatorial Pacific .. 457
Lewis M. Rothstein: Mixed Layer Modelling in the Western Equatorial Pacific Ocean .. 465
Neville R. Smith: An Oceanic Subsurface Thermal Analysis Scheme with Objective Quality Control .. 475
Duane E. Stevens, Qi Hu, Graeme Stephens, and David Randall: The Hydrological Cycle of the Intraseasonal Oscillation .. 485
Peter J. Webster, Hai-Ru Chang, and Chidong Zhang: Transmission Characteristics of the Dynamic Response to Episodic Forcing in the Warm Pool Regions of the Tropical Oceans .. 493
MOMENTUM, HEAT, AND MOISTURE FLUXES BETWEEN ATMOSPHERE AND OCEAN

E. Frank Bradley, Peter A. Coppin, and John S. Godfrey: Measurements of Heat and Moisture Fluxes from the Western Tropical Pacific Ocean 523
Richard W. Reynolds, and Ants Leetmaa: Evaluation of NMC's Operational Surface Fluxes in the Tropical Pacific ... 535
Stanley P. Hayes, Michael J. McPhaden, John M. Wallace, and Joël Picaut: The Influence of Sea-Surface Temperature on Surface Wind in the Equatorial Pacific Ocean ... 543
T.D. Keenan, and Richard E. Carbone: A Preliminary Morphology of Precipitation Systems In Tropical Northern Australia ... 549
Phillip A. Arkin: Estimation of Large-Scale Oceanic Rainfall for TOGA 561
Catherine Gautier, and Robert Frouin: Surface Radiation Processes in the Tropical Pacific ... 571
Roger Lukas: Observations of Air-Sea Interactions in the Western Pacific Warm Pool during WEPOCS ... 599

EMPIRICAL STUDIES OF ENSO AND SHORT-TERM CLIMATE VARIABILITY

Klaus M. Weickmann: Convection and Circulation Anomalies over the Oceanic Warm Pool during 1981-1982 ... 623
Claire Perigaud: Instability Waves in the Tropical Pacific Observed with GEOSAT ... 637
Ryuichi Kawamura: Intra-annual and Interannual Modes of Atmosphere-Ocean System Over the Tropical Western Pacific ... 649
David Gutzler, and Tamara M. Wood: Observed Structure of Convective Anomalies .. 659
Bingrong Xu: Some Features of the Western Tropical Pacific: Surface Wind Field and its Influence on the Upper Ocean Thermal Structure 677
Bret A. Mullan: Influence of Southern Oscillation on New Zealand Weather 687
Kenneth S. Gage, Ben Bastley, Warner Ecklund, D.A. Carter, and John R. McAfee: Wind Profiler Related Research in the Tropical Pacific 699
John Joseph Bates: Signature of a West Wind Convective Event in SSM/I Data .. 711
David S. Gutzler: Seasonal and Interannual Variability of the Madden-Julian Oscillation .. 723
Marie-Hélène Radenac: Fine Structure Variability in the Equatorial Western Pacific Ocean ... 735
George C. Reid, Kenneth S. Gage, and John R. McAfee: The Climatology of the Western Tropical Pacific: Analysis of the Radiosonde Data Base 741
Chung-Hsiung Sui, and Ka-Ming Lau: Multi-Scale Processes in the Equatorial Western Pacific .. 747
Stephen E. Zebiak: Diagnostic Studies of Pacific Surface Winds 757

MISCELLANEOUS

Rick J. Bailey, Helene E. Phillips, and Gary Meyers: Relevance to TOGA of Systematic XBT Errors .. 775
Jean Blanchot, Robert Le Borgne, Aubert Le Bouteiller, and Martine Rodier: ENSO Events and Consequences on Nutrient, Planktonic Biomass, and Production in the Western Tropical Pacific Ocean .. 785
Yves Dandonneau: Abnormal Bloom of Phytoplankton around 10°N in the Western Pacific during the 1982-83 ENSO .. 791
Cécile Dupouy: Sea Surface Chlorophyll Concentration in the South Western Tropical Pacific, as seen from NIMBUS Coastal Zone Color Scanner from 1979 to 1984 (New Caledonia and Vanuatu) ... 803
Michael Szabados, and Darren Wright: Field Evaluation of Real-Time XBT Systems .. 811
Pierre Rual: For a Better XBT Bathy-Message: Onboard Quality Control, plus a New Data Reduction Method .. 823