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Influence of Southern Oscillation on New Zealand Weather

Bret A. MULLAN

New Zealand Meteorological Service
P.O. Box 722, Wellington - New Zealand

ABSTRACT

The Southern Oscillation is known to have a significant effect on New Zealand weather. In
general, during the negative (El Niiio) phase of the Oscillation, New Zealand experiences an increased
frequency of cold southwesterly airstreams that result in more rain in the southwest of the country,
and dry conditions in the north and east. During the positive (La Nifia) phase, there is a tendency for
increased cyclonic activity in the North Tasman and more slow-moving or blocking anticyclones to the
southeast of New Zealand. This results in frequent warm moist northerly or northeasterly airstreams
over the country, with warmer than normal temperatures nationwide and wetter conditions in parts
of the North Island exposed to these prevailing winds.

The pressure anomalies in the New Zealand region associated with extremes of the Southern
Oscillation Index show some seasonal variation. The anomalies are also not entirely linear with
respect to the value of the SOl. This paper examines differences between El Nifio and La Niiia
conditions as they affect New Zealand, and then discusses the predicted and observed anomalies in
New Zealand weather associated with the 1988/89 La Nina episode.

1. Introduction

Interest in the Southern Oscillation and its regional effects has been high since the 1972-73
El Niiio event that devastated the Peruvian anchovy fisheries, and particularly intense since the
dramatic 1982-83 episode. Although the existence of the Southern Oscillation (SO) has been known
for many years (Walker, 1923), it took some time for the link between the SO and periodic ocean
warming off the Peruvian coast to be appreciated. However, the term ENSO, for El Niiio-Southern
Oscillation, quickly became accepted. More recently, the term La Nifia has become popular for
describing the opposite extreme to El Nifio conditions.

There is a considerable recent literature on regional weather changes associated with fluctu
ations in the Southern Oscillation. In the Australasian region, for example, McBride and Nicholls
(1983) have examined seasonal relationships between Australian rainfall and the Southern Oscillation
Index (SOl). Some of the lag correlations they found are sufficiently promising that the Australian
Bureau of Meteorology plans to start issuing regular seasonal outlooks to the public frommid-1989
(National Climate Centre, 1988). Gordon (1985,1986) discussed how the seasonal patterns of rainfall
and temperature over New Zealand are related to the SOL These relationships, along with further
work, enabled the New Zealand Meteorological Service to make statements about the long-range
weather prospects during the 1986-87 El Nifio and the more recent 1988-89 La Nifia.

A good start has thus been made to documenting general SO-weather relationships. However,
much more attention now needs to he paid to the differences from one ENSO event to another: the
reasons for the different evolution of the anomaly patterns, and the regional implications. This paper
is a contribution to this need, essentially from a New Zealand point of view. Our particular interest
is to examine anomalies associated with La Nifia and El Nifio, and see whether the anomalies vary
linearly with the SOl. Predicted and observed anomalies in New Zealand during the 1988/89 La
Nifia summer are used as an example.
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2. Data

The Southern Oscillation Index data used here cover the period May 1851 to December 1988.
Parker's (1983) monthly values from January 1935 to March 1983 were updated using the standard
6-hourly pressure readings (at 0000, 0600, 1200 and 1800 GMT) at Tahiti and Darwin. The base
period 1941-80 was used to normalize the Tahiti-Darwin pressure difference to form the so-called
"Troup" Index (McBride and Nicholls, 1983). The SOl time series was extended back to 1851 using
the seasonal Index values published by Wright (1975). Regression equations were calculated for
each month of the year (N.D. Gordon, pers. comm.] relating the monthly Tahiti-Darwin pressure
difference to Wright's Index values of the surrounding three seasons. The period 1935-1974 was
used to generate the regression equations, which were then applied to Wright's values to extend the
SOl time series back to 1851.

Although the basic SOl time series consists of monthly values, running three-monthly means
are used throughout the analyses of this paper.

The pressure anomaly calculations (Section 4) use monthly mean sea level pressures determined
from daily grid-point values on a 5° by 100 latitude-longitude grid over the New Zealand-Australia
region (Gordon, 1986). These data cover the period July 1957 to September 1988. In the verification
of the 1988-89 anomalies, the pressure time series was updated to February 1989 using the daily
ECMWF analyses over the Southern Hemisphere from 200S to 900S that are received operationally
by the New Zealand Meteorological Service. In addition, time series of monthly temperature and
rainfall at selected New Zealand stations were used.

3. Persistence

a. SOl AUTOCORRELATION

The SOl time series shows considerable persistence from month to month. Conventional wisdom
has it that the autocorrelation is highest during May-July and there is a "break" in persistence about
March-April. Hence, Gordon (1986) recommended that the 12-month period May-April, rather than
the calendar year, be used when calculating annually averaged relationships with the SOl. The break
in persistence occurs because there is a tendency for new ENSO events to become established in
May-June and also for existing events to weaken during February-March (at least in so far as ENSO
behaviour is represented by the 501).

Fig. 1 shows the seasonal variation in autocorrelation of the 3-month running mean SOl at
lags up to 12 months. The lag autocorrelations were calculated separately according to whether
the starting 3-month mean SOl was positive (la) or negative (lb). Gordon (1986) calculated lag
correlations that included all starting 501 values irrespective of sign, and his Fig. 2 is very similar
to our Fig. lb. It appears then that the autocorrelation structure of "all 501" is dominated by
that for "negative SOl" (Fig. 1b). The pattern for a starting "positive 501" is somewhat different,
with slightly greater persistence for starting months January-March and reduced persistence for the
remainder of the year. The "positive 501" result is also much noisier, particularly in March-May,
the southern autumn, although the sample size is similar for each month (at slightly over 40% of
the total).
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FIG. I. SOl autocorrelation between the 3-month average centered on the given starting month and the 3-month

average Cor 1-12 months later. Results cover the period May 1851 to December 1988 Cor 3-month average starting SOl

positive (a), and Cor 3-month average starting SOl negative (b).

b. LA NINA/EL NINO EVENTS

In an attempt to identify further characteristics of La Nifia and El Niiio events, an objective
definition of these events in terms of the SDI time series was applied. "Positive" /"negative" events
(identified with La Niiia/EI Nifio events, respectively) were defined to start when the 3-month
running average SDI became at least So above/below zero and remained that way for at least three
consecutive months. The event continued until the 3-month running average SDI became smaller
than SI above /below zero.

Various combinations of So and SI were tried and the final values decided upon were So = 10
and SI = 5 (in units of 0.1 standard deviation). The events identified by this choice agreed reason
ably well with ENSO events identified by other authors (such as van Loon, 1984, and Rasmusson
and Carpenter, 1982). Taking SI = So, for example, often resulted in breaking up what should
have been single events into two or more parts.

Over the period of record. 11 positive (La Nifia] events were identified, excluding the one
apparently in progress in 1851 where the starting month could not be determined and the 1988-89
event that had not finished. The length varied from 10 to 23 months, with a mean of 14.0 months.
Of the negative (El Nifio] events, 29 were identified, of which 3 were ofless than six-months duration
(in 1857/58, 1957/58 and 1963/64). The length of the negative events varied from 3 to 47 months,
with a mean of 13.7 months. Table 1 shows the distribution of the start and end months of the
events selected. The reason for the seasonal break in persistence seen in Fig. 1 is quite obvious.

A relationship between the "intensity" of an event and its duration was also sought. Defining
the starting intensity In of an event as the mean of the unsmoothed SDI values over the first n
months, In was correlated against duration. While nothing useful was found for negative events,
quite large correlations were found for positive events, which maximised at n = 5 (1' = +0.90). Fig. 2
shows a scatter plot of La Nifia starting intensity (average SDI over first 5 months) against duration.
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TABLE 1. Start and end months of the 11 La Niiia and 29 El Niiio events identified in the period
1851-1988.

J F M A M J J A S 0 N D
Start month:
La Niiia 1 0 1 2 2 1 1 0 0 1 1 1
El Niiio 1 3 3 7 2 1 3 3 1 2 1 3

End month:
La Niiia 1 2 1 2 0 0 0 0 2 1 1 1
El Niiio 2 5 10 2 3 0 0 0 1 2 4 0

The 1988-89 La Niiia event began strongly ( 16 = 16.8 ), and on the basis of Fig. 2 would be
estimated to last for about 19-20 months from the start of August 1988; i.e., to about February
March 1990 before the 3-month running average SOl fell below +5. This prediction may not be
too successful, as according to the latest observations (March 1989 Climate Diagnostics Bulletin)
the current "cold episode conditions continued to show signs of weakening". Various U.S. modellers
(e.g., Cane and Barnett, as reported in The New York Times, 1989) also seem to agree that the
current La Niiia event should be over by mid-1989.

25

•en
2:
~

z 20 r-e
:E •
<z- •z
< IS ~
-I • •.... •e
z •
e • ••- 10 .. •~

<
It:
~
e

5 I I

5 10 15 20
START INTENSITY

FIG. 2. Scatter plot of La Niiia starting intensity (5-month average SOl, in units of 0.1 standard deviation) against

calculated duration in months.

4. Pressure Anomaly Composites

a. METHOD

Gordon (1985,1986) calculated seasonal correlation maps of mean sea level pressure against
SOl for an area covering Australia and New Zealand. Both positive and negative Index events were
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included in the correlations. Overall, he found that positive SOl was associated with anomalous
northeasterly How over New Zealand (and, conversely, anomalous southwesterly How during negative
SOl periods). There was some seasonal variation in this pattern, with the How anomalies displaying
a more east/west direction in summer and more north/south in winter (for positive/negative SOl
respectively).

In this section we will analyse the pressure variations not by a correlation pattern but by
compositing seasonal pressure anomalies, weighted by the 3-month mean SOl for that season. Thus,
if the array 11 is the seasonal msl pressure anomaly over the Australia-New Zealand area, and Zj

the seasonal SOl, we have:

where R is a "response" matrix, C a constant matrix, and Ej a random field for season i. Assuming
that Ej has zero mean and is uncorrelated with the Index [i.e., Ej = 0 and zjEj = 0 ), we find:

andC = Yi - RZj.

ITthe pressure field (11) and SOl (Zj) time series were both normalised over the same base period
as the composites are calculated for, then C would be zero. The pattern shown by the response
matrix R is of course very similar to that of the correlation matrix. Thus, when displaying the
pressure anomaly patterns associated with "all SOl", it is equivalent to show either the correlation
field (as in Gordon, 1986) or the predicted Y (evaluated for some nominal Index value Zj = 1, say).
Since our interest here is in the pressure pattern for subsets of the SOl data (in particular, positive
and negative periods), it is more convenient to display the results in terms of the predictand Y.

The significance of the resulting composite field was assessed by a Monte Carlo randomisation
procedure. For the same season (e.g., summer) and period (1957-88) as the field in question, 1000
sets of composited response fields were calculated for randomly generated SOl series (with the same

mean and standard as observed). The mean random response R is essentially zero, but the standard
deviation SR of the random response allows us to calculate the significance of the initial composite.
We thus normalise the composite by evaluating:

(R-R)RN = 100 1.64 SR

Values of IRNI greater than 100 denote regions where the pressure response is significantly different
from random at the 90% level (2-sided test).

b. RESULTS

Weighted composites of seasonal pressure anomaly fields were calculated for each season for
three cases: using the whole sample regardless ofthe sign of the SOl ("all"), compositing only those
seasons when the SOl was positive ("+"), and compositing only those seasons when the SOl was
negative ("-"). The linearity of the pressure response with respect to the sign of the SOl could thus
be assessed. Calculations showed that the linearity was good through December-May (Southern
Hemisphere summer and autumn], but relatively poor in the June-November (winter and spring)
period. Hence, using the seasonal correlation patterns of Gordon (1985,1986) to predict How
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FIG. 3. Seasonal pressure anomaly patterns. Predicted anomaly, based on sample of "all" seasons, for a spring SOl of

20 (3a) and a summer SOl of 10 (3b). Predicted anomaly, based on sample of "+" SOl seasons, for a spring SOl of2.0

(3c) and a summer SOl of 1.0 (3d). Observed anomaly for spring 1988 (3e), and for sununer 1988/89 (3f). Shading

indicates the composite response is significantly different from random at 90% level.
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anomalies during both La Nifia and El Nifio periods could be expected to be reasonably successful
in summer and autumn, but less so in winter and spring. Further discussion here is restricted to the
spring (September-November) and summer (December-February) seasons.

Fig. 3 shows examples of calculated and observed seasonal pressure anomalies (in millibars)
for the spring (Fig. 3a, c, e) and summer (Fig. 3b, £1, f) seasons. The periods used to calculate the
composites did not include the verification period September 1988-February 1989. The observed
anomalies (Fig. 3e, f) cover a period of the current La Nifia event. The 3-month running average
SOl (Fig. 4) reached a maximum of 2.0 for the September-November (spring) 1988 period and
decreased to an average of 1.1 over December-February (summer) 1988/89. (Note the change in
contour interval from 0.25 mb in the composites to 0.50 mb in the observed fields.]
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FIG. 4. Three-month running average SOl from January 1970 to April 1989 (in standard deviation units).

New Zealand was affected by stronger than normal westerlies throughout the 1988 winter and
much of spring. This caused high rainfalls and some severe flooding on the west coast of the South
Island, while drought conditions developed on the eastern side of the South Island mountain range.
A sudden breakdown of the strong westerly flow occurred in early November, and a succession of
persistent slow-moving anticyclones crossed the South Island during the summer, which served to
further aggravate the drought there. Fig. 3e, f show the seasonal pressure anomaly patterns over
this spring and summer period.

The predicted spring pressure anomaly, evaluated for the observed SOl of 2.0, is shown in
Fig. 3a, c. It is clear that developing the composite using all spring seasons (Fig. 3a), and there
fore the standard correlation approach too, completely fails to capture the stronger westerlies that
affected New Zealand during the 1988 spring. The composite developed from only those spring
seasons where the SOl was positive (Fig. 3c) is much more successful. Since Fig. 3c uses only about
half the data set of Fig. 3a, the significance levels are lower, as indicated by the shading changes.
The predicted summer pressure anomaly associated with Southern Oscillation changes is shown in
Fig. 3b, £1, evaluated for an SOl of 1.0, dose to that observed. As mentioned above, the relationship
between the flow anomaly over New Zealand and the SOl is more linear in summer than spring, so
Fig.3b, £1 are quite similar. The main difference is that in Fig. 3d the anticyclone is stronger and
extends over more of the country.
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5. 1988/89 Summer

The observed temperature and rainfall anomalies in New Zealand during the 1988/89 sununer
(December 1988-February 1989) are shown in Fig. Sa, b. The maps are based on daily temperature
and rainfall observations from 46 stations evenly distributed around the country. Fig. 5c indicates
the locations of places mentioned in the text. Temperatures were above normal over the whole
country, with the largest anomalies occurring in the South Island and the southwestern half of the
North Island. Rainfall was below normal in almost all eastern districts from Dunedin to East Cape.
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FIG. 6. Observed temperature anomalies (a, in O.l°C) and rainfall (b, as % normal) over New Zealand during the

1988/89 summer season. Temperature anomalies greater than I.O°C are shaded. Rainfall greater than 120% normal

shaded and less than 80% stippled. (c) Map of New Zealand, showing some places mentioned in text.

SIGNIFICANCE
1001.

FIG. 6. Correlations (z100) between summer temperature and rainfall anomalies and the summer SOl, for various

subregions oC New Zealand. Significance levels indicated by shading (from Gordon, 1985).
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Over the sununer the drought that had previously affected only southeastern South Island areas
extended up into eastern districts of the North Island as well. On the other hand, much above normal
rainfall was experienced in the northern part of the North Island. Many places from Auckland
northward received almost twice their normal sununer rainfall. January was a particularly wet
month, with rainfall in these northern areas being three to five times normal.

The pattern of temperature and rainfall anomalies over the country can be compared to the
correlation patterns found by Gordon (1985), based on 30-34 years of data (Fig. 6). The main
discrepancies with the observed patterns over the 1988/89 summer occur in the north and east of
the North Island. In the north there was more rainfall, greater cloudiness and smaller (but still
positive) temperatures anomalies than might have been anticipated. In the east of the North Island,
rainfall was below normal [presumably as a result of the more intense anticyclonic anomaly over the
country with a ridge extending up the east coast, Fig. 3f), and not above normal as Fig. 6 would
indicate for significantly positive SOL

6. Analogue Prediction

A comparison of Fig. 5 and Fig. 6 shows some features of (particularly) the rainfall distribution
over New Zealand where the correlation pattern does not agree too well with that observed during
the La Niiia sununer of 1988/89. Thus, we attempt again to separate the effects of La Niiia and
El Niiio in the rainfall pattern as was done with the pressure anomaly. In this case. however,
a somewhat different approach was taken: namely, the selection of analogues. (This analysis was
actually done prior to the 1988/89 sununer season, and was part of the background information used
by the New Zealand Meteorological Service in issuing a long-range weather outlook for the summer
on 19 October 1988.)

Analogues of 1988 were selected subjectively from examination of the 3-month running average
SOl series. We selected La Niiia start years (years zero, in the terminology of Rasmusson and
Carpenter, 1982) to be those where the SOl rose from essentially zero at the beginning of the year
to a positive value of at least one standard deviation above zero in the middle part of the year.
Analogue years after 1900 were 1909, 1916, 1938, 1950, 1955, 1964, 1970, 1973, and 1975. Earlier
events were not relevant since, in general, the station data sets do not extend back beyond the early
years of the century. The only difference between this set of years and those chosen more objectively
in Section 3b was the inclusion of 1964 which did not appear in the earlier set. The temperature
and rainfall distribution during the winter and spring of year zero and during the following summer
were then examined. Only the results for summer rainfall will be discussed here.

Monthly rainfall over the sununer season at a number of representative long-record stations
was allocated to categories of "dry", "near normal" and "wet", where for the examples shown here
we take "near normal" to mean 81-119% of the normal monthly rainfall. Doing this for all years
in the period of record, we could calculate all a priori probability that a summer month would be
"dry" or "wet". The actual number of "dry" and "wet" summer months for the La Niiia analogue
seasons were counted, and the binomial test applied to assess the significance of the result. Fig. 7
shows the result in histogram form for the stations of Auckland and Timaru.

The changed temperature and rainfall category distribution in La Nifia analogue years generally
supported the correlation maps shown in Fig. 6, although there were some differences. Fig. 7a gives
a stronger indication than Fig. 6 of Auckland being wet during a La Niiia sununer, although the
results do not quite come up to the 90% significance level. (For example, the a priori probability of
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a "dry" sununer month in Auckland is p = 0.460, but during past analogue La Nifia sununers only
9 of 27 months have been "dry", which has a probability of 0.13 of occurring by the binomial test.)
The analogue approach also predicted the east coast of the North Island (Napier, not shown) should
not be as dry in La Nifia sununers as "all" sununers, a result that supports Fig. 6 but conflicts with
the observations (Fig. 5b).
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FIG. 7. Probability of Auckland (a) and Timaru (b) rainfall falling into one of three categories, comparing all years

of record with La Nina analogue years.

7. Conclusions

Although New Zealand is not near the centres of action of the Southern Oscillation, it is
nevertheless affected by this phenomenon. Significant anomalies in the seasonal pressure distribution
around New Zealand do occur, and these result in temperature and rainfall anomalies over the
country. The general pattern of the anomalies and their seasonal variation have been documented
previously in terms of correlation maps. This procedure implicitly assumes a linearity of the response
to the forcing.

We have shown that this assumption of linearity is not always valid. In particular, over the
period September-November 1988 when the SOl reached a positive extreme, it seems necessary to
take account of nonlinearity in the response in order to explain the observed pressure distribution.
The summer case is not as obvious although, even here when the SOl value was less extreme, there
was some improvement in the predicted anomalies using only that part of the historical record when
the 501 was positive.
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