natural products has not been reported from species belonging to the subtribe Pectidinae where thiophene acetylenes are widespread.

Experimental

The plant material was collected near Monterrey, Mexico, in April 1984, voucher 1639/84. The air dried material was extracted at room temp. with methanol/ether/petrol ether, 1:1:1, and the extracts obtained were separated first by column chromatography (SiO2). The roots (145 g) gave a fraction with ether/petrol ether, 1:10, which gave by TLC (ether/petrol ether, 1:1) 3 mg 4 and 3 mg 1. The extract of 450 g aerial parts gave by CC and TLC (s. a.) 5 mg 2, 4 mg 4, 3 mg 3, 3 mg 5 and 3.5 mg sakanurin. The compounds were identified by comparing the 400 MHz 1H-NMR spectra with those of authentic material.

I-[α,α-Bi(phenyl)]-4-chloro-but-1-yn-3-yl acetate (4): Yellow oil; IR ν max cm⁻¹: 2290 (C = C), 1760 (OAc); MS m/z (rel. int.): 512 and 309.988 [M+] (6 and 18) (calc. for C39H25O5S: 399.989; 275 [M-Cl]⁺ (11), 232 [275 - COOH]⁺ (100), 215 [275 - HOAc]⁺ (36); 1H-NMR (CDCl3, 400 MHz, TMS as internal standard): 3.81 dd (H-1, J = 11.5, 5 Hz), 3.78 dd (H-1', J = 11.5, 7 Hz), 5.83 dd (H-2, J = 7, 5Hz), 7.02 dd (H-6, J = 4 Hz), 7.16 dd (H-7, J = 4 Hz), 7.18 dd (H-10, J = 4, 0.7 Hz), 7.01 dd (H-11, J = 4, 0.5 Hz), 7.24 dd (H-12, J = 5, 0.7 Hz), 2.17 s (OAc). UV (EtO) λmax = 330 nm.

During our research on iridoid glucosides contained in plants of Guyanese Flora, we have particularly investigated the Stigmaphyllon genus. All the species of Stigmaphyllon are creepy lianas growing in Central and South America (3).

In addition to galiosid 1 (yield: 0.05 %) and monotropein 2 (0.05 %) also present in the leaves, two other compounds are identified in the tuberous roots of S. sagittatum Juss.: geniposid 4 (0.15 %) and scandeloside-methylester 5 (0.11 %). Only monotropein 2 (0.03 %) is identified in the root barks of S. convolvulifolium (Cav.) Juss. However no iridoid was found in S. convolvulifolium leaves as well as in S. splendens (DC) Cuatr. leaves and stem barks.

The occurrence of these four known compounds is in good agreement with the biogenetically pathways previously described (4, 5) and it confirms the original character of the Stigmaphyllon genus in the Malpighiaceae family.

References
