preemptive efforts to eradicate this endemic disease in our community should be made.

Asem Shehaby1
Hisham Arda2
Mohammad Sharaf2
Jossef Damin3

1Dept. of Pathology-Microbiology,
Faculty of Medicine,
University of Jordan
2Dept. of Internal Medicine,
Faculty of Medicine,
University of Jordan
3At-Boukavo Hospital,
Ministry of Health,
Jordan

References

Bhaskar, V., Shehabi, A., Mehta, M. C., Kumar, R.,
Tripoli. Clinical and Experimental Dermatology, 9, 84-88.

Conant, N. F., Smith, D. T., Baker, R. D. X. & Calaway,

Kennou, M. F. (1978). Dermatophytoses at the Pasteur
Institute of Tunis. Archives de l'Institut Pasteur de Tunis,
3, 231-245.

Malhotra, Y. K., Gars, M. P., Kanwar, A. J. & Nasrjan, S.
Sahorauslet, 3, 181-183.

The frequency of causative dermatophytes in Egypt.

Shehabi, A. (1976). Ringworm of the scalp in Jordanian

Accepted for publication 7th February, 1985.

Systematic chemotherapy of febrile cases: a substitute
strategy for malaria control in rural areas of
Africa

Malaria is still endemic in 90% of tropical Africa.
Developing countries meet difficulties in controlling
the disease due to technical, economic, logistic and
human problems. However, specific strategies against
this endemic disease have been developed, such as
vector control mass drug administration, health
education and environmental improvement. Their
efficacy has been proven. But in order to pass from an
experimentally proven efficacy to large scale imple-
mentation, it is necessary to employ a "feasible
strategy".

We suggest such a strategy based upon the result of a
recent three-year field study. In 12 villages of a
savanna area of Burkina Faso (West Africa), we
compared, from 1980 to 1982, two malaria control
strategies: (i) systematic chemotherapy of febrile
attacks with a 10 mg/kg body-weight single dose of
chloroquine, and (ii) chemoprophylaxis for children
(0 to 9 years) with a 10 mg/kg body-weight weekly
dose. Chloroquine tablets were distributed by health
workers directly by the whole population.

The results can be summarized as follows: no
difference in the infectivity of anopheline vectors was
noticed in either area. Correctly performed chemo-
propylaxis over one year produced a fail in the
parasite rate (children two to nine years) from 51.9 to
26.2% during the rainy season and from 38.4 to 7.7%
during the dry season. Immunological studies showed
that correctly performed chemoprophylaxis during
one year caused a significant decrease of fluorescent
antibody levels whereas there was no difference in the
immunological response between the results of che-
motherapy in control villages. There was no differ-
ce in mortality (age group one to two years old)
between the two control-strategies. The feasibility
study showed that chemoprophylaxis could be well
conducted for about one year, but this was followed
by decreasing interest of the population in chemop-
rophylaxis while chemotherapy was always accepted.
In villages where chemoprophylaxis was well con-
ducted, the consumption of chloroquine to cover the 0
to nine years group was three times higher than in
villages where chemotherapies were taken.

This study leads us to propose systematic che-
motherapy of all febrile cases for malaria control in
West Africa, where no case of P. falciparum resistance
to amino-4-quinoline has been demonstrated in semi-

immune and immune populations. We recommend a
single dose of 10 mg/kg body-weight of chloroquine
which should cure any possible malaria attack.

This strategy, well accepted by the population, is
realistic on a large scale in the field within the
framework of primary health care, permits effective
control of malaria mortality and is not followed by
problems related to chemoprophylaxis such as selec-
tion of P. falciparum-resistent strains, decrease of
specific immunity, high cost or poor acceptability by
the population. This investigation received financial support from the
Malaria Applied Field Research component of the
UNDP/World Bank/WHO Special Programme for
Research and Training in Tropical Diseases.

D. Baudon
J. Roux
P. Carnevale
J. L. Rey
M. B. Meylan
O. Brandicourt

O.C.G.G.E.—Centre Muraz,
B.P. 153, Bobo-Dioulasso,
Burkina Faso,
West Africa.

Accepted for publication 11th April, 1985.

The experimental transmission of Leishmania mexi-
cana amazonensis Lainson & Shaw, between hams-
ters by the bite of Lutzomyia furcata (Mangabeira)
Ward et al. (1977) reported the experimental transmis-

sion of Leishmania mexicana amazonensis by the
proven vector Lutzomyia flaviscutellata. The only
other laboratory transmission of this parasite has
been by Lu. longipalpis (see Killick-Kendrick et al.
1977). We report here the transmission of Le. m.
amazonensis by Lu. furcata.

Strain FLA/BR/83/M7890 was isolated in a hamster
from a female Lu. flaviscutellata captured on the 11th