The Effects of Helicopter Applied Adulticides for Riverine Tsetse Control on Simulium Populations in a West African Savanna Habitat. II. Effects as Estimated by Non-biting Stages of Simulium damnosum s.l. and other Blackfly Species Caught on Aluminium Plaque Traps

C. Bellec*, G. Hebrard and A. d'Almeida

Institut de Recherches sur la Trypanosomiase et l'Onchocercose, B.P. 1500, Bouaké, Ivory Coast.

Abstract. The effects of a tsetse control programme on Simulium spp. on the Komoe river in the Guinea savanna of Upper Volta have been investigated by sampling Simulium populations using sticky aluminium plaque traps. Flies were taken in several physiological states, among which gravid, non-gravid and newly emerged individuals could easily be recognised. Daily sampling began two days before insecticide application and continued for 10-12 days afterwards, and the results were compared with a parallel study using human bait to sample S. damnosum s.l. populations only. Applications of deltamethrin at 12.5 g a.i./ha caused immediate reductions in the numbers of Simulium trapped. Endosulfan at 100 g a.i./ha gave an immediate reduction of 30-50%, increasing to 70% after three days. Populations had recovered after 12 days. The use of endosulfan at 10 g a.i./ha, deltamethrin at 12.5 g a.i./ha and dieldrin at 400 g a.i./ha to form an insecticidal ‘barrier’ on the river had relatively little effect. Dieldrin had a limited effect on the day of spraying only, and only on gravid females of species other than S. damnosum. It is possible that flies were traversing the barrier without coming into contact with the insecticide.

Introduction

The effects of anti-tsetse spraying on biting females and aquatic stages of Simulium damnosum s.l. (probably S. damnosum s.str. Theobald) has been described in a previous paper (Davies et al., 1982), in which details of the experimental area in Upper Volta, insecticides used and application techniques are given.

This paper describes a parallel study in which Simulium populations were estimated by means of sticky aluminium plaques (Bellec, 1976), a method which has the advantage over human bait of capturing other species of Simulium as well as S. damnosum. Flies are taken in several physiological states, amongst which gravid, non-gravid and newly emerged individuals can readily be recognised.

Methods

The spraying techniques and the study areas on the River Komoe in the Guinea savanna zone of Upper Volta in West Africa are described in Part I of this series (Davies et al., 1982).

The daily densities of Simulium populations were estimated by trapping on 1 m² aluminium plates coated with an adhesive material (equal parts of Tween 20® and 90% ethanol). The traps were placed on rocks close to small cascades which formed the Simulium breeding sites. Fourteen plates were distributed as follows: one pair at the southern limit of the northern barrier, two pairs in Block N and four pairs in Block C (Fig. 1). Entrapped flies were collected three times a day (0700, 1500 and 1830 h) from the barrier traps and one pair of plates in each of...
Results
The total numbers of *Simulium* spp. caught on the several traps in each block are shown in Figs 2, 3 and 4.

1. Block C (placement application of endosulfan at 100 g a.i./ha)

Adult *S. damnosum* s.l. collections were not immediately affected by the endosulfan application, although there was a drop in numbers of gravid flies caught during the day of application (Fig. 2a). Two days after spraying there was a sharp drop in numbers of gravid and non-gravid flies. Thereafter numbers caught remained low at between ten and fifteen per day from the fourth to eleventh days after spraying, when they began to increase. Newly emerged *S. damnosum* s.l. of both sexes were observed nearly every day until the thirteenth day after spraying.

With other species of *Simulium* the application was made at a time of increasing catches (Fig. 2b), but on the day of application a reduction of about one half in numbers of both gravid and non-gravid flies was observed. This was followed by a steady decline until the eighth day. From the ninth day populations rapidly built up to normal.

2. Block N (placement applications of deltamethrin at 12.5 g a.i./ha)

Although catches of *S. damnosum* had been declining at the time of spraying (Fig. 3a) it appears that the spray caused a further decrease of all categories, which recovered slightly over the next two days (31 January, one male and one non-gravid female; 1 February, one male and one newly emerged female) and then remained at almost zero until eight days after the application.

A similar decrease was observed in other species of *Simulium* on the day of application (Fig. 3b), after which a steady recovery took place.
3. Barrier

(a) Dieldrin (placement application at 400 g a.i./ha)

No apparent effect was observed on the numbers of S. damnosum caught (Fig. 4a). However, there was a sharp decrease in the numbers of gravid Simulium of other species which recovered the following day (Fig. 4b).

(b) Endosulfan (space spray at 10 g a.i./ha)

The application was followed by a reduction in numbers of gravid S. damnosum s.l. collected, which was maintained for the first and second days afterwards. There was no really noticeable effect on non-gravid flies. With other species, a decrease in numbers of gravid flies was apparent only on the second day after spraying.

(c) Deltamethrin (placement application at 12.5 g a.i./ha)

*Simulium damnosum* s.l. populations were probably further decreased by this application, although as the population was already on the decline this cannot be certain. Twenty-eight adults (two males and ten neonates, 12 non-gravid and four gravid females) were taken the following day and a few were collected on all subsequent days.

There was no sign of a strong recovery during the period of observation, although newly emerged flies were caught on four occasions.

With other species of *Simulium* an 82% reduction was observed on the day of treatment, caused entirely by loss of gravid females. Only small numbers of flies of other categories were caught before treatment so it was not possible to assess the effect on these groups. Over the fifth and sixth days after treatment there was a complete recovery in the numbers of gravid flies.
Conclusions

A comparison with the catches of *S. damnosum* on human bait (Davies et al., 1982) shows that with the deltamethrin application in Block N a similar pattern was observed for biting females, gravid and non-gravid females. The application was followed by zero catches on the day of treatment. Recovery was slow, but because of the low numbers it is not clear whether it was due to any residual effect of the insecticide.

After the application of endosulfan in Block C biting *S. damnosum* densities fell to nearly one third, stayed at this level for three days and then decreased further until the tenth day when a recovery began. In contrast, catches on the plaque traps did not fall until the second day after spraying. At no time were any of the collections reduced to zero.

The situation on the barrier is confused, probably because of the influx of Simulium from the untreated river upstream. Dieldrin had no immediate effect on *S. damnosum* but might have killed gravid Simulium of other species on the day of application only. The effect of endosulfan here was also limited, and deltamethrin did not show the dramatic reduction in flies demonstrated in Block N. It is possible that *Simulium* of all species were traversing the short length of the barrier as far as the traps without coming into contact with the insecticide.

Final conclusions on these experiments are given in the third paper of this series (Davies et al., 1983).

Acknowledgements

We have pleasure in thanking Dr B. Phillippon, then Director of the Institut de Recherches sur la Trypanosomiase et l'Onchocercose, Bouaké and our colleagues Dr D. Quillévéré and Mr P. Guillet for their advice on the preparation of this paper.

We also wish to thank our personnel, especially Messrs D. Coulibaly, R. Somé and R. Sanon, as well as the staff of the WHO Onchocerciasis Control Programme with whom we have worked closely: Dr J. B. Davies, Dr C. Gbboho and Mr R. Sawadogo and their catching teams.

We are also indebted to Dr D. A. T. Baldry, who was in charge of the anti-tsetse spraying programme, for his welcome and co-operation in the field and for providing details of the spray applications.

References


