Epidemiology of Mansonella perstans filariasis in the forest region of South Congo

geometric mean. In order to detect dermal mf, 118 skin snips were taken from adults selected at random (41 Pygmies, 77 Bantus). Double skin biopsies were taken from the iliac crests and placed in 50 µl of normal saline, and four hours later a drop of formaldehyde was added. Specimens were transported to the laboratory, where emerged mf were identified.

A survey of anthropophilic Culicoides was carried out in April 1987 (diurnal and nocturnal species) and January 1988 (diurnal species), for a total of 11 capture days. The Culicoides were collected with a mouth aspirator, preserved in 70% alcohol, and then mounted for taxonomic studies (Cornet, 1974). The diurnal species were caught in the morning between 07.00 and 09.00 hours and in the evening between 17.00 and 19.00 hours, and the nocturnal species were caught between 23.00 and 01.00 hours. Some 629 of the dominant species of Culicoides were anaesthetized with ether, then dissected in order to detect Mansonella larvae (Sharp, 1928). The lacerated fly tissue, fixed in human serum, was stained with acid haemalum.

RESULTS

The prevalences of M. perstans mf carriers, and the mean microfilarial densities, are shown in Table 1. The prevalence rate was 80.6% in the Pygmies and 26.2% in the Bantus. No difference was observed according to sex. In the Pygmies the maximum rate was reached early (age group 10-19 years), whereas it increased with age throughout life in the Bantus. The m.d. were 136 mf ml^{-1} in the Bantus and 1213 mf ml^{-1} in the Pygmies. In the Pygmies the densities increased regularly with age, and were twice as high in the women as in the men (1595 v. 685 mf ml $^{-1}$ of blood). In the Bantus, however, the densities were slightly higher in men than in women (160 v. 110 mf ml^{-1} of blood).

TABLE 1

Distribution and microfilarial load of Mansonella perstans by age and sex among Bantu and Pygmy inhabitants of Missama

Age (years)	Sex	Bantu			Pygmy		
		No.	mf+(%)	m.d.*	No.	mf+(%)	m.d.*
1–9	M	45	3 (6.7)	70	7	4 (57-1)	105
	F	28	2 (7.1)	140	11	7 (63-6)	280
10-19	M	32	3 (9.4)	80	20	18 (90.0)	555
	F	24	6 (25.0)	75	10	8 (80-0)	1215
≥20	M	54	24 (44-4)	210	33	27 (81 <i>-</i> 8)	1040
	F	119	41 (34·4)	115	53	44 (83.0)	2205
Total	M	131	30 (22.9)	160	60	49 (81-7)	685
	F	171	49 (28-6)	110	74	59 (79·7)	1595

^{*}m.d. = Geometric mean microfilarial density 1 ml-1 of blood.

Only one of the 118 skin snips (0.8%) showed Mansonella streptocerca mf. No Onchocerca volvulus mf were detected.

The captures of diurnal anthropophilic Culicoides (Table 2) showed that C. grahamii was the species most aggressive to man. This species accounted for over 98% of the captures irrespective of the period. Some 0.8% of the dissected C. grahamii (five of 629) were carriers of indistinguishable filarial larvae of the Mansonella genus, including one third-stage larva. Only

NOIREAU ET AL.

TABLE 2

Biting densities of diurnal anthropophilic species of Culicoides

		April 1987			January 1988	8
	No.	%	F/MH	No.	%	F MH
C. grahamii	1470	98.0	367-5	211	98-6	70.3
C. kumbaensis	8	0.5	2.0	1	0.5	0.3
C. fulvithorax	23	1.5	5.7	2	0.9	0.4
Total	1501	100.0	375-2	214	100.0	71.3

F/MH: no. of flies caught per man-hour.

one species, C. rutshuruensis (group milnei), was found attacking man at night, and it occurred in low densities (nine flies per man-hour).

DISCUSSION

The clinical impact of microfilaraemia filariases is not insignificant in this region of South-West Congo (Noireau et al., 1990). However, the respective role played by mansonellosis is difficult to assess because of the coexistence of loaiasis. Nevertheless, severe pathogenic effects have been reported with M. perstans in Zimbabwe, in areas in which mansonellosis occurs alone (Gelfand and Bernberg, 1959; Holmes et al., 1969). This might be due to the particular virulence of the local strains which are morphologically distinguishable from West African strains (Duke, 1974). Unlike loaiasis, for which the percentage of mf carriers in the adult population never exceeds 35% (Fain, 1978), M. perstans microfilaraemia can be observed in a high percentage of the population (Kershaw et al., 1953; Richard-Lenoble et al., 1980; Dujardin et al., 1982). In our study major differences between the Bantus and the Pygmies were observed. The exposure to the vector certainly plays an appreciable role, and might account for the earlier occurrence of microfilaraemia in the Pygmies. On the other hand, the differences in the trend of microfilarial load with age (significant increase in the Pygmies, unlike the Bantus) perhaps support the theory that microfilaraemia might be regulated genetically.

Four species of Culicoides which are preferentially or occasionally anthropophilic were identified in the study region. Of these species, only C. fulvithorax has never been reported to have played a role in the transmission of M. perstans (Linley et al., 1983). Culicoides grahamii, C. kumbaensis (group inornatipennis) and to a lesser extent C. rutshuruensis (group milnei) are currently considered as vectors of M. perstans in Africa (Duke, 1965; Linley et al., 1983). However, the respective role of these species as vectors cannot be assessed, given the lack of data on their annual cycles. Although there is a lack of knowledge regarding sources of blood meals for C. grahamii (man remains, nevertheless, the main host), the evidence of their infection with

- CORNET, M., NEVILL, E. M. & WALKER, A. R. (1974). Note sur les Culicoides (Diptera: Ceratopogonidae) du groupe de C. milnei Austen, 1909, en Afrique orientale et australe. Cahiers ORSTOM, Série Entomologie Médicale et Parasitologie, 12, 231-243.
- DUJARDIN, J. P., FAIN, A. & MAERTENS, K. (1982). Enquête sur les filarioses humaines dans la région de Bwamanda au nord-ouest dué Zaire. Annales de la Société belge de Médecine tropicale, 62, 315-342.
- Duke, B. O. L. (1965). The intake of the microfilariae of Acanthocheilonema perstans by Culicoides grahamii and C. inornatipennis, and their subsequent development. Annals of Tropical Medicine and Parasitology, 50, 32-38.
- DUKE, B. O. L. (1974). Notes on filarial infections due to Loa loa, Dipetalonema and Mansonella ozzardi. WHO|FIL|74.
- FAIN, A. (1978). Les problèmes actuels de la loase. Bulletin de l'Organisation Mondiale de la Santé, 56, 155-167.
- GELFAND, M. & BERNBERG, H. (1959). Tropical eosinophilic syndrome. A clinical description of the disorder as seen in S. Rhodesia. Central Africa Journal of Medicine, 5, 405-411.
- HAWKING, F. (1977). The distribution of human filariasis throughout the world. Part III. Africa. Tropical Diseases Bulletin, 74, 649-679.
- HAWKING, F. (1979). The distribution of human filariasis throughout the world. Part IV. America. Tropical Diseases Bulletin. 76, 693-710.
- HOLMES, G. K. T., GELFAND, M., BOYT, W. & MACKENZIE, P. (1969). A study to investigate the pathogenicity of a parasite resembling Acanthocheilonema perstans. Transactions of the Royal Society of Tropical Medicine and Hygiene, 63, 479-484.
- HOPKINS, C. A. & NICHOLAS, W. L. (1952). Culicoides austeni, the vector of Acanthocheilonema perstans. Annals of Tropical Medicine and Parasitology, 46, 276-283.
- KERSHAW, W. E., KEAY, R. W. J., NICHOLAS, W. L., & ZAHRA, A. (1953). Studies on the epidemiology of filariasis in West Africa, with special reference to the British Cameroons and the Niger delta. IV—The incidence of Loa loa and Acanthocheilonema perstans in the rain-forest fringe and the mountain grasslands of the British Cameroons, with observations on the species of Chrysops and Culicoides found. Annals of Tropical Medicine and Parasitology, 47, 406-425.
- LINLEY, J. R., HOCH, A. L. & PINHEIRO, F. P. (1983). Biting midges (Diptera: Ceratopogonidae) and human health. *Tournal of Medical Entomology*, 20, 347-364.
- NOIREAU, F., CARME, B., APEMBET, J. D. & GOUTEUX, J. P. (1989). Loa loa and Mansonella perstans filariasis in the Chaillu mountains, Congo: parasitological prevalence. Transactions of the Royal Society of Tropical Medicine and Hygiene, 83, 529-534.
- NOIREAU, F., APEMBET, J. D., NZOULANI, A. & CARME, B. (1990). Clinical manifestations of loiasis in an endemic area of the Congo. Tropical Medicine and Parasitology, 41, (in press.)
- RICHARD-LENOBLE, D., KOMBILA, M., CARME, B., GILLES, J. C. & DELATTRE, P. Y. (1980). Prévalence des filarioses humaines sanguicoles au Gabon. Bulletin de la Société de Pathologie Exotique, 73, 192-199.
- SHARP, N. A. D. (1928). Filaria perstans: its development in Culicoides austeni. Transactions of the Royal Society of Tropical Medicine and Hygiene, 21, 371-396.
- WISEMAN, R. A. (1967). Acanthocheilonema perstans, a cause of significant eosinophilia in the tropics: comments on its pathogenicity. Transactions of the Royal Society of Tropical Medicine and Hygiene, 61, 667-673.