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GIBBS FREE ENERGY OF FORMATION OF HYDRATED 
AND DEHYDRATED CLAY MINERALS 

TARDY Y. 
Institut Francais de Recherche Scientifique pour le Développement en Coopération 

ORSTOM, BP 2528, Bamako, Mali. 
Institut de Géologie, Université Louis Pasteur, 1,rue Blessig, 67084 Strasbourg, France. 

INTRODUCTION 

Clay minerals are hydrated in common natural 
earth surface conditions. Water is distributed in five 
different sites : (i) structural sites where water is 
represented by hydroxyls ( OH ) part of structures, 
(ii) interlayer water attached to interlayer cations 
between individual layers, (iii) intra-particle water 
attached to surfaces in intermediate position between 
groups of layers within a given particle, (iv) 
inter-particle 
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hydration water tends to be smaller than this of liquid 
water, so that clay minerals tend to remain hydrated 
when pressure increases. Entropy and heat capacity 
are often smaller than these of liquid water so that an 
increase of temperature tends to induce dehydration 
(TARDY et al., 1980). 

Gibbs free energy of hydration of a 
phyllosilicate layer depends on several parameters 
such as (i) particle size, (ii) layer charge, (iii) nature 
of the layer charge (tetrahedral or octahedral), (iv) 
nature of the interlayer cation (Li, Na, K, Ca, Mg) 
and nature of the octahedral cation (Mg, Fe 
trioctahedral or Al and Fe dioctahedral). A model to 
calculate the Gibbs free energy of formation from the 
elements of a given mineral can be based on an ideal 
solid solution mixing involving a large number of 
end members for which Gibbs free energies are 
estimated. These end members are 4 for 
talc-pyrophyllite series, 4 for phlogopite-muscovite 
series, 4 in the celadonite series = 8 in total for 

TABLE 1 : Gibbs free energies of formation from the eleme- 
nts (AGOf, kJ/mol) (l), Gibbs free energies of formation from 
the constituent oxides (AGOox, kJ/mol) (2), and solubility 
products (log Ksp) (3) of well crystallized phyllosilicates. 
Doted values (*) are estimated from the A$ method of TAR- 
DY and GARRELS (1976, 1977) and TARDY (1982). 

potassium in interlayers time 5 for 5 different 
interlayer cations, time 2 for hydrated or dehydrated 
stages so that one can consider about 84 end 
members. 

GIBBS FREE ENERGIES OF HYDRATED 
AND DEHYDRATED CLAY MINERALS 

Giggs free energies of the different hydrated and 
dehydrated end members were estimated by 
TOURET (1988). Several data are represented in 
tablles 1 and 2. 

Data of table 3 show as an example what are 
the: Gibbs free energy differences between Na- or 
K- saturated , hydrated or dehydrated clay minerals 
i.e. between poorly crystallized micas, hydrated or 
not. 

TABLE 2 : Gibbs free energies of lormation from the eleme- 
nts (AG'f, kJ/mol) [ (I) and 2) 1, Gibbs free energies of for- 
mation from the constituent oxides (AGOox, d/mol) [ (3) and 
(4) 1 and soIubiIity products (Iog Ksp) [ (5) and (6) ] of poor- 
ly crystallized and hydrated clay minerals. Values listed in col- 
umns (l), (3) and (5) are those of FRITZ (1981) modified by 
TARDY et al. (1986). Values listed in columns (2), (4) and 
(6) are ajusted to fit the AGoox - A02 linear relationship of 
TARDY and GARRELS (1976,1977). 

Mg3 Si4 10 (Om2 
Fe3 Si4 10 (Om2 
A12 Si4 10 (Om2 
Fe2 Si4 10 (Om2 

K Mg3 Al Si3 10 (Om2 
K Fe3 Al Si3 10 (Om2 

K Al2 AlSi3 10 (OH32 
K Fe2 AlSi3 10 (Om2 

K Mg2.5 Si4 10 (Om2 
K Fe2-5 Si4 10 (Om2 

K Ál 1.667 Si4 10 (Owî 
K Fe 1.667 Si4 10 (Omî 

I 

AGof AGOoX logKsp 

~~ ~~ 

- 5524.9 - 168.3 21.6 
- 4479.0 - 76.4 7.2 
- 5256.3 - 25.1 1.1 
- 4348.7* + 42.5* - 9.8 

- 5842.1 - 389.7 38.2 
- 4800.3 - 301.9 23.2 

- 5591.6 - 264.5 14.6 
- 4685.5* - 198.5" 3.5* 

- 5569.0* - 336.0* 23,5* 
- 4699.0* - 261.0* 11.3* 

- 5353.0* - 225.0* 5.0* 
- 4595.3* - 167.0* - 3.7* 

- 5504.4 - 5504.4 - 147.8 - 147.8 25.16 25.16 
- 4479.0 - 4475.6 - 76.4 - 73.0 7.24 7.83 
- 5256.7 - 5267.2 - 25.5 - 36.0 1.00 - 0.84 
- 4371.2 - 4371.2 + 20.0 + 20.0 - 13.70 - 13.70 

- 5821.1 - 5821.1 - 368.7 - 368.7 41.91 41.91 
- 4799.8 - 4797.5 - 301.4 - 299.1 23.27 23.67 

- 5579.6 - 5591.1 - 252.6 -264.1 16.65 14.65 
- 4699.1 - 4699.1 - 212.1 - 212.1 1.09 1.09 

- 5549.4 - 5549.4 - 316.4 - 316.4 26.93 26.93 
- 4696.3 - 4696.0 - 258.3 - 258.0 11.75 11.80 

- 5345.2 - 5357.2 - 217.2 - 229.2 6.35 4.25 
- 4613.7 - 4613.9 - 185.4 - 185.6 - 6.97 - 7.00 

- 

CC 

1 a1 
me 
Gi 
Co: 

an! 
in1 
hY 
ex( 

mi 
S a l  
an 
Wl 

an 

de 
cr: 

m: 
cr 
Dj 
en 
ce 
hY 

h? 



P 

lifferen t 
iydrated 
54 end 

ATED 
ILS 

ìed and 
ted by 
nted in 

,hat are 
Na- or 
iinerals 
ated or 

eleme- 
of for- 
3) and 
poor- 
in col- 
ied by 
) and 
iip of 

- 

- 
I - 
16 
83 
84 
70 

1 
7 

) 

- 

251 GEOCHEMISTRY OF T H E  EARTH'S SURFACE AKD OF MISERAL FORbIXTIOS 
2nd IKTERNATIOSAL SYMPOSIUM J u l y ,  2-8, 1990, Aix  en Provence, France.  

TABLE 3 : Gibbs free energy of hydration of Na-X micas (kJ/mol) (1). Gibbs free energies of formation from 
the elements (kJ/mol) of various clay micas at 298.15 K and 1 bar total pressure : K-X hydrated (2); Na-X hy- 
drated (3); Na-X dehydrated (4); K-X dehydrated (S) and difference (4) - (5) = (6). 

AGO AGof AGOF AGof AGof Diff. 
hydrat. K-X hyd. Na-X hyd. Na-X dehy. K-X dehy. (6)=(4)-(5) 

Clay Minerals (1) (2) (3) (4) (5) (6)  

Na Mg3 Al Si3 010(0H)2 
Na Fe3 Al Si3 010(0H)2 
Na A12 Al Si3 01O(OH)2 
Na Fe2 Al Si3 010(0H)2 

Na Mg2 5 Si4 010(0H)2 
Na Fe2.5 Si4 010(0H)2 
Na 41.667 Si4 010(0H)2 
Na Fe1.667 Si4 010(0H)2 

- 21 
- 21 
- 21 
- 21 

- 190 
- 125 
- 95 
- 43 

- 5821.1 
- 4797.5 
- 5591.1 
- 4699.1 

- 5549.4 
- 4696.0 
- 5357.2 
- 4613.9 

- 5795.9 
- 4772.3 
- 5565.9 
- 4673.9 

- 5524.2 
- 4670.8 
- 5332.0 
- 4588.7 

- 5774.9 
- 4751.3 
- 5544.9 
- 4652.9 

- 5334.2 
- 4545.8 
- 5237.0 
- 4545.7 

- 5811.1 
- 4814.5 
- 5621.1 
- 4749.1 

- 5362.4 
- 4597.0 
- 5307.2 
- 4641.9 

+ 36.2 
+1 63.2 
+ 76.2 
+ 96.2 

+ 28.2 
+ 51.2 
+ 70.2 
+ 96.2 

CONCLUSIONS 

The ideal solid solution model of mixing of a 
large number of hydrated and dehydrated end 
members seems to be the easiest way to estimate 
Gibbs free energies of formation of clay minerals of 
complex and various formulas. 

Gibbs free energy of formation of hydrated 
and dehydrated end members saturated by various 
interlayer cations are estimated from data on 
hydration energies as well as from data on cation 
exchange constants. 

In.  standard earth surface conditions clay 
minerals are hydrated. They tend to dehydrate in 
saline water in which the activity of H20 is small 
and in diagenetic or metamorphic conditions in 
which temperatures are high. Thus temperature is 
perhaps the dominant factor of compaction of shales 
and clay mineral geological series. 

Hydration energies of interlayer cations are 
depending on the nature of the layer and on the 
crystal size. Higher the layer charge higher the 
hydration energies (this is true for most of the clay 
minerals but not for all). Higher the size and 
crystallinity smaller the hydration energy. 
Dioctahedral minerals exhibit smaller hydration 
energies than trioctahedral phyllosilicates. Most of 
celadonitic layers octahedrally charged exhibit higher 
hydration energy than tetrahedrally charged micas. 

Sodium is generally more hydrated than potassium 
and magnesium more hydrated than calcium. 

Hydration energy increases with layer charge 
except for K-saturated aluminous or ferric 
phyllosilicates such as K-beidellite to muscovite or 
K-nontronite to glauconite. In these cases it seems 
that minerals of small size are more stable, in water 
than minerals of large size. It probably explain why 
illites and glauconites are of small size and why 
vermiculites of large size derive more often from 
phlogopite than from muscovite. 

Hydration tends to stabilize cations in 
interlayer situation. For example, the exchange 
constant between Na- and K- saturated clay is small 
when layers are hydrated but high when layers are 
dehydrated : potassium is much more preferred than 
sodium in dehydrated conditions or at high 
temperatures. I consequently believe that the driving 
force for the transformation of smectite to illite in 
diagenesis is simply a dehydration reaction due to 
an increase of temperature, the consequences of 
which are the chemical transformations observed. 
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