Petrology and geochemistry of the central North Fiji Basin spreading centre (Southwest Pacific) between $16^{\circ} \mathrm{S}$ and $22^{\circ} \mathrm{S}$

Jean-Philippe Essen ${ }^{\text {an }}$, Christian Lefèvre ${ }^{\mathrm{b}}$, Patrick Mallet ${ }^{\mathrm{c}}$, Files Morvan ${ }^{\text {d }}$ and Masato Nohara ${ }^{\text {e }}$
${ }^{\text {a }}$ Centre ORSTOM, BP A5, Nouméa Codex, New Caledonia
${ }^{\text {b }}$ Université des Sciences et Techniques de Lille, Sciences de la Terre, 59655 Villeneuve d'Ascq Ceder, France
${ }^{\text {' O ORSTOM, La Probe University, Geology Department, Bundoora, Vic. 3083, Australia }}$
${ }^{\text {d Université de Bretagne Occidentale, Faculté des Sciences, } 6 \text { Avenue Le Gorgeu, } 29263 \text { Brest Cedex, France }}$
${ }^{\text {a }}$ Geological Survey of Japan, Tsukuba, Ibaraki 305, Japan
(Received March 5, 1990; revision accepted September 17, 1990)

Abstract

Eissen, J.-P., Lefèvre, C., Maillet, P., Morvan, G. and Nohara, M., 1991. Petrology and geochemistry of the central North Fiji Basin spreading centre (Southwest Pacific) between $16^{\circ} \mathrm{S}$ and $22^{\circ} \mathrm{S}$. In: K.A.W. Crook (Editor), The Geology, Geophysics

 and Mineral Resources of the South Pacific. Mar. Geol., 98: 201-239.
Abstract

The North Fiji Basin (NFB) is a $12 \mathrm{~m} . \mathrm{y}$. old back-arc basin that has a complex multistage history. The presently active spreading system can be divided into four segments between $16^{\circ} \mathrm{S}$ and $22^{\circ} \mathrm{S}$, which from north to south trend N 160 , N15 and $\mathrm{N}-\mathrm{S}$ (the fourth segment is the $\mathrm{N}-\mathrm{S}$ trending segment located near 174 E). The main $\mathrm{N}-\mathrm{S}$ segment is morphologically similar to other medium-rate oceanic ridges, whereas the other segments have rougher morphologies which have been severely disturbed by a triple junction at $16^{\circ} 45^{\prime} \mathrm{S}$ and several instability features such as overlapping spreading centres (OSCs) and propagating rifts. The spreading rate seems to diminish from $7.8 \mathrm{~cm} / \mathrm{yr}$ near $20^{\circ} \mathrm{S}$ to $4.6 \mathrm{~cm} / \mathrm{yr}$ near $18^{\circ} \mathrm{S}$. Mineralogical, petrological and geochemical data were obtained on 24 new stations located along all the four segments. The petrogenesis of the basalts collected is essentially controlled by low-pressure crystal fractionation of plagioclase \pm olivine \pm clinopyroxene (plagioclase > olivine > clinopyroxene) with 52% of the NFB basalts reaching the four-phase cotectic. Locally, some magma mixing occurs, but this is limited to magma batches of closely related composition, as might be expected to occur inside a magma reservoir. The $\mathrm{N}-\mathrm{S}$ segment, which, since $3 \mathrm{~m} . \mathrm{y}$., is the only steady-state segment, is also petrologically and geochemically very comparable to other medium-rate oceanic spreading centres, producing moderately evolved LILE and LREEdepleted N-MORB. In contrast, the three other segments produce basalts of much more variable petrology and geochemistry characterized by LILE and slightly LREE-enriched magmas of back-arc basin basalt (BABB) affinity (but not as enriched as, for example, the Mariana BABB); MORB is, however, also found on the N160, N15 and 174E segments. Diagrams using Ba, $\mathrm{Rb}, \mathrm{K} / \mathrm{P}$ and $(\mathrm{K} / \mathrm{Ti})_{\mathrm{N}}$ (normalized to the chondrites) plotted against latitude clearly show along-strike variations. Beneath the recently formed segments, the mantle source is heterogeneous, and locally has some BABB affinities, whereas beneath the more steady-state N-S segment the magma source is more homogeneous, being generally depleted in LILE and REE as is the case for classical N-MORB mantle sources. Simple evolution from an early stage of BABB production to MORB described in the Law basin and proposed for the NFB does not seem to occur. Present-day activity still produces large amounts of BABB along the less-stable and more recently created segments, and MORB was produced in the earlier stages of the development of the NEB.

Introduction

Located in a back-arc environment, the North Fiji Basin (hereafter, NFB) spreading centre is

[^0]probably the largest if not the oldest active backarc basin on earth. Early work (Chase, 1971; Karig, 1971, 1974) explains its formation by active spreading (Fig.1). Subsequent geomagnetic, heat flow, seismic reflection, refraction and bathymetric surveys confirmed the present activity of the NFB and roughly located its main spreading areas (Ma-
(C) 1991 - Elsevier Science Publishers B.V.

Fig.1. Geodynamic features of the Southwest Pacific. Active subduction zones dipping towards the continent: $T=$ Tonga; $K=$ Kermadec. Active subduction zones dipping towards the ocean: $N B=$ New Britain; $S=$ Solomon; $N H=$ New Hébrides. Paleosubduction zones: $N G=$ New-Guinea; $O M=$ West Melanesia; $N S=$ North Solomon; $V=$ Vitiaz; $P=$ Pocklington. Active marginal basins (grey stipple): $M=$ Manus; $W=$ Woodlark; $N F B=$ North Fiji; $L=$ Lau; $L H=$ Le Havre. Inactive marginal basins are shown with coarse stippling. The box delineates the area of Fig.2.
lahoff et al., 1982; Larue et al., 1982; Brocher, 1985; Maillet et al., 1986). However, samples from this spreading centre were hitherto almost nonexistent except from north of $16^{\circ} \mathrm{S}$ (Aggrey et al., 1988; Sinton et al., 1991).

Eissen et al. (1990) have published a short note dealing with petrological along-strike variations in the NFB spreading centre between 16 and $20^{\circ} \mathrm{S}$, and this paper presents some general results obtained on "zero-age" volcanic rocks collected on or close to the NFB spreading centre between $16^{\circ} 18^{\prime}$ S and $21^{\circ} 26^{\prime} \mathrm{S}$ during the SEAPSO Leg 3 cruise (Auzende et al., 1986, 1988a) and the subsequent KAIYO 87 (Auzende et al., 1988b) and KAIYO 88 (Ruellan et al., 1989) cruises. The mineralogy, petrology and geochemistry of the samples are discussed, with a special emphasis on the along-strike variations. In addition we will compare these basalts with samples from other

Pacific back-arc basins, and discuss their petrogenesis.

Geological setting

Previous work

The opening of the NFB results from the break up of the old Vitiaz lineament (Fig.1). Rapidly changing stress regimes within the Southwest Pa cific approximately $12 \mathrm{~m} . \mathrm{y}$. ago led to the reversal of the subduction polarity along the Vitiaz-New Hebrides Island Arc. As a consequence, the NFB back-arc spreading began between 12 and 8 m.y., and this was followed by several reorganizations (Falvey, 1978; Kroenke, 1984; Brocher, 1985; Auzende et al., 1988c; Pelletier et al., 1988; Charvis and Pelletier, 1989). The presently active spreading centre was identified by roughly $\mathrm{N}-\mathrm{S}$ trending

magnetic anomalies (Chase, 1971; Cherkis, 1980; Malahoff et al., 1982).
The NFB spreading centre was located precisely between 20° and 21° S near $173^{\circ} 20^{\prime} \mathrm{E}$ using the bathymetric and geomagnetic survey carried out during EVA 12 cruise of R.V. Coriolis (Maillet et al., 1986, 1989). During the SEAPSO Leg 3 cruise of R.V. Jean Charcot, the ridge location was defined between $16^{\circ} 18^{\prime} \mathrm{S}$ and $20^{\circ} 10^{\prime} \mathrm{S}$ and two precise full-coverage Seabeam maps (30×10 miles) were completed near $18^{\circ} 25^{\prime} \mathrm{S}$ and $20^{\circ} 05^{\prime} \mathrm{S}$ (Auzende et al., 1986, 1988a). Ten bottom water, dredge and deep-tow stations along the active ridge were also surveyed during this cruise. The KAIYO 87 cruise completed this first detailed survey. A full Seabeam mapping of the axis was carried out between $16^{\circ} 30^{\prime} \mathrm{S}$ and $18^{\circ} 10^{\prime} \mathrm{S}$, accompanied by water and hard rock sampling (Auzende et al., 1988b). Detailed photo and video work near the sea bottom
around a newly discovered active hydrothermal site near $17^{\circ} \mathrm{S}$ was also conducted. The subsequent KAIYO 88 cruise was mainly devoted to the area south of $21^{\circ} \mathrm{S}$, where Seabeam mapping of the axis and sampling were conducted (Ruellan et al., 1989). This southernmost segment completes the junction between the spreading system of the NFB and the subduction zone of the southern New Hebrides Trench (Fig.2) (Maillet et al., 1989).

Morphology of the NFB spreading ridge

Between $16^{\circ} \mathrm{S}$ and $22^{\circ} \mathrm{S}$, the roughly N-S oriented presently active spreading system was created approximately $3 \mathrm{~m} . \mathrm{y}$. ago, with a local reorganization around 1 m.y. ago (Auzende et al., 1988a,c; Tanahashi et al., this issue). It may be divided into four segments displaying different structural orien-

Fig.2. North Fiji Basin map with sample locations used in this study. Black diamond=GEOTRANSIT (GT) cruise; dots=SEAPSO cruise; black squares $=$ KAIYO 87 cruise; black triangles $=$ KAIYO 88 cruise. Data from the literature: white triangles = KANA KEOKI 1982 tripartite cruise (T13 to T21, from Sinton et al., 1991). F.Z. $=$ fracture zone. Dashed lines = spreading centres. Arrow at the tip of a spreading centre indicates a propagating rift. Areas in less than 2000 m of water are shown in grey stipple. The active New Hebrides subduction zone is shown. Dashed lines with white triangles are paleo-subduction zones.
tations and morphologies. From north to south, they are as follows (Fig.2):
(1) A N160 segment between ca. $15^{\circ} \mathrm{S}$ and $16^{\circ} 40^{\prime} \mathrm{S}$. This segment is marked by a complex cross section, with high scarps, alternation of ridges and grabens, and at least one overlapping spreading centre (OSC) near $16^{\circ} 20^{\prime} \mathrm{S}$. The spreading axis is situated in a deep asymmetrical rift (Kroenke and Eade, 1991) rather than on top of a wide ridge (Lafoy, 1989).
(2) A N15 segment between $16^{\circ} 50^{\prime} \mathrm{S}$ and $18^{\circ} 20^{\prime} \mathrm{S}$. The spreading axis is situated on a small, 10 km wide symmetrical ridge, but is frequently offset by non-transform offsets or by OSCs (e.g. near $17^{\circ} 16^{\prime} \mathrm{S}, 17^{\circ} 48^{\prime} \mathrm{S}$ and $17^{\circ} 52^{\prime} \mathrm{S}$). Both the N160 and N15 segments are marked by a sharp decrease in the water depth towards $16^{\circ} 45^{\prime} \mathrm{S}$. Here, the two spreading ridges and the westernmost part of the North Fiji Fracture Zone meet at a triple junction (Lafoy et al., 1987; Lafoy, 1989; Tanahashi et al., this issue) (Fig.2).
(3) $A N-S$ segment between $18^{\circ} 10^{\prime} S$ and ca.21 S. Compared to the other segments, the morphology of this segment is relatively flat, the axis being situated on a $7-8 \mathrm{~km}$ wide and $200-400 \mathrm{~m}$ high ridge. Very few offsets are observed and only one OSC occurs, near $19^{\circ} 50^{\prime} \mathrm{S}$. The morphology of this segment is very similar to that observed along the East Pacific Rise near $13^{\circ} \mathrm{N}$ (Gente, 1987).
(4) A $174 E$ segment, oriented N5-N15 between $20^{\circ} 40^{\prime} S$ and $21^{\circ} 30^{\prime} S$, and offset eastwards along the $174^{\circ} 10^{\prime} E$ meridian. Although highly variable, the morphology of this segment often corresponds to a wide dome bounded by two elongate deep troughs.

The relative instability of the NFB, which has known several reorganizations in less than 12 m.y., is marked by the presence of several propagating rifts (Hey, 1977), which are, from north to south:
(1) The northernmost part of the N160 segment, propagating northward (Kroenke and Eade, 1991).
(2) The southernmost part of the N15 segment, propagating southward (Lafoy, 1989), whereas the northernmost part of the $\mathrm{N}-\mathrm{S}$ segment is dying.
(3) The southernmost part of the $\mathrm{N}-\mathrm{S}$ segment, propagating southward, whereas the northernmost part of the 174 E segment is dying (Maillet et al., 1989).

Geomagnetic data enable the calculation of a spreading rate of $7.8 \mathrm{~cm} / \mathrm{yr}$ at $20^{\circ} \mathrm{S}$ for the period represented by magnetic anomalies 1 and 2 A (Maillet et al., 1986), $5.2 \mathrm{~cm} / \mathrm{yr}$ at $18^{\circ} 10^{\prime} \mathrm{S}$ (Auzende et al., 1988a) and $4.6 \mathrm{~cm} / \mathrm{yr}$ along the N15 segment for anomalies 1 and J (Lafoy, 1989). Thus, the spreading rate seems to decrease significantly from $21^{\circ} \mathrm{S}$ towards the $16^{\circ} 45^{\prime} \mathrm{S}$ triple junction.
In summary, the NFB is a large, old, structurally mature back-arc basin. Its long (ca. 12 m.y.) and complex development is probably the result of unstable regional stress regimes.

Sample preparation and analytical procedure

The hard rock recovery from the 24 new sampling sites (Fig.2, Table 1) was highly variable (ranging from less than 1 kg to more than 200 kg depending on the success of the sampling technique), these techniques include conventional dredging during the SEAPSO Leg 3 cruise and chain-bag dredging or use of small dredges attached to the deep tow during the KAIYO 87 and 88 cruises. Table 1 sumarizes the sampling locations, briefly describes the structural environment of the sampling sites, and the relative recovery. When enough material was recovered, eight to twelve samples were selected aboard the ship as the representative set of each site depending on the macroscopic differences observed. One hundred and twenty four samples were thus selected, photographed and described (Table 2), and all the subsequent studies were carried out on these samples. From each of them, at least one polished thin section was made for petrographic and microprobe analysis. Model analyses were obtained, with at least 1000 point counting, on six thin sections (Table 2), using internally consistent definitions of phenocrysts and microphenocrysts based not only on the size of the mineral grains, but also on texture, shapes, and intergrowths of the coexisting phases as described by Bryan (1983) and already used in other petrological studies (Staudigel and Bryan, 1981; Eissen et al., 1989). All the other modes given in Table 2 indicate occurrence of the different mineral phases and microscopically estimated modal contents. For a volume percentage of total phenocrysts and microphenocrysts, lavas
are defined as aphyric, sub-aphyric, moderately phyric, phyric and highly phyric as follows: of $<1 \%$, between 1 and 5%, between 5 and 15%, between 15 and 25%, and $>25 \%$ respectively. Each sample was crushed in an agate mortar for bulk rock geochemical analysis (except sample GT 104, which is only made up of a few glass chips). Major and trace element analyses were performed by atomic absorption spectrometry at the Université de Bretagne Occidentale at Brest by Joseph Cotten. Rare earth element analyses for eight samples were obtained by ICP at the Geological Survey of Japan at Tsukuba. Microprobe analyses were made using the fully automated CAMEBAX microprobe at the IFREMER Centre at Brest. Glasses were analyzed using hand-picked glass chips from 89 samples and mounted on 25 -hole brass supports containing one reference glass. Individual minerals were analyzed on polished thin sections from 56 selected samples. We used the usual three-step procedure for silicate analysis: (1) $\mathrm{Fe}, \mathrm{Na}, \mathrm{Si}$ and K , (2) $\mathrm{Mn}, \mathrm{Mg}, \mathrm{Al}$ and Ca , and (3) Cr and Ti (the peak and background counting times was 6 s and the filament current 15 kV). The accuracy was controlled during a single probe session or from one session to another, by analyzing homogeneous reference minerals or USNM reference glasses numbers 111240 (VG-2) and 113498 (VG-A99). Some complementary mineral analyses was performed on the JEOL 744 superprobe at the Geological Survey of Japan at Tsukuba.

Petrology of the lavas

The rocks collected along the NFB spreading centre present a typical basaltic plagioclase \pm olivine \pm clinopyroxene (\pm spinel) mineralogy. Plagioclase is the dominant phase, and occurs either as phenocrysts or microphenocrysts. Olivine is frequently associated with it, but at a much lower volume percent; moreover, phyric olivine basalt is completely absent from this rock collection. Clinopyroxene rarely appears as phenocrysts, but is frequently intimately associated with plagioclase and sometimes olivine in skeletal microphenocrysts or glomerocrysts. Spinels are scarce, and are generally associated with plagioclase or
olivine phenocrysts or xenocrysts in the most phyric lavas.

These dredged basalts can be separated into different petrochemical types on the basis of their mineralogical assemblage, their modal content, and their geochemistry. However, as the observed variations differs from one segment to another, we will describe these samples according to their structural location, from the northern segment to the southernmost one. The various types probably represent individual magma batches, much of the observed scattering within each type being explained by low-pressure fractionation, with some occasional magma mixing.

N160 segment

This spreading centre has been sampled only near its southern tip at four stations (S5, K29, K17 and K5 in Fig.2). (Its northern part was surveyed during other cruises (Aggrey et al., 1988; Sinton et al., 1991; Kroenke and Eade, 1991).) The three most northerly stations (S5, K29 and K17) were probably not directly on the active volcanic zone as no very fresh basalts with shining glass were recovered. Indeed, bulk rock analyses (Table 3a) always show a positive $\mathrm{H}_{2} \mathrm{O}^{+}$content (between 0.02 and 0.58%), indicating incipient alteration. This weak alteration was confirmed by the observation in thin sections of palagonite and $\mathrm{Fe}-\mathrm{Mn}$ hydroxides along cracks and in vesicles, even in cases where minerals such as olivine were still not transformed. The two most southerly stations (K17 and K5) are in the triple junction area, which probably explains their peculiar petrology, with the presence of highly phyric lavas. Four types can be recognized in these samples:

Type 1-I: Highly phyric plagioclase+ olivine \pm clinopyroxene basalts from station K5. These lavas exhibit a relatively unevolved bulk rock, with low $\mathrm{FeO}^{*} / \mathrm{MgO}(0.85 \pm 0.03)$ and $\mathrm{TiO}_{2} \% \quad(0.80 \pm 0.10)$, relatively high Cr $(246 \pm 39 \mathrm{ppm})$ and $\mathrm{Ni}(113 \pm 11 \mathrm{ppm})$ contents (Table 3a), and glass (Table 4a) compositions.

Type l-II: Highly phyric or sub-aphyric plagio-clase-olivine-clinopyroxene basalts from station K17. Despite a large difference in crystals, the two lavas exhibit a moderately evolved bulk rock, with

TABLE 1
Summary of the 24 sampling locations used in this study with: abridged station number, position, water depth, description of the structure of the sampling sites, and description of the recovered samples. SPS $3=$ SEAPSO 3 cruise; K $87=$ KAIYO 87 cruise; K $88=$ KAIYO 88 cruise; GT104 $=$ GEOTRANSIT cruise; $S T=$ station; $D=$ dredge; $D T=$ deep tow. The abridged station number given in station number column will hereafter be used

1	Station Number	\mid Iatitude \|	Longitude 1 W	Depth				Recovery
1 N160 segment :								
N15 segment								

TABLE 1 (continued)

low $\mathrm{FeO}^{*} / \mathrm{MgO}(1.26 \pm 0.03)$ and Ni content ($72 \pm 1 \mathrm{ppm}$) (Table 3a) and glass (Table 4a) compositions. The lower $\mathrm{Cr}(140 \mathrm{ppm})$ and $\mathrm{TiO}_{2} \%$ (1.27) of the most phyric basalt is the result of the plagioclase accumulation of a magma of similar composition to sample K17-1-2 (Table 3a).

Type 1-III: Moderately phyric to phyric basalts from site S5 with plagioclase, olivine phenocrysts
and rare clinopyroxene microphenocrysts. These lavas are characterized by the occasional occurrence of clinopyroxene. They comprise a moderately evolved bulk rock, with low $\mathrm{FeO} / \mathrm{MgO}$ (1.05 ± 0.05) and $\mathrm{TiO}_{2} \%$ (1.58 ± 0.03) (Table 3a), and glass (Table 4a) compositions, despite relatively high $\mathrm{Cr}(286 \pm 37 \mathrm{ppm})$, $\mathrm{Ni}(117 \pm 6 \mathrm{ppm})$ and Ba ($57 \pm 21 \mathrm{ppm}$) contents.

TABLE 2
Summary of the sample morphology, mineralogy and modal content; lava types as distinguished in the text. Sample morphology: pillow=pillow lava; crust = lava crust; massive $=$ pillow interior or massive flow; protub. $=$ large pillow protuberance. Mineralogy: phenocrysts = more or less equidimensional crystals, euhedral to xenomorphic with a length of $>500 \mu \mathrm{~m}$; microphenocrysts $=$ small euhedral to skeletal crystals with a length of between 100 and $500 \mu \mathrm{~m} ; P L=$ plagioclase; $O L=$ olivine; $C P X=$

15t. 5		Morph-	PHEN	NOCRY	YSTS	MICRO	PHENO	OCRYSTS				Lava
$1 \mathrm{Nb}, \mathrm{N}$	Nb .	1093	PL	OL	CPX	PL	OL	CPX		1 t	Mode	Type
1 N160 segment :												
550		pillow 1	PL			PL	OL			+	MPH	1-IIJ
550	02	pillow	14	4		14	1	1	+	+	PH	1-1II1
550	03	pillow	P1	OL		PL	OL	(CPX)		+	MPH	1-TII
S5 0	04	pillow 1	3	1		11	1	1	+		MPH	1-IIII
s5 0	05	pillow	PL	OL		PL	02	CPX	11	1	MPH	1-III\|
S5 0	06	pillow \|	P1	OL		PL	OL		11	+1	MPH	1-III!
550	07	pillow 1	PL	OL		PL	OL		11	+1	MPH !	1-III!
550	08	pillow	P1	OL		PL	OL		11		MPH	1-III।
[K29	2	pillow \|	(PL)			PL	OL	cpx	11	11	MPH !	1-Iv
(K29	3	pillow	PL	OL		PL	OL	(CPX)	1	$+1$	MPH	1-IV
\|K29	4	pillow				PL	OL	CPX	1	1	SA 1	1-IV
\|K29	5	pillow	(PL)			PL	OL	CPX	1	+	MPH	1-IV
\| 1229	8	pillow	(PL)			1 PL	OL	CPX	11	11	MPH	1-IV
\|K29 1	11	pillow				PL	OL	CPX	1	$+1$	SA	1-IV
\|K17	1	pillow	PL	OL	(CPX)	1 PL	OL	CPX	+	1	HPH	1-II
11217	2	pillow 1				1 PL	OL	(CPX)	+	$1+$	SA	2-1I
1 K5	1	pillow	PI	OL		1 PL	OL	CPX	$1+$		HPH	1-I
K5	2	pillow	PL	OL		1 (PL)	(02)		+		HPH	1-I
(N15 segment :												
1 K4	1	crust				1 (PL)					A !	2-IV
1 K 4	2	crust				((PL)			1.		${ }^{\text {A }}$	2-IV
1 K4	3	crust	(PL)			1 PL			1		SA 1	2-IV
K4	4	crust				1 PL					SA 1	2-IV
K4	5	pillow		(02)		1 PL	OL	CPX	1	11	SA 1	2-IV
K4	6	pillew				1 PL	(0L)		1		SA 1	2-IV
K4	7	pillow				PL			1		${ }^{\text {A }}$	2-IV
1 KA	8	pillow				PL			1	11	A 1	2-IV
$1 \mathrm{K4}$	9	pillow				1 PL			1	1	A !	$2-I V$
$1 \mathrm{K4A}$	3	crust				((PL)			1	\| H	A 1	-
1 KAA	4	crust				1 (PL)			1	1 H	A 1	-
K4a	7	pillow	PL			1 (PL)			1	\| H	SA 1	-
$1 \mathrm{K4B}$	1	crust 1				1 (PL)			1	$1+$	A	-
$1 \mathrm{K4B}$	2	crust				1 PL			1	1H1	SA	- 1
$\mathrm{l}^{1} \mathrm{~K}$	1	crust	(PL)			1 PL	OL	CPX	1	11	SA	2-VI
\| K 8	2	crust	PL			PL	OL	CPX	1	11	SA 1	2-VI 1
1 KB	3	crust	PL			PL	OL	CPX	1	1	5A	2-VI 1
$1 \mathrm{K8}$	4	crust 1	PL			1 PL	OL	CPX	1	11	SA 1	$2-v I \mid$
$1 \mathrm{K8}$	5	crust !	PL		(CPX)	1 PL	OL	CPX	1	11	5A 1	2-vili
1 KB	6	crust 1	PL	(0L)	(CPX)	1 PL	OL	CPX	1	1	SA	2-VII\|
1 Kg	1	pillow	FL	OL		1 PL	OL	CPX	1	$1+$	MPH	2-III\|
\| K9	2	pillow 1	PL	OL	CPX	1 PL	02	CPX	1	11	MPH	2-III\|
$1 \mathrm{K9}$	3	pillow	PI		(CPX) 1	1 PL	OL	CPX	1	11	SA	2-III1
1 K 9	4	pillow 1	PL	OL		1 PL	OL	CPX	1	1	MPH	2-III
- K 9	5	pillow 1				1 PL	OL	CPX	1	11	SA	2-VI
$1 \mathrm{K9}$	6	pillow 1	(12)	(0L)		PL	OL	CPX	1	$!$	MPH	2-VI
\| K 12	1	crust 1	PL			PL	OL^{1}		1	,	MPH	2-I
1 K 12	2	crust	PL			PL	Oi,		!	1 *	MFH	2-I
1 K 12	3	crust 1	PL	OL		PL	OL		1	$1+$	MP\% 1	2-I
1 K 12	4	crust il	PL			PL	OL		I	$1+$	MPH	2-I
1 k 12	5	crust	PL			PI	OL		$!$	$1+1$	MPH	2-I
(K12	6	crust	(FL.)			PL	OL		1	$1+$	MPH	2-I
\| K12	7	crust	PL			PL	OL		1	!	MPH	2-I
1 K 12	8	crust	(PL)			PL	OL		1	11	MPH	2-I
$1 \mathrm{K6m}$	1	pillow 1				1 PL	OL		1	$1+1$	1 SA 1	2-IIII
1 kga	A	pillow 1	(PL)	(02)		PL	OL		1	$1+1$	SA	2-IIII
$1 \mathrm{K6A}$	3	pillow	PL	OL		PL	OL		1	$1+1$	1 SA	2-III\|
$1 \mathrm{K6}$	1	fillow 1	PL	02		PL	O2	CPX	1	11	SA	2-IIII
1 K 6	2	horn 1	PL	OL		PL.	OL	CPX	1	11	SA	2-III\|
1 K 6		piliow	PL	(0L)		PL	OL	CPX	1	11	SA 1	2-III\|
1 K 6	4	pillow 1	PL	(01)		1 PI	OL	CPX	1	!	SA	2-III!
1 K6	5	pillow	PL	OL		PL	0 L	CPX	1	11	1 SA !	2-III
\| K6	6	pillow 1	PL	OL		1 PL	OL	CPX	1	11	SA	2-III
153	01	crust	22	1	0	11	0	1	$1+$	1	Pr !	2-v
153	02	pillow 1	PL	OL		1 PL	OL	(CPX)	1	1	MPA	2-V
153	03	pillow	PL	OL		PI	OL		1	1	MPH	2-11
153	04	pillow	PL	OL		PL	OL	(CPX)	1	$1+$	MPH	2-II
153	05	pillow 1	PL	OL		PL	OL		1	1	PH	2-II
153	06	pillow	PL	OL		PL	OL		+		PH	2-V
1 S3	07	pillow 1	PL	OL	CPX	PL	0 L	cPX	1	1	PH 1	2-V
1530	08	pillow	P1	OL		PL	OL	CPX	1	$1+1$	MPH	2-V
153	09	pillow 1	PL	OL		PL	OL		+	+	PH	2-II
15310	10	pillow 1	PL	OL	CPX 1	1 PL	OL	CPX	1	11	PH	2-v \|

TABLE 2 (continued)
clinopyroxene (between parentheses $=$ low occurrence); $S P=$ spinels; $A l t=$ alteration; $+=$ traces; $H=$ hydrothermal alteration. The six modal analyses were obtained by counting at least 1000 points (mineral abundances are given in volume percent); $t=$ traces. All other mineral occurrences are estimated. Mode: $A=$ aphyric lava (less than 1% of crystals); $S A=$ sub-aphyric lava ($1 \%<$ crystals $<5 \%$); MPH=moderately phyric lava ($5 \%<$ crystals $<15 \%$); $P H=$ phyric lava ($15 \%<$ crystals $<25 \%$); $H P H=$ highly phyric lava ($25 \%<$ crystals). Lava types are discussed in the text

ISt. Sa. Morph- I		PHENOCRYSTS				MICROPHENOCRYSTS				$\text { SPlalt }^{\text {! }}$	$\begin{array}{r} \text { ! } \\ \text { Mode } \end{array}$	$\begin{aligned} & \text { Lava } \\ & \text { Type } \end{aligned}$
1 Nb . Nb.	logy	PL	OL	CPX	1	PL	OL	CPX				
$\mathrm{N}-\mathrm{S}$ segment :												
\| 521	massivel	PL	OL	CPX	1	PL	OL	CPX	1	$1+$	MPH	3-IIII
\| S2 2	crust 1	p L	OL		I	PL	OL	CPX	1	$1+$	SA 1	3-III!
\| 5401	crust	PL	(0L)		1	PL	OL		1	11	SA	3-II
\| 5402	pillow	PL			1	PL	OL		1	11	SA	3-II
15403	pillow	PL			1	PL	OL		1	1 I	SA 1	3-II
15404	pillow 1	1	0	0	1	3	1	0	1	11	SA	3-II
I 5405	crust	(PL)			1	PL	OL		1	11	SA	3-II 1
I 5406	crust	PL			1	PL	OL		1		SA	3-II 1
15407	crust	PL			1	PL	OL		1	,	SA	3-1I 1
1 S4 08	crust	PL			,	PL	OL		1	,	SA 1	3-II 1
15409	crust	(2L)			1	PL	OL		1	,	SA 1	3-II 1
1 5410	crust	(PL)			,	PL	OL		1	11	SA 1	3-II
$1 \mathrm{Kl4} 1$	pillow				1	PL	OL		1	11	SA 1	3-II 1
1 K14 2	pillow 1				1	PL	OL		1	11	SA 1	3-II
1 K 145	crust				1	PL	OL		1	1	SA 1	3-II 1
1 K 146	horn				1	(PL)			1	11	A 1	3-IV 1
\|K14 7	horn]	PL	OL		!	1	SA 1	3-IT 1
$1 \mathrm{K14} 8$	crust	(PL)			1	PL	OL		1	11	SA 1	3-II
1 K 1410	crust				I	(PL)			1	11	A 1	3-IV 1
1 K 152	pillow 1				1	PL	OL		1	11	SA 1	3-III1
1 K 155	plllow				1	PL_{2}	OL		1	11	SA 1	3-III)
1 K 156	pillow				I	PL	OL		\|	11	SA 1	3-IIII
\|K15 7	pillow		(0L)		1	PL	OL	(CPX)	1	11	SA 1	3-IIII
$1 \mathrm{K15} 8$	pillow				1	PL	OL		1	11	SA 1	3-IIII
1K15 9	pillow				1	PL	OL		1	1	SA	3-IIII
1 K 1510	pillow				1	pl	OL		1	,	SA	3-II 1
1 K 1513	horn	(PL)			1	PL	OL		1	,	SA	3-1III
ISDT 01	protub.				1	PL	(0L)	(CPX)	1	11	A !	3-II 1
ISDT 02	protub.	PL	OL		1	PL	OL	(cEx)	1	11	SA 1	3-II
ISDT 03	pillow	PL	OL		1	PL	OL	(CPX)	1	11	SA 1	3-II 1
\|SDT 04	pillow				1	(PL)		(CPX)	1	11	A 1	3-IIII
1SDT 05	pillow	PL	OL		1	PL	OL	CPX	1	11	sa 1	3-II 1
1SDT 06	pillaw	PL	OL		1	PL	OL	(CPX)	1	11	SA 1	3-II 1
1SOT 07	pillow	PL	OL,		1	PL	OL	CPX	1	1	SA 1	3-II I
JSDT OB	massive	PL	OL		1	PL	OL	(CPX)	1	11	SA	3-II I
ISOT 09	protub.	PL	OL		1	PL	OL	(CPX)	1	11	SA	3-II 1
ISOT 10	pillow	PL	OL		1	.PL	OL	(CPX)	1	,	SA 1	3-rI 1
1 S1 01	pillow	PL			1	PL	OL	(CPX)	1	,	SA 1	3-II 1
15102	crust	PL	OL		1	PL	OL	CPX	1	,	SA 1	3-II 1
\| 5103	crust	τ	t	t	1	2	1	0	1	11	sa 1	3-II 1
1 SI 04	crust	PL			I	2 L	OL	CPX	1	11	SA	3-II
\| S1 05	pillow \|	PL			1	PL	Or.	CPX	1	11	SA	3-II \|
\| Sl 06	crust	PL	OL		1	PL	OL	CPX	1	1 I	SA 1	3-II
\| S1 07	protub.l	1	0	0	1	1	c	-	1	,	SA 1	3-II
\| S1 08	protub. 1	PL			1	PL	OL	CPX	1	I	SA 1	3-II 1
, S109	pillow 1				1	PL	OL	CPX	1	1	SA	3-II
\| S1 10	pillow	PL		CPX	1	PL	OL	CPX	1	11	SA	3-II
\| 5111	pillow I	RL		CPX	,	PL	OL	CPX	1	11	5A	3-11
\| GT104	glass				1	PL	OL	CPX	1	1 i	SA 1	3-1
\| 174^{*} East segment : ${ }^{\text {a }}$ (\|												
										---1---1	-	-
1 K 211	pillow		OL		1	PL	OL		1	1 I	SA 1	4-I
1 K 212	pillow	PL	OL		1	PL	OL		1	1	SA 1	4-I 1
1 k 216	plllow I	PL			,	FL			1	1	SA 1	4-I 1
1 K 218	pillow		OL		1	PL	OL		1	,	SA	4-I
1K21 27	pillow 1				1	PL	OL		1	1	SA 1	4-I
1 K 2128	pillow 1		OL		1	PL	OL		1	1	SA 1	4-I
\|K21 29	pillow 1		OL		1	PL	OL		1		SA	4-I 1
\|K23 14	pillow 1	PL	OL	cex	1	RL	(0L)	CPX	1	$1+$	MPH	4-II 1
1 K 2315	pillow	PL	OL		1	PL	OL	CPX	1	,	MPH	4-II 1
$1 \mathrm{K2316}$	pillow I	PL	OL		1	PL	OL		1		SA 1	4-II 1
1 K 2317	crust	PL	OL		1	PL	OL		1	$1+$	SA 1	4-II 1
1K23 18	crust I	PL	OL.		1	PL	OL		1	,	SA 1	4-Ir \dagger
\| K 2319	pillow 1	PL	OL		1	PL	OL		1	,	SA 1	4-II
1 K 2320	pillow I	PL	OL		1	Pt.	OL	CPX	1	,	MPH	4-II
1 K 22 I	pillow \|	(PL)			1	PL	(0L)	CPX	1	$1+$	M2H	4-IV
1 K 222	pillow 1	PL		CPX	1	Pi	OL	CPX	1	$1+$	MPH	4-IV
1k22 3	pillow 1	PL	OL		1	PL	(0L)	CPX	1	$1+1$	SA 1	4-IV I
1K220T2	pillow 1				1	PL		cpx	1	$1+1$	SA	4-IIII

TABLE 3a
Bulk rock analyses for the N160 segment. The analyst for Tables 3a-d was J. Cotten, Université de Bretagne Occidentale, Brest. In all tables, FeO* $=$ total iron expressed as $\mathrm{FeO}\left(=0.9 \times \mathrm{Fe}_{2} \mathrm{O}_{3}\right)$

Station	S5	55	S5	s5	S5	S5	S5	ss	K29	K29	K29	K29	K29	K29	K17	K17	K5	K5
Sample	01	02	03	04	05	06	07	08	2	3	4	5	8	11	1	2	1	2
Lava type	1-III	1-IV	1-IV	1-IV	1-IV	1-IV	1-IV	1-II	1-II	1-I	1-I							
Mode	MPH	PH	MPH	SA	MPH	MPH	SA	HPH	SA	HPH	HPH							
SHO_{2}	49.10	49.80	50.00	50.00	50.00	50.00	49.80	50.10	49.50	49.30	50.10	50.15	49.50	49.60	49.30	49.80	48.80	49.50
TiO2	1.61	1.59	1.63	1.54	1.61	1.58	1.53	1.57	1.87	1.80	1.78	1.77	1.76	1.74	1.27	1.47	0.69	0.90
$\mathrm{Al}_{2} \mathrm{O}_{3}$	16.02	16.02	16.29	15.92	15.99	16.09	16.00	15.78	14.71	15.65	14.86	14.73	14.52	14.54	18.48	14.81	23.96	20.20
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	8.98	8.79	8.65	9.84	9.00	9.04	8.72	9.62	10.49	10.83	10.05	10.43	10.63	10.85	8.96	10.62	5.00	7.17
MnO	0.15	0.15	0.15	0.17	0.16	0.15	0.14	0.17	0.20	0.18	0.17	0.17	0.18	0.18	0.15	0.18	0.09	0.14
MgO	7.43	7.54	7.09	7.69	7.97	7.49	7.78	7.64	7.27	7.08	7.37	7.24	7.18	7.00	6.11	7.63	5.38	7.20
CaO	12.13	12.22	12.23	12.04	12.18	12.33	12.34	12.08	11.66	11.36	11.80	11.64	11.50	11.54	12.41	11.93	13.86	12.62
$\mathrm{Na}_{2} \mathrm{O}$	2.66	2.55	2.60	2.50	2.58	2.54	2.53	2.55	2.82	2.57	2.86	2.86	2.87	2.82	. 2.51	2.91	1.79	2.06
$\mathrm{K}_{2} \mathrm{O}$	0.31	0.36	0.31	0.29	0.39	0.40	0.34	0.42	0.26	0.28	0.22	0.29	0.33	0.37	0.19	0.11	0.06	0.08
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.20	0.20	0.20	0.20	0.20	0.05	0.05	0.10	0.10
$\mathrm{H}_{2} \mathrm{O}^{+}$	0.58	0.35	0.43	0.12	0.02	0.20	0.56	0.14	0.06	0.32	0.03	0.22	0.15	0.25	0.22	0.54	-0.22	-0.35
$\mathrm{H}_{2} \mathrm{O}^{-}$	0.41	0.27	0.41	0.19	0.15	0.15	0.43	0.21	0.11	0.21	0.11	0.12	0.12	0.17	0.07	0.05	0.08	0.12
Total	99.58	99.74	99.89	100.40	100.15	100.07	100.27	100.38	99.05	99.78	99.55	99.82	98.94	99.26	99.72	100.10	99.59	99.74
Feo*/Mgo	1.06	1.03	1.07	1.13	0.99	1.06	0.99	1.11	1.27	1.35	1.20	1.27	1.30	1.36	1.29	1.22	0.82	0.88
Rb	5.0	6.0	5.0	5.0	7.0	7.0	6.0	9.0	6.0	5.0	4.0	6.0	7.0	8.0	4.0	3.0	2.5	3.0
Sr	191	190	211	175	181	217	184	178	185	158	185	184	185	181	141	131	127	116
Ba	45	70	70	64	64	70	70	58	27	42	30	27	27	30	24	26	15	15
V	237	246	239	239	249	236	237	230	268	272	270	275	257	263	223	258	124	175
Cr	303	308	306	292	305	300	294	300	200	253	208	204	205	225	140	259	207	282
Co	46	46	43	41	43	44	46	45	41	42	40	41	39	40	36	43	23	33
Ni	119	128	120	104	114	116	118	114	84	100	71	76	70	92	73	71	101	124
Cu	71	71	69	68	70	73	68	70	72	61	60	70	76	70	65	94	50	67
zn	76	75	74	77	74	76	73	73	81	88	80	79	79	81	66	75	44	60

TABLE 3b
Bulk rock analyses for the N15 segment

station	k 4	K4	K4		K4	K4	K4		K9	${ }^{\text {44A }}$	K4N	$\times 4 \lambda$	K18	K4B	${ }^{8}$	${ }_{8}^{88}$	${ }_{38}$	${ }^{88}$	${ }_{5}^{\text {K8 }}$	${ }_{6}$	1	2	K_{3}	4	5	9	
Sample	2-IV	${ }_{2-1 V^{2}}$	2-1v	2-1v	2-15	$2-1 \mathrm{v}^{6}$	$2-\mathrm{IV}$	2-IV	2-Iv						2-vi	${ }^{2-\mathrm{VI}^{2}}$	${ }^{2-\mathrm{vr}}$	2-vi	${ }^{2-\mathrm{VII}}$	${ }^{2-\mathrm{VrI}}$	2-11	${ }_{2-11 \mathrm{I}}$	$2-11{ }^{3}$	2-111	${ }^{2-v 1}$	${ }^{2-\mathrm{VI}}$	
				SA	SA						\wedge	ss	A	s^				SA			MPH	${ }_{\text {MPH }}$				${ }_{\text {MPH }}$	
${ }^{1020}$	51.20	51.30 1.55	51.35	51.60	${ }^{50.50}$	51.20	51.40	50.90	51.50 1.55	${ }^{49.00}$	49.80	49.25	${ }_{51}^{51.30} 1$	${ }^{19} 1.60$	51.50	51.50	51.50	51.30	50.10	S0.15	50.35	50.50 1.52	51.00	50.75 1.41	${ }_{\substack{51.15 \\ 1.59}}^{12.55}$	51.00	
	${ }_{14.24}^{14.53}$	${ }_{14.27}^{1.55}$	${ }_{14.17}^{1.55}$	${ }_{14.27}^{1.51}$	14.50	11.57	${ }_{14.15}^{1.58}$	12:58	14.59	${ }_{16.55}^{1.85}$	15.90	${ }_{15.70}^{15}$	${ }_{11.63}^{14}$	${ }_{16.82}^{16.89}$	${ }_{13.78}^{1.47}$	13.92	${ }_{13} 138$	13.70	13.90	13.92	14.67	${ }_{11.78}$	11.24	14.44	${ }^{13.68}$	${ }_{13.66}$	
	11.20			. 22	10.80	${ }_{11} 14$. 07	ов	11.13	20	. 07	. 24		7.82	12.47				12.					11.	12.55	a	
迷	0.19	0.19	0.19	10	0,18		0.19	0.19	0.19	- ${ }_{8}^{0.20}$	${ }_{8}^{0.16}$		0.19	${ }^{0} 10.14$	${ }^{0} 8.21$	0.21	0.21	0.21	${ }^{0.20}$	0.20 6.76	0.2	${ }_{1}^{0.17}$	0.1	0.1	${ }_{6.38}{ }_{6}$	${ }_{6} \mathbf{0 . 2 1}$	
cai	${ }_{12.19}^{6.90}$	${ }_{11}{ }^{6.84}$	6.94	11.16	11.35	11.08	${ }_{11.06}$	11.21	11.03	10.64	10.69	10.65	10.60	10.16	11.05	10.98	10.78	10.85	11.06	11.03	${ }^{11.84}$	11.97	11.76	11.98	10.47	${ }^{10.53}$	
$\mathrm{Na} 20^{\mathrm{O}}$	2.90	2.92	2.91	2.88	2.90	2.89 0.18	2.87	2.88	${ }^{2.89} 8$	2.31 0.76	-	${ }_{\substack{2.88 \\ 0.78}}$	3.08	2.89	2.20	2.97	2.20	2.92		2.21	${ }_{0.13}$	${ }_{0.13}^{2.13}$	${ }_{0.12}^{2.81}$	${ }_{0.13}$	${ }_{0.26}^{2.97}$	${ }_{0}$	
${ }^{\text {k }}$	-17	0.12	${ }_{0}^{0.17}$	${ }_{0}$	0.10	0.10	-120	0.10	0.10	${ }_{0.35}$	0.35	0.35	0.20	0.40	0.10	0.12	0.12	0.12	0.10	0.10	0.10	0.10	0.1	0.10	0.12	. 12	
${ }^{\text {H2 }}$	-0.50	-0.51	. 17	0.73	-0.24	-0.43	-0.37	-0.43	16	0.47	. 09	0.68	. 44	0.33	-0.47	-0.44		1	${ }^{-0.56}$	${ }^{-0.50}$	-0.09	0.43	. 40		-0.47	57	
${ }_{\text {Total }}^{\text {H2O- }}$	${ }_{9}^{9.11}$	99.52	99.36	99.42	9.193	99.17	. 51	98.98	99.28	99.20	99.62	${ }_{0}^{0.25}$	99.40	99.02			${ }_{99} 9.53$	99.24		100.08		00.07	99.27	00,04	99.06	9.08	
80./mgo	1.43	46	1.42	1.40	1.34	1.41	1.37	1.43	1.42	0.99	0.89	1.11	1.48	0.87	1.62	1.65	1.63	1.61	1.65	1.65	1.32	1.29	1.18	1.32	1.73	1.72	
${ }_{\text {Rb }}^{\text {Rb }}$	1.5	4.5	5.0	5.0	4.0	5.0	5.0	5.0	5.0 128	26.0	17.0	${ }^{17.0}$	11.0	18.0	5.0	. 0	. 0	${ }^{\circ}$. 0	${ }^{0} 1$	1.0	2.5	. 5	4.0	. 0	\%	
${ }_{\substack{\text { Sr } \\ \text { Ba }}}$	${ }^{135}$	130	${ }^{126}$	125	+138	${ }_{30}^{129}$	${ }^{128}$	${ }_{30}$	128 40	${ }_{180}^{260}$	${ }_{199}^{260}$	192	118	${ }_{232}$	578	${ }_{33}$	${ }_{25}$	3	${ }_{25}$	${ }_{25}$	10	20	45		${ }^{26}$	49	
v	290	285	285	285	280	293	300	295	285	220	202	220	245	180	275	273	260	255	316	326	270	257	232	254	290	266	
cr	135	129	12	129	246	128	126	123	126	213	215	209	56	220	116	+16	206	108	3	2	9	80	18	62	15	116	
co	4	40			-38	40	${ }_{51}^{41}$	${ }_{5}^{43}$	$\begin{array}{r}41 \\ 5 \\ \hline\end{array}$	-32	157	32		$\begin{array}{r}36 \\ 150 \\ \hline\end{array}$	${ }^{6}$	16	1	7		23	9	50	${ }_{9}$	${ }_{9}$	16	${ }_{42}$	
${ }_{\text {N1 }}^{\text {N1 }}$		87	880	${ }_{86}^{99}$	98	82	82	${ }_{84}^{50}$	${ }^{83}$	159 5	157 57	${ }_{6} 14$	${ }_{78}$	53	88	81	${ }_{82}$	80	${ }_{78}$	${ }_{7}$	91	9	93	90	7	$\stackrel{42}{14}$	
2 n	${ }_{6}$	86	87	86	79	${ }_{86}$		86	${ }_{86}$			122	90					98	98	97	79	82	9	${ }_{80}$		96	
Stati	12	${ }_{1}$	${ }_{3}{ }^{2}$	K12		${ }_{6}$	K12	${ }_{812}$	${ }^{\mathrm{K} 6 \times}$	${ }_{2}$	${ }_{3} 6$			${ }_{3}$					3	53	53	S3	53 06	S3	${ }_{\text {cis }}^{53}$	S38	
Lova type	2-1	2-I	2-I	$2-1$	$2-\mathrm{I}$	2-1	2-1	$2-1$	2-17i	2-1II	2-11i	2-111	2-111	$2-\mathrm{HI}$	If		2-11i	v	-v	${ }^{2-11}$	2-11	${ }^{2-11}$	${ }_{\text {PH }}^{\text {II }}$	-v	-v	2-11	
mode	MPR	MP4	мен	NPH	MPh	MPH	нP\%	MPH		SA		SA						${ }_{\text {PH }}$	MPH		MPH						
SlO_{2}	50.00	43.50	${ }^{48} 80$	${ }^{48.00}$	49.10	49.60	49.75	${ }^{49.40}$		${ }_{\substack{51.30 \\ 1.22}}^{10}$	${ }_{\substack{51.15 \\ 1.23}}^{1}$	${ }_{\substack{51.50 \\ 1.39}}^{1}$	51.80	51.50	51.30	51.10 1.39	51.20	$\underset{\substack{50.50 \\ 1.68}}{1.80}$	$\xrightarrow{50.40} 1$	$\xrightarrow{50.00}$	50.10 1.20	19.70	50.00 1.09	50.20	50.60 1.68	49.60	. 6.6
${ }_{\text {A12 }}{ }_{\text {TH3 }}$	- $\begin{array}{r}0.95 \\ 17.38\end{array}$	14.95	$1{ }^{0.98}$	16.26	16.87	16.10	16.69	17.00	14.83	15.04	15.08	11.33	14.47	14.50	14.33	14.43	14.41	15.25	${ }^{15} 5.67$	17.27	16.20	17.45	17.73	15.70	14.59	17.21	15.5
Fe^{2}	8.7	15	9.30	9.62	9.04		9.20	9.04	10.54	-18	- ${ }^{1}$	coile	0.18	0.18	0.18	0	0.18	0.18	$\xrightarrow{11.33}$	8.85 0.15 0.15	9.22	8.88 0.15 0.15	8.34 0.14	${ }_{\substack{11.21}}^{12}$	12.29	8.93 0.15	. 18
Mgo	7.35	2.72	${ }_{7} .16$	${ }_{7} .23$	7.30	7.48	7.40	${ }^{7} 56$	7.48	7.47	7.17	7.51	7.60	7.58	7.52	2.13	7.64	6.50	${ }^{6.35}$	7.26	7.55	6.95	6.92	6.41	6.53	. 6.66	6.42
${ }_{\text {cao }}$	12.35	20.36	+1.94	12.10	ci	c.	12.08	c.	${ }_{\substack{11.12}}^{1.61}$	12.62	${ }_{2}$	2.41	12.38	12.39	${ }_{2}^{11.35}$		2.39	2.35	12.43	2.37	12.36	${ }_{2.28}$	2.31	2.34	2.39	${ }_{2.31}$	2.40
${ }^{2} 2{ }^{\circ}$	20,	0.17	0.1	0.16	0.13	0.15	0.13	0.11	0.55	0.51	0.51	0.10	${ }^{0.10}$	0.10	0.11	0.10	0.10	0.13	0.14	0.06	0.08	-122	0.	0.11	0.13 0.15	0.18	0.14
-	0.05	- $\begin{array}{r}0.20 \\ 20\end{array}$	${ }_{0}^{0.12}$	${ }^{0.10}$	0.10	0.12	0.10	${ }^{0} .08$	${ }^{0.30}$	-0.25	0.20	0.10	-0.08	-0.08	-0.08	- 12	- 0.10	${ }^{-0.10}$	-	-. 25	-. 0.36	-0.05	-0.05	0.08	- 130	${ }^{0.05}$	42
${ }_{\text {H2O }}$	\bigcirc	4.25	${ }_{0.36}$	0.62	0.28	0.27	0.20	0.12	0.34	0.20	0.18	0.11	. 12	214	0.13	0.12	. 14	0.10	. 1	0.12	0.07	0.09	0.04	0.09	0.18	0.12	0.11
total	99.07	49	98.5	98.58	98.66	99.	99.44	9	99.45	99.75	99.5	99			99.		100.25	99.6		100.06	99.62	9.	99.75		03	99.36	
F00./990	1.04	. 46	1.14	. 17	1.09	. 13	1.09	1.05	. 24	. 20	1.20	1.31	1.29	1.31	1.32	1.33	1.33	2.56	. 5	1.07	1.07	. 12	1.06	2.54	1.66	1.18	
${ }_{\text {ct }}^{\text {R }}$	3.0 145	3.5 269	3.0 172	3.5 178	3.5 157	3.5 166	3.5 160	3.0 153	10.0 134	120	10.0 130	91	${ }^{4} 9$	${ }^{3} \mathbf{5}$	${ }^{9} 5$	${ }^{3} \mathbf{5}$	3.5	${ }_{108}^{2.5}$	${ }_{108}^{2.5}$	115	${ }_{104}^{1.5}$	2.5 112	2i0	2.5	${ }^{3} 109$	$1{ }^{1} 1$	ii
Ba	13	136	17	77	34		43	51	${ }^{85}$	125	109	15	15	10	10	10	10	15	35	20	20	32	17	24	25	10	硡
$\stackrel{\rightharpoonup}{*}$	166	198	174	180	167	${ }^{175}$	${ }_{313}^{178}$	-	${ }_{256} 24$	${ }_{285}^{235}$	281	${ }^{3} 86$	292	313 287	328	383	283	304	-	321	235	296	235	285	136	294	3
${ }_{\text {cos }}^{\substack{\text { cer }}}$	32	${ }_{84}$	${ }_{48}$	52	48	51	50	45	${ }^{38}$	40	40	38	41	40	43	41	41	40	39	6	39	37	37	10	40	37	
Mi		193	11.7	106	102	101	102	102	115	110	108	78	${ }^{36}$	79	75	${ }^{8}$	76	52	56	6	1	0	1	57	56	${ }^{87}$	
${ }_{\text {cu }}$	86 64	194	${ }_{78}^{94}$	160 86	${ }^{148}$	135	127 7	104 70	${ }_{89}^{66}$	¢86	${ }_{89}^{65}$	${ }_{89}$	${ }_{99}^{73}$	${ }_{99}^{74}$	${ }_{89}^{79}$	${ }_{86}^{74}$	${ }_{90}^{75}$	${ }_{91}^{68}$	64 98	84 84	${ }_{74}^{81}$	86 66	74 6	62 86	79 93	78 65	

TABLE 3c

Bulk rock analyses for the $\mathrm{N}-\mathrm{S}$ segment

TABLE 3d
Bulk rock analyses for the 174E segment

Station	K21	K23	K23	к23	K23	K23	K23	K23	K22	K22	K22	K22DT						
Sample	1	2	6	8	27	28	29	14	15	16	17	18	19	20	1	2	3	2
Lava type	4-I	4-II	4-IV	$4-\mathrm{IV}$	4-IV	4-III												
Mode	SA	MPH	MPH	SA	SA	SA	SA	MPH	MPH	MPH	SA	SA						
SiO_{2}	48.50	48.20	49.00	49.00	49.40	49.20	48.30.	50.40	50.00	51.40	50.20	49.50	49.80	49.75	52.45	51.85	52.65	50.60
THO_{2}	2.26	2.25	2.29	1.80	1.81	1.99	1.94	1.40	1.40	1.50	1.49	1.49	1.41	1.40	1.17	1.19	1.22	1.57
$\mathrm{Al}_{2} \mathrm{O}_{3}$	15.40	15.27	15.35	15.37	15.51	15.38	15.30	15.50	15.10	14.90	15.35	15.00	15.66	15.10	15.48	15.30	15.60	14.40
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	10.39	10.38	10.42	10.26	9.92	10.25	10.20	9.56	9.98	10.64	11.00	10.64	10.24	10.51	9.85	10.10	9.80	10.79
Mno	0.18	0.18	0.18	0.18	0.17	0.17	0.18	0.17	0.18	0.18	0.26	0.21	0.20	0.18	0.17	0.17	0.16	0.18
MgO	9.00	8.93	9.11	9.42	9.32	9.32	9.41	7.20	7.53	7.99	7.46	7.81	7.76	7.73	5.50	5.70	5.55	6.50
CaO	10.16	10.08	10.12	10.47	10.39	10.44	10.46	12.51	12.27	11.90	11.57	11.97	12.09	12.15	10.42	9.94	10.15	11.03
$\mathrm{Na}_{2} \mathrm{O}$	3.02	3.07	3.04	2.88	2.95	2.83	2.86	2.59	2.47	2.47	2.36	2.42	2.30	2.44	3.18	3.18	3.17	2.80
$\mathrm{K}_{2} \mathrm{O}$	0.42	0.43	0.41	0.37	0.39	0.40	0.37	0.14	0.12	0.07	0.21	0.13	0.07	0.14	0.45	0.46	0.46	0.30
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.25	0.25	0.25	0.25	0.20	0.25	0.25	0.05	0.08	0.08	0.10	0.10	0.10	0.10	0.12	0.12	0.10	0.10
$\mathrm{H}_{2} \mathrm{O}^{+}$	-0.14	0.07	-0.14	-0.11	-0.19	-0.03	-0.15	0.29	-0.25	-0.53	0.53	-0.03	-0.27	-0.13	0.83	1.01	0.67	0.55
$\mathrm{H}_{2} \mathrm{O}^{-}$					0.07			0.06									0.21	0.23
Total	99.44	99.11	100.03	99.89	99.94	100.20	99.12	99.87	99.88	100.60	100.53	99.24	99.36	99.37	99.62	99.02	99.74	99.05
FeO*/MgO	1.02	1.02	1.01	0.96	0.94	0.97	0.95	1.17	1.17	1.17	1.30	1.20	1.16	1.20	1.58	1.56	1.55	1.46
Rb	6.9	7.0	7.2	6.2	7.0	6.6	6.4	3.0	2.8	2.2	4.3	3.4	2.0	3.6	6.5	6.3	7.0	5.5
Sr	254	252	253	250	240	246	250	113	115	120	127	122	118	115	360	358	336	148
Ba	100	60	60	80	60	70	80	36	50	50	50	60	60	60	80	100	61	36
V	305	250	250	250	256	250	250	268	280	260	240	260	250	265	260	260	257	280
Cr	293	298	226	299	286	231	300	231	236	273	269	258	267	237	7	5	3	151
Co	41	41	41	42	43	41	43	41	41	40	42	42	39	39	33	33	35	40
N1	178	174	182	184	190	184	184	75	69	70	70	68	72	56	25	25	31	62
Cu	51	51	51	52	54	54	57	80	77	75	85	76	64	73	100	93	98	76
2 n	81	77	80	73	75	76	76	79	88	89	88	79	77	80	78	79	75	83

TABLE 4a
Electron microprobe glass analyses for the N160 and 174E (last two columns only) segments. Major and minor elements in glass rims in a few samples from the North Fiji Basin. Analysis performed on the CAMEBAX microprobe at the IFREMER Centre at Brest (analysts J.P. Eissen and M. Bohn). FeO* $=$ total iron expressed as $\mathrm{FeO} . \mathrm{FO} \%$ and $\mathrm{An} \%=$ calculated forsteritic content (for $K_{\mathrm{D}}=0.3$) of the olivine and anorthite content (for $K_{\mathrm{D}}=$ 1.3) of the plagioclase, respectively, at equilibrium with this magmatic composition

Station	55	S5	S5	S5	55	K29	K29	K5	K5	K21	K22
Sample	01	02	03	04	05	3	5	1	2	27	3
Lava Type	1-III	1-III	1-III	1-III	1-III	1-IV	1-IV	1-I	1-I	4-I	4-IV
Mode	MPH	PH	MPH	MPH	MPH	MPH	MPH	HPH	HPH	SA	MPH
SiO_{2}	49.55	50.41	50.17	49.74	50.01	51.38	50.83	48.91	48.77	50.11	54.04
TiO_{2}	1.53	1.86	1.63	1.49	1.56	1.64	1.83	1.06	1.02	1.78	1.19
$\mathrm{Al}_{2} \mathrm{O}_{3}$	14.85	15.01	15.43	15.61	15.49	13.96	14.15	17.11	17.29	15.81	15.11
FeO *	10.15	9.93	9.85	9.75	9.72	9.14	9.69	8.25	8.04	6.90	8.03
Mno	0.20	0.24	0.15	0.15	0.16	0.30	0.29	0.17	0.16	0.22	0.26
MgO	7.83	7.43	7.69	8.31	7.77	7.02	7.10	9.34	9.63	8.04	5.25
CaO	12.03	11.48	12.03	12.14	12.33	11.66	12.01	12.10	11.94	10.89	9.68
$\mathrm{Na}_{2} \mathrm{O}$	2.80	2.39	2.60	2.34	2.63	2.88	2.99	2.78	2.77	2.99	3.03
K 2 O	0.08	0.30	0.28	0.22	0.28	0.17	0.16	0.07	0.07	0.33	0.29
P 205	0.08	0.27	0.16	0.12	0.15	0.02	0.01	0.06	0.06	0.03	0.01
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	0.05	0.02	0.01	0.01	0.01	0.02	0.01	0.03	0.03	0.00	0.01
Total	99.15	99.36	100.00	99.88	100.12	98.18	99.07	99.88	99.78	97.11	96.90
Feo*/MgO	1.30	1.34	1.28	1.17	1.25	1.30	1.36	0.88	0.83	0.86	1.53
Fo\%	82.1	82.6	82.3	83.5	82.6	82.0	81.3	87.1	87.7	87.4	79.5
An\%	75.5	77.6	76.9	78.9	77.6	74.4	74.3	75.8	75.6	72.3	69.6

Type 1-IV: Moderately phyric to sub-aphyric basalts with plagioclase, olivine and clinopyroxene from site K29. These lavas are dominantly composed of euhedral to skeletal microphenocrysts, with isolated occurrences of plagioclase and the occasional olivine phenocryst. They are moderately evolved lavas, with medium $\mathrm{FeO}^{*} / \mathrm{MgO}$ (1.29 ± 0.05) and relatively high $\mathrm{TiO}_{2} \%$ (1.79 ± 0.04), and low $\mathrm{Cr}(216 \pm 18 \mathrm{ppm})$ and Ni ($82 \pm 11 \mathrm{ppm}$) contents (Table 3a).

Mineralogical assemblages and geochemistry show that the basalts of type 1-IV are more evolved: they all reached the invariant point of low-pressure ($<1 \mathrm{kbar}$) co-crystallization of plagioclase + olivine + clinopyroxene (Bender et al., 1978; Presnall et al., 1979; Walker et al., 1979). This is not the case for the majority of samples from the other basalt types. The four groups could be well distinguished on some $\mathrm{FeO}^{*} / \mathrm{MgO}$ variation diagrams (Fig.3a). The highly phyric basalts from station K 5 , with their lower $\mathrm{FeO}^{*} / \mathrm{MgO}$ ratio, often show element contents which differ from the others with their element dilution or concentration consequent upon plagioclase enrichment. At a similar $\mathrm{FeO}^{*} / \mathrm{MgO}$ ratio, basalts from station K 17 show $\mathrm{TiO}_{2} \%$ and $\mathrm{K}_{2} \mathrm{O} \%$ contents
which are similar to those of the other NFB basalts, whereas, also at a similar $\mathrm{FeO}^{*} / \mathrm{MgO}$ ratio, basalts from stations S 5 and K29 exhibit $\mathrm{TiO}_{2} \%$ and $\mathrm{K}_{2} \mathrm{O} \%$ contents which are higher than those of the other NFB basalts. The K17, S5, K29 and K5 basalts line up in two separate groups, along a fractional trend parallel to the one observed for the other NFB basalts. The limited alteration is not strong enough to explain the $\mathrm{K}_{2} \mathrm{O} \%$ gain, which could correspond to a smaller degree of partial melting of the mantle source and/ or to a different mantle source.

N15 segment

Six stations were established along this 160 km long segment (Fig.2). The northernmost station is just south of the triple junction area, the southernmost one near the propagating rift tip; all others occur in the recently active volcanic spreading zone (Table 1). Several deposits or indications of hydrothermal activity are now known all along this segment, especially near $17^{\circ} \mathrm{S}$ (Auzende et al., 1988 b ; Auzende et al., this issue) and $18^{\circ} 10^{\prime} \mathrm{S}$ (Craig and Poreda, 1987). Some basaltic samples collected close to these hydrothermal sites have

TABLE 4b
Electron microprobe glass analyses for the N15 segment. For details, see Table 4a

Station	K4	K4A	4A	4 A	K4B	K4B	к8	кө	к9	к8	к8	кв	к9	к9	к9									
Sample	1	${ }^{2}$	3	4	5	${ }^{6}$	7	8	${ }^{9}$	3	4	7	1	2	1	2	3	4	5	${ }^{6}$	1		3	
Lava Type	2-IV	$2-\mathrm{IV}$	2-IV	$2-\mathrm{IV}$	2-Iv	${ }^{2-I V}$	${ }^{2-19}$	${ }^{2-15}$	$2-\mathrm{IV}$	-	-	-	-		2-vI	2-vI	${ }^{2-\mathrm{VI}}$	2-VI	${ }^{2-V I T}$	2-VII	$2-\mathrm{III}$	2-III	2-111	
mode	A	A	SA	SA	sA	SA	A	A	A	A	A	sa	A	sa	SA	SA	SA	SA	5A	SA	MPH	MPH	SA	
SHO_{2}	50.15	50.29	50.04	50.22	50.30	50.34	50.48	49.87	49.93	48.28	50.65	50.04	49.65	48.42	51.02	50.04	50.66	48.49	48.78	49.92	50.27	49.83	49.74	
THO_{2}	1.50	1.51	1.53	1.55	1.51	1.52	1.54	1.53	1.54	2.00	1.83	1.83	1.10	2.00	1.77	1.45	1.07	1.97	2.08	1.82	1.48	1.64	1.09	
$\mathrm{Al2}_{2} \mathrm{O}_{3}$	15.34	15.03	14.99	15.11	14.91	15.01	14.98	15.31	15.05	17.76	14.53	14.30	15.74	18.05	14.33	14.84	15.88	18.10	17.53	14.29	15.04	16.20	15.25	
Feo *	10.02	9.92	9.68	9.74	9.86	9.98	10.08	9.88	9.66	6.96	11.83	11.50	8.88	6.80	11.30	9.78	8.77	6.94	7.09	11.31	9.91	8.62	8.85	
Mno	0.17	0.20	0.22	0.21	0.16	0.21	0.19	0.17	0.21	0.15	0.21	0.16	0.15	0.14	0.28	0.16	0.17	0.13	0.12	0.21	0.19	0.16	0.15	
mgo	7.56	7.70	7.31	7.44	7.67	7.65	7.82	7.47	7.48	9.16	7.47	7.48	10.03	9.01	6.85	8.57	9.13	8.93	8.85	7.48	8.63	9.47	9.81	
cao	11.58	11.60	11.59	11.67	11.52	11.71	11.67	11.47	11.56	10.76	11.35	11.29	12.56	11.07	10.84	12.19	12.21	10.87	10.83	11.27	12.36	11.53	12.49	
Na 2°	3.39	3.29	3.14	3.27	3.29	3.43	3.04	3.42	3.34	2.56	1.80	2.73	1.92	2.43	2.56	2.57	2.36	2.50	2.51	2.49	2.49	2.44	1.63	
$\mathrm{K}_{2} \mathrm{O}$	0.12	0.13	0.11	0.13	0.14	0.10	0.11	0.12	0.11	0.78	0.17	0.15	0.08	0.78	0.14	0.11	0.06	0.74	0.94	0.14	0.09	0.25	0.07	
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.10	0.10	0.12	0.13	0.12	0.11	0.10	0.12	0.12	0.29	0.12	0.15	0.08	0.29	0.13	0.10	0.07	0.30	0.32	0.13	0.10	0.15	0.09	
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.01	0.06	0.04	0.01	0.02	0.06	0.04	0.04	0.01	0.02	0.05	0.06	
total	33.94	99.79	98.76	99.48	99.49	0.08	0.03	99.38	99.03	8. 73	99.97	99.65	0.24	99.02	99.24	99.83	00.44	98.99	99.08	99.08	100.56	99.34	99.22	
Feo $/ \mathrm{MgO}$	1.33	1.29	1.32	1.31	1.29	1.31	1.29	1.32	1.29	0.76	1.58	1.54	0.89	0.75	1.65	1.14	0.96	0.78	0.80	1.51	1.15	0.91	90	
Fot	81.8	82.2	81.8	81.9	82.2	82.0	82.2	81.8	82.1	88.7	78.9	79.5	87.0	88.7	78.3	83.9	86.1	88.4	88.1	79.7	83.8	86.7	86.8	
Ant	81.0	71.7	72.6	71.9	71.5	71.0	73.4	70.7	71.3	75.1	81.9	74.8	82.4	26.6	75.2	77.3	78.8	75.8	75.6	76.5	78.1	77.3	84.6	
station	к9	к9	к9	12	K12	K12	K12	12	12	K12	12	к6A	6A	6A	к6	к6	кб	к6	K6	K6	s3	53	53	53
Sample	4	5	6	1	2	3	4	5	6	7	8	1	2	3	1	2	3	4	5	6	01	02	03	06
Lava Type	2-III	${ }^{2-\mathrm{VI}}$	2-vi	2-I	2-1	2-I	2-I	2-1	2-1	2-1	2-1	2-111	2-III	2-1II	2-v	$2-\mathrm{V}$	2-II	2-v						
Mode	MPH	SA	MPH	мP\%	MPH	MPH	MPH	MPh	MPH	MPH	MP\%	SA	PH	MPH	MPH	MPH								
SiO_{2}	48.58	49.96	49.67	48.90	48.80	49.32	48.67	48.94	48.47	48.62	49.24	49.19	49.28	49.80	49.66	49.83	50.18	50.03	50.44	50.81	50.57	50.68	50.35	51.00
THO_{2}	1.92	1.81	1.46	1.24	1.26	1.29	1.25	1.23	1.23	1.23	1.23	1.34	1.34	1.37	1.40	1.40	1.39	1.39	1.39	1.38	1.86	1.72	1.12	1.73
$\mathrm{Al}_{2} \mathrm{O}_{3}$	18.01	14.05	14.81	15.84	15.85	15.74	16.03	16.06	15.74	15.98	16.11	16.35	16.37	16.43	14.92	15.04	14.99	15.37	15.02	15.12	14.57	13.92	14.20	13.86
FeO *	6.83	11.21	9.90	8.80	8.72	9.24	8.88	8.78	8.64	8.86	9.04	9.03	9.07	8.95	9.96	10.05	9.89	9.86	9.62	9.73	10.18	12.23	10.10	12.16
MnO	0.13	0.21	0.19	0.18	0.19	0.16	0.16	0.17	0.19	0.19	0.18	0.13	0.22	0.23	0.13	0.20	0.18	0.17	0.23	0.31	0.21	0.20	0.13	0.21
Mgo	8.63	7.49	8.56	8.61	8.58	8.45	8.49	8.69	8.36	8.79	8.97	7.99	7.81	7.79	8.14	8.11	7.98	8.06	8.12	8.02	7.10	6.98	9.12	6.72
cao	10.83	11.46	12.00	12.11	12.15	11.94	12.19	12.18	12.09	12.07	12.15	10.95	11.02	10.65	11.45	11.70	11.56	11.60	11.42	11.49	11.65	11.69	12.95	11.85
$\mathrm{Ha}_{2} \mathrm{O}$	2.52	2.69	2.60	2.91	2.98	2.92	2.91	2.91	2.83	3.02	2.86	2.98	2.94	2.65	2.67	2.69	2.74	2.85	2.84	2.84	2.67	1.96	2.14	1.73
$\mathrm{K}_{2} \mathrm{O}$	0.70	0.11	0.11	0.11	0.13	0.11	0.11	0.10	0.11	0.11	0.10	0.43	0.44	0.47	0.03	0.06	0.05	0.07	0.04	0.04	0.31	0.09	0.04	0.10
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.33	0.13	0.11	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.08	0.21	0.20	0.20	0.10	0.08	0.08	0.09	0.08	0.08	0.27	0.11	0.07	0.13
${\mathrm{Cr} 2 \mathrm{O}_{3}}$	0.02	0.01	0.01	0.04	0.03	0.03	0.04	0.03	0.03	0.03	0.02	0.05	0.04	0.02	0.04	0.03	0.03	0.05	0.02	0.02	0.02	0.01	0.01	0.01
Total	98.61	99.13	99.41	98.83	98.77	99.29	98.83	99.17	97.78	98.97	99.97	98.66	98.73	98.76	98.50	99.19	99.0	99.5	99.2	99.84	99.42	99.77	100.23	99.48
Fe0*/Mgo	. 79	1.50	. 16	1.02	1.02	. 09	1.05	1.01	1.03	1.01	1.01	1.13	1.16	1.15	1.22	1.24	1.24	1.22	1.19	1.21	1.44	1.75	1.11	1.61
Fot	88.2	79.9	83.7	85.3	85.4	84.5	85.0	85.5	85.2	B5.5	85.5	84.0	83.7	өз.8	82.9	82.7	82.7	82.9	B3.4	83.0	80.5	77.2	84.3	76.7
Ant	75.5	75.4	76.8	74.9	74.5	74.6	75.1	75.0	75.4	74.2	75.3	72.5	72.9	72.9	75.	75.8	75.2	74.5	74.3	74.4	75.8	81.1	81.3	83.1

TABLE 4c
Electron microprobe glass analyses for the $\mathrm{N}-\mathrm{S}$ segment. For details, see Table 4 a

station	52	54	S4	s4	54	54	K14	K14	$\kappa 14$	$K 14$	K14	K14	K14	K15						
Sample	2	01	02	03	04	05	1	2	5	6	7	8	10	2	5	6	7	8	9	10
Lava Type	3-III	3-II	3-II	3-15	3-1I	3-II	3-1I	3-II	3-II	3-IV	3-1i	3-II	3-IV	3-III	3-III	3-IIt	3-III	3-1II	3-III	3-II
Mode	MPH	5A	SA	A	SA															
SiO_{2}	50.92	51.21	50.50	50.28	49.67	49.80	49.49	49.36	49.77	49.86	49.37	49.43	49.35	48.95	48.80	48.68	48.91	48.92	49.29	49.04
THO_{2}	1.84	2.11	1.53	1.51	1.44	1.43	1.48	1.48	1.51	1.73	1.49	1.50	1.72	1.85	1.84	1.82	1.85	1.82	1.85	1.81
$\mathrm{Al}_{2} \mathrm{O}_{3}$	14.34	13.14	14.60	14.59	15.12	14.83	15.07	15.20	14.86	14.93	15.09	15.26	15.07	15.66	15.60	15.27	15.30	15.52	15.46	15.48
FeO *	11.82	12.42	10.22	11.07	10.71	10.79	10.27	10.30	10.52	10.64	10.29	10.21	10.32	9.79	9.95	9.93	10.19	10.01	10.01	9.99
Mno	0.19	0.26	0.27	0.18	0.18	0.17	0.18	0.20	0.22	0.17	0.18	0.18	0.19	0.13	0.19	0.20	0.24	0.19	0.20	0.18
Mgo	7.02	6.38	7.06	7.92	7.92	7.76	8.17	8.28	8.13	7.37	8.23	8.04	7.60	7.83	7.91	8.01	7.92	7.98	8.09	8.19
cao	11.18	10.88	11.58	12.10	12.09	12.19	11.76	11.71	11.68	11.34	11.56	11.68	11.24	11.55	11.38	11.32	11.32	11.37	11.27	11.34
Na 2 O	2.08	2.61	2.66	2.43	2.47	2.41	2.56	2.55	2.68	2.73	2.64	2.49	2.80	2.86	3.01	2.94	2.95	2.89	2.93	2.98
K2O	0.14	0.19	0.31	0.08	0.07	0.07	0.07	0.08	0.08	0.20	0.07	0.08	0.19	0.17	0.13	0.14	0.12	0.13	0.15	0.13
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.12	0.23	0.29	0.09	0.10	0.10	0.10	0.10	0.09	0.14	0.09	0.08	0.14	0.15	0.15	0.15	0.13	0.14	0.14	0.15
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.02	0.02	0.01	0.02	0.03	0.02	0.03	0.03	0.04	0.02	0.03	0.04	0.04
Total	99.66	99.43	99.05	100.24	99.78	99.57	99.16	99.28	99.56	99.11	99.03	98.98	98.63	98.97	99.00	98.50	98.96	99.00	99.43	99.34
: FeO */mgo	1.68	1.95	1.45	1.40	1.35	1.39	1.26	1.24	1.29	1.44	1.25	1.27	1.36	1.25	1.26	1.24	1.29	1.25	1.24	1.22
Fot	77.9	75.3	80.4	81.0	81.5	81.0	82.5	82.7	82.1	80.5	82.6	82.4	81.4	82.6	82.5	82.7	82.2	82.6	82.8	83.0
Ant	79.4	75.0	75.8	78.1	77.8	78.4	76.7	76.7	75.8	75.0	76.0	77.1	74.3	74.4	73.1	73.5	73.4	73.8	73.4	73.2

Station	SDT	S1	51	51	51	51	sl	S1	S1	S1	GT							
Sample	01	02	03	04	05	07	09	10	01	02	03	04	05	06	07	08	09	104
Lava Type	3-II	3-II	3-II	3-III	3-II	3-1I	3-II	-II	-II	-II	3-II	II	-11	-II	II	II	II	3-I
Mode	A	SA	SA	A	SA	SA	SA	SA	5A	SA	SA	SA	SA	SA	SA	5A	SA	SA

SiO_{2}	50.01	50.05	50.31	50.67	50.72	50.45	50.25	50.97	51.00	50.14	50.09	50.08	49.85	50.60	50.28	50.25	50.42	49.87
THO_{2}	1.59	1.40	1.44	1.65	1.31	1.29	1.28	1.50	1.16	1.75	1.38	1.57	1.57	1.45	1.44	1.42	1.36	1.32
$\mathrm{Al}_{2} \mathrm{O}_{3}$	14.33	14.47	14.56	14.54	14.56	14.61	14.65	14.20	17.56	15.02	14.86	14.40	14.31	14.95	14.98	15.06	13.76	14.86
Feo	10.10	9.76	10.01	10.28	9.89	9.82	9.77	10.24	8.34	9.82	10.43	11.44	10.94	10.17	10.06	10.06	10.37	9.03
Mno	20	0.20	0.17	16	. 17	. 17	. 17	0.21	0.21	0.19	0.18	0.18	0.20	0.18	0.16	0.17	0.15	0.20
Mgo	7.69	7.87	7.87	7.76	7.84	7.84	7.89	7.80	5.39	7.40	8.02	7.35	7.58	7.98	8.16	7.96	8.17	8.14
CaO	12.15	12.63	12.54	12.36	12.52	12.38	12.52	11.68	12.37	11.45	12.25	11.95	12.16	11.95	11.93	12.05	11.91	12.75
$\mathrm{Na}_{2} \mathrm{O}$	2.68	2.68	2.56	1.99	2.40	2.64	2.55	2.67	2.65	2.70	2.48	2.58	2.50	2.47	2.62	2.55	2.46	2.76
$\mathrm{K}_{2} \mathrm{O}$	0.10	0.09	0.09	0.09	0.10	0.09	0.09	0.08	0.08	0.29	0.08	0.09	0.09	0.09	0.09	0.08	0.09	0.06
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.10	0.09	0.09	0.10	0.09	0.10	0.09	0.00	0.11	0.24	0.09	0.10	0.12	0.11	0.11	0.11	0.00	0.08
$\mathrm{Cr2O}_{2}$	0.03	0.03	0.03	0.04	0.03	0.04	0.03	0.00	0.01	0.02	0.01	0.01	0.01	0.04	0.04	0.05	0.00	0.05
Total	98.98	99.26	99.66	99.65	99.63	99.42	99:30	99.35	98.89	99.01	99.88	99.74	99.32	100.00	99.87	99.76	98.6	9.1
Feo*/Mgo	1.31	1.24	1.27	1.32	1.26	1.25	1.24	1.31	1.55	1.33	1.30	1.55	1.44	1.27	1.23	1.26	1.27	1.11
Fot	81.9	82.7	82.4	81.8	82.5	82.6	82.7	81.9	79.4	81.8	82.0	79.3	80.4	82.3	82.8	82.5	82.4	84.3
An\%	76.5	77.2	77.9	81.7	78.9	77.1	77.9	75.9	77.0	75.3	78.0	76.9	77.8	77.6	76.6	77.3	77.7	76.

been altered by hydrothermal circulation. This alteration is relatively weak in samples K6A-1, 2, and 3 and in K4A-4 and 1, and no mineral transformations are present; however, hydration in some samples results in $\mathrm{K}_{2} \mathrm{O} \%, \mathrm{Rb}, \mathrm{Sr}$ and Ba increases (Table 3b). In samples K4A-3, 7 and 2, this high temperature alteration is more penetrative. Even though plagioclase crystals are still not altered, the vesicle fillings, hydration, and the $\mathrm{K}_{2} \mathrm{O} \%, \mathrm{Rb}, \mathrm{Sr}$ and Ba increases are much more significant than in the samples previously mentioned and the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ content decreases drastically (Table 3b). However, microprobe glass rim analyses for samples K4A-4 and 7 (Table 4b), show that this alteration is not always complete. Few other samples have been strongly transformed by lowtemperature alteration, and they have a strong enrichment in volatiles and in $\mathrm{K}_{2} \mathrm{O}$ (samples K122,3 and 4 , with $\mathrm{H}_{2} \mathrm{O}^{+}>0$) (Table 3 b). All these altered samples have been discarded from most of our geochemical comparisons. Samples from station S3 (Fig.2) have been weakly altered at low temperature, as observed in some samples from the N160 segment.

The petrography of the 53 basaltic samples collected along the N15 segment is highly variable: they vary from aphyric to highly phyric basalts, and show large variations in their mineralogical assemblages. The range of their bulk rock (Table 3b) and glass rim compositions (Table 4b) is also much wider (Fig.3a) than those from the N160 and N-S segments. The seven following lava types are distinguished:

Type 2-I: Moderately phyric basalts with plagioclase + olivine from station K12. These lavas, which are actually thin lava crusts, have fairly primitive bulk rock and glass compositions (Tables 3 b and 4 b), with low $\mathrm{FeO}^{*} / \mathrm{MgO}$ ratios (1.11 ± 0.04), low $\mathrm{TiO}_{2} \%$ contents (0.94 ± 0.04), and relatively high $\mathrm{Cr}(312 \pm 13 \mathrm{ppm})$ and Ni ($102 \pm 9 \mathrm{ppm}$) contents, even if their glass $\mathrm{TiO}_{2} \%$ (1.25 ± 0.02) content is slightly higher.

Type 2-II: Moderately phyric to phyric basalts with plagioclase + olivine from. station $\mathrm{S} 3(03,04$, 05,06 and 09). Despite their high crystal content, these lavas have relatively primitive bulk rock and glass compositions, with low $\mathrm{FeO} / \mathrm{MgO}$ ratios (1.10 ± 0.05), low $\mathrm{TiO}_{2} \%$ contents (1.13 ± 0.04) and
high Cr contents ($303 \pm 12 \mathrm{ppm}$) (Tables 3 b and 4b).

Type 2-III: Sub-aphyric to moderately phyric basalts with plagioclase + olivine \pm clinopyroxene for all samples from station K6 and some from station K9 (1, 2, 3 and 4). These lavas have slightly more evolved bulk rock compositions with higher $\mathrm{FeO} * / \mathrm{MgO}$ ratios (1.28 ± 0.05) and higher $\mathrm{TiO}_{2} \%$ contents (1.38 ± 0.10), although rocks from station K 6 have relatively high $\mathrm{Cr}(282 \pm 10 \mathrm{ppm})$ and Ni ($89 \pm 16 \mathrm{ppm}$) contents. Samples from station K9 have comparatively lower $\mathrm{Cr}(166 \pm 10 \mathrm{ppm})$ and $\mathrm{Ni}(49 \pm 1 \mathrm{ppm})$ contents, and show bulk rock and glass composition results which are somewhat uncorrelatable (Tables $3 b$ and $4 b$), owing to the modal mineral content.

Type 2-IV: Aphyric to sub-aphyric basalts with plagioclase \pm olivine (\pm clinopyroxene) from station K4. These basalts contain mainly euhedral to skeletal microphenocrysts and the very occasional isolated phenocryst. They have slightly more evolved bulk rock compositions; moderately high $\mathrm{FeO}^{*} / \mathrm{MgO}$ ratios (1.41 ± 0.03) and $\mathrm{TiO}_{2} \%$ contents (1.55 ± 0.03), and low $\mathrm{Cr}(128 \pm 3 \mathrm{ppm})$ and $\mathrm{Ni}(51 \pm 3 \mathrm{ppm})$ contents (Table 3b). The high Cr content of sample K4-5 (247 ppm) corresponds to the only occurrence of clinopyroxene microphenocrysts at this station (Table 4b).

Type 2-V: Moderately phyric to phyric basalts with plagioclase + olivine + clinopyroxene from station S3 (01, 02, 07, 08 and 10). These basalts contain mainly euhedral phenocrysts and the occasional xenomorphic phenocryst (plagioclase> olivine \geq clinopyroxene) and a few microphenocrysts. As demonstrated by the occurrence of clinopyroxene, these lavas are much more evolved than the basalts from the first group of the same site (S3, Fig.2), with higher $\mathrm{FeO} * / \mathrm{MgO}$ ratios (1.58 ± 0.04), high $\mathrm{TiO}_{2} \%$ contents (1.63 ± 0.04), and relatively low $\mathrm{Cr}(134 \pm 3 \mathrm{ppm})$ and Ni ($55 \pm 2 \mathrm{ppm}$) contents (Table 3b). These bulk rock characteristics correlate quite well with the glass compositions (Table 4b).

Type 2-VI: Sub-aphyric basalts with plagioclase + olivine + clinopyroxene from station K 8 (1, 2, 3 and 4) and K9 (5 and 6). These basalts contain mainly euhedral to skeletal microphenocrysts and many isolated phenocrysts and have slightly more

Fig.3. Plot of the main major elements (in weight percent) versus $\mathrm{FeO} / \mathrm{MgO}$ showing the general trends of evolution for the NFB basalts (from bulk rock analyses recalculated at 100% without LOI). (a) White diamond $=$ N 160 segment (approximate location of basalts from stations $\mathrm{K} 5, \mathrm{~S} 5, \mathrm{~K} 29$ and K 17 is given in the $\mathrm{Na}_{2} \mathrm{O}$ diagram); dot $=\mathrm{N} 15$ segment. Fields shown for comparison are: solid line $=$ Mariana Basin BABB (bulk rock analyses, recalculated at 100% without LOI, from Hawkins and Melchior, 1985);
evolved bulk rock compositions, with higher $\mathrm{FeO}^{*} /$ MgO ratios (1.66 ± 0.05), medium $\mathrm{TiO}_{2} \%$ contents (1.51 ± 0.07), and lower $\mathrm{Cr}(111 \pm 4 \mathrm{ppm})$ and Ni ($41 \pm 1 \mathrm{ppm}$) contents (Table 3b).

Type 2-VII: Sub-aphyric basalts with plagioclase + olivine + clinopyroxene from station K8 (5 and 6). These basalts contain mainly euhedral to skeletal microphenocrysts but very few phenocrysts, the latter being the only visible difference from the other samples from the same station. In terms of $\mathrm{FeO}^{*} / \mathrm{MgO}$ ratios (1.65) these lavas do not seem to be more evolved than the previous group. However, their bulk rock compositions show much higher $\mathrm{TiO}_{2} \%$ contents (2.48), and lower Cr contents (92 ppm) (Table 3b). The two glass rim analyses do not indicate any clear correlation with the bulk rock analyses (Table 4b).

We have not included in this review samples from stations K4A and K4B because they are too altered. However, their higher $\mathrm{TiO}_{2} \%$ contents in bulk rock and glass rim compositions indicate that most are more evolved than samples from dredge K4, which was taken in the vicinity of the deep tows. Sample K4B-1, with a lower $\mathrm{TiO}_{2} \%$ content (1.10, Table 4b), could be much less evolved. The different groups cannot be well distinguished on the $\mathrm{FeO}^{*} / \mathrm{MgO}$ variation diagrams (Fig.3a). Compared with basalts from the other segments, they tend to extend more towards an evolved nature, whereas they lack the very primitive terms. The slight scattering observed on some diagrams $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O}$ and CaO) might be the result, at least partially, of the modal content of plagioclase (Fig.3a).

dashed line $=$ MORB and BABB from the northern NFB; dot/dash line $=$ transitional basalts from the South Pandora Ridge (glass analyses, recalculated at 100%, from Sinton et al., in press). (b) White square $=\mathrm{N}-\mathrm{S}$ segment; black triangle $=174 \mathrm{E}$ segment (approximate location of basalts from stations $\mathrm{K} 21, \mathrm{~K} 23, \mathrm{~K} 22$ and K 22 DT is given on the Na, O diagram). Field shown for comparison is for the Lau Basin BABBs (glass analyses recalculated at 100%, from Hawkins and Melchior, 1985).

$N-S$ segment

This segment is the longest (300 km long) and has a regular morphology. The 49 samples, which were collected at seven stations (Fig.2), turned out to be more homogeneous in terms of mineralogy and geochemistry than the basalts from the other segments. The N-S segment basalts are sub-aphyric, with plagioclase + olivine \pm clinopyroxene; they are usually unaltered, except at the slightly offaxis station S2 (Fig. 2 and Table 2). Compared with basalts from the other segments, on the $\mathrm{FeO}^{* /}$ MgO variation diagrams (Fig.3b) their composition range is strictly restricted to moderately evolved basalts.
Four groups have been distinguished in the N S segment (Tables 3c and 4c):

Type 3-I: Sub-aphyric plagioclase + olivine + clinopyroxene basalt (sample GT 104). Because of the very small size of this sample, it was only possible to obtain a glass rim composition of the less evolved magma observed along the entire length of the segment $(\mathrm{FeO} / \mathrm{MgO}=1.11$, $\mathrm{TiO}_{2} \%=1.32, \quad \mathrm{~K}_{2} \mathrm{O} \%=0.06, \quad \mathrm{P}_{2} \mathrm{O}_{5} \%=0.08$, $\mathrm{Cr}_{2} \mathrm{O}_{3} \%=0.05$; Table 4c), despite the fact that this basalt has reached the four-phase cotectic.
Type 3-II: Sub-aphyric plagioclase+olivine (\pm clinopyroxene) basalts (all samples from station S4 and S1 and some from station K14 (1, 2, 5, 7 and 8), station SDT ($01,02,03,05,06,07,08,09$ and 10), and sample $\mathrm{K} 15-10$. These basalts contain mainly euhedral to skeletal microphenocrysts of plagioclase and olivine (plus clinopyroxene in basalts from station SDT and S1), and very few
isolated phenocrysts. Their bulk rock compositions show intermediate $\mathrm{FeO}^{*} / \mathrm{MgO}$ ratios (1.32 ± 0.06) and $\mathrm{TiO}_{2} \%$ contents (1.52 ± 0.08), although they have a relatively high Cr content ($260 \pm 41 \mathrm{ppm}$) (Table 3c). Glass rim compositions (Table 4c) give coherent results except for sample S4-01 (which has a ferro-basaltic composition very different from the bulk rock composition) and sample K1510.

Type 3-III: Aphyric to sub-aphyric plagioclase + olivine (\pm clinopyroxene) basalts (all samples from stations S2 and K15 (not sample 10), and sample SDT-04). The basalts of station K15 contain mainly euhedral to skeletal microphenocrysts and the very occasional isolated phenocryst. Sample SDT-04 is almost aphyric, whereas samples from station S 2 are sub-aphyric to moderately phyric plagioclase + olivine + clinopyroxene basalts. The more phyric character of sample S2-1 is mainly due to the coarser grain of this pillow interior or thick lava flow. These lavas have slightly more evolved bulk rock compositions, with medium $\mathrm{FeO}^{*} / \mathrm{MgO}$ ratios (1.39 ± 0.06), higher $\mathrm{TiO}_{2} \%$ contents (1.82 ± 0.04), and slightly lower Cr contents ($250 \pm 18 \mathrm{ppm}$) (Table 3c), in agreement with the glass rim analyses (Table 4c).

Type 3-IV: Aphyric plagioclase basalts (samples K14-6 and 10). These basalts contain only a few skeletal microphenocrysts of plagioclase. They have the most evolved bulk rock compositions, with high $\mathrm{FeO}^{*} / \mathrm{MgO}$ ratios (1.49) and high $\mathrm{TiO}_{2} \%$ contents (1.80), and lower Cr contents ($137-148 \mathrm{ppm}$) (Table 3c) in agreement with the glass rim compositions (Table 4c). At station K14 this variation denotes some local heterogeneity.

174 E segment

On this relatively short segment (90 km long), only four sampling stations were established during the KAIYO 88 cruise (Fig. 2 and Table 2), and eighteen samples were studied. Some of them are slightly altered, with palagonite and $\mathrm{Fe}-\mathrm{Mn}$ hydroxides in vesicles and along cracks, and positive LOI (Table 3d). Four different lava types were distinguished, each at a different site, based mainly on geochemical characteristics. On the $\mathrm{FeO}^{*} / \mathrm{MgO}$ variation diagrams (Fig.3b), scattering is quite
important compared to the other segments, with negative correlation for $\mathrm{TiO}_{2} \%$. We will therefore list the basalt types on the basis of increasing $\mathrm{FeO}^{*} / \mathrm{MgO}$ ratios:

Type 4-I: Sub-aphyric plagioclase \pm olivine basalts (station K21). These basalts have a peculiar chemistry with a fairly primitive character, as shown by their very low $\mathrm{FeO}^{*} / \mathrm{MgO}$ ratio (0.98 ± 0.03), high $\mathrm{Cr}(276 \pm 30 \mathrm{ppm})$ and very high $\mathrm{Ni}(182 \pm 5 \mathrm{ppm})$ contents (Table 3d). The contents of $\mathrm{TiO}_{2} \%(2.05 \pm 0.20), \mathrm{K}_{2} \mathrm{O} \%(0.40 \pm 0.02)$ and $\mathrm{P}_{2} \mathrm{O}_{5} \%(0.24 \pm 0.02)$, however, are quite high, as might be expected in an evolved lava. Despite the presence of olivine, it seems that this lava has dominantly, and quite abundantly, fractionated plagioclase; however, there is very little olivine or clinopyroxene. Further, these basalts seem to be little altered, despite their slightly high $\mathrm{K}_{2} \mathrm{O} \%, \mathrm{Rb}$ and Sr contents; the latter could, then, be interpreted as petrogenetic characteristics.
Type 4-II: Sub-aphyric to moderately phyric plagioclase + olivine \pm clinopyroxene basalt (station K23). These basalts have a relatively primitive composition, although four-phase multiple saturation was reached. The $\mathrm{FeO}^{*} / \mathrm{MgO}$ ratio is low (1.20 ± 0.04), and $\mathrm{TiO}_{2} \% \quad(1.44 \pm 0.05), \mathrm{Cr}$ $(253 \pm 17 \mathrm{ppm})$ and $\mathrm{Ni}(69 \pm 6 \mathrm{ppm})$ contents are all at a medium level (Table 3d). The closest chemical equivalent of this type in the other segments of the NFB is sample GT 104 ($\mathrm{N}-\mathrm{S}$ segment; Table 4c) but sample GT 104 is sub-aphyric.

Type 4-III: Sample K22DT-2 is a slightly altered sub-aphyric plagioclase + clinopyroxene basalt intermediately evolved with a medium $\mathrm{FeO}^{*} \mathrm{MgO}$ ratio (1.47), medium $\mathrm{TiO}_{2} \%$ content (1.57) and low $\mathrm{Cr}(151 \mathrm{ppm})$ content (Table 3d).

Type 4-IV: Sub-aphyric to moderately phyric plagioclase + olivine + clinopyroxene basalts (station K22). These are the most altered of this segment, with clear $\mathrm{H}_{2} \mathrm{O}^{+}, \mathrm{K}_{2} \mathrm{O} \%, \mathrm{Rb}$ and Sr gains, and extremely low $\mathrm{Cr}(5 \pm 2 \mathrm{ppm})$ and Ni ($27 \times 3 \mathrm{ppm}$) contents; $\mathrm{MgO} \%$ is depleted, resulting in an abnormally high $\mathrm{FeO}^{*} / \mathrm{MgO}$ ratio (1.56 ± 0.01). On the basis of the $\mathrm{TiO}_{2} \%$ content (1.19 ± 0.02), these lavas are not very evolved (Table 3d). However, the influence of the subduction process occurring along the Hunter Ridge might have modified the chemistry of these basalts,

which could be intermediate between MORBs and basic andesites.
In summary, the petrology of the basalts of the four segments of the NFB spreading centre present variations which range strictly in the field of basaltic lavas. Most of these basalts have MORB affinities. However, homogeneous basalts from the N -S segment clearly differ from the more varied basalts observed on the N160, N15 and 174E segments. In addition, the most phyric basalts seem to be restricted to a few stations (K5, K17, K9 and S3) of the N15 and N160 segments, and they are all located in distinct structural contexts, which could explain their unusually high phenocryst contents. For example, station K5 ($16^{\circ} 53^{\prime} \mathrm{S}$) which is located over recent lava flows, from a sidescan sonar data (Kroenke et al., 1987) and station K17 ($16^{\circ} 48^{\prime} \mathrm{S}$), have sampled basalts erupted in the triple junction area. Station K9 is located near the middle of the N15 segment ($17^{\circ} 19^{\prime} \mathrm{S}$), just in the area where the ridge starts to rise in the direction of the triple junction. Station S 3 is on a small 200 m high volcano at the southern tip of this segment. In this zone, the spreading ridge (which is very well defined towards the north) disappears in an irregular area marked by several volcanoes similar to the one sampled. Thus, there is an apparent correlation between the morphology of the spreading centre and the lavas it produces, with more heterogeneous types on morphologically complex ridges and more restricted types along clearly defined axes.

Mineralogy

In all the 56 lavas in which minerals were analyzed, the morphology, mutual relationships and chemistry of the different minerals of the basalts of the NFB spreading ridge generally exhibit a "normal" evolution from mafic or calcic phenocrysts to more evolved microphenocrysts and microlites. During crystal fractionation, the partition of the elements between the melt and the growing crystals follows the law of mass action, expressed by specific partition coefficients (K_{D} mineral/liquid). The calculation of the K_{D} 's for some major element pairs using the glass composition and its coexisting minerals provides
a guide to gross disequilibrium between phenocryst and host glass. We used the following low-pressure experimental partition coefficients (assuming that $X \mathrm{FeO}_{\mathrm{Liq}}=0.9 \times X \mathrm{FeO}_{\mathrm{Liq}}{ }^{\text {}}$)

Olivine:

$$
\frac{X \mathrm{FeO}_{o l}}{X \mathrm{MgO}_{o l}} \times \frac{X \mathrm{MgO}_{L i q}}{X \mathrm{FeO}_{L i q}}=0.30
$$

(Roedder and Emslie, 1970)
Clinopyroxene: $\frac{\mathrm{XFCO}_{C p x}}{X \mathrm{MgO}_{C p x}} \times \frac{X \mathrm{MgO}_{\text {Liq }}}{X \mathrm{FeO}_{\text {Liq }}}=0.23$ to 0.27
(Grove and Bryan, 1983; Irving and Frey, 1984)
Plagioclase: $\quad \frac{\mathrm{XCa}_{P l}}{X \mathrm{Na}_{P l}} \times \frac{X \mathrm{Na}_{\text {Liq }}}{X \mathrm{Ca}_{\text {Liq }}}=1.2$ to 1.4
(Drake, 1976; Grove and Bryan, 1983)
The clinopyroxene phenocrysts and microphenocrysts are endiopside which does not evolve much towards augitic compositions, as is frequently observed in MORBs (Grove and Bryan, 1983). Their average compositions do not vary along the different segments (Table 5a and Fig.4) and they most commonly occur as sub-euhedral to skeletal microphenocrysts associated in glomerocrysts with plagioclase microphenocrysts and less often with olivine. The NFB clinopyroxenes cover the entire range of experimentally determined K_{D} 's (0.23-0.27) (Table 5a) as described for some of the Mid-Atlantic Ridge basalts near $36^{\circ} \mathrm{N}$ (Stakes et al., 1985) and the Red Sea Rift basalts near $18^{\circ} \mathrm{N}$ (Eissen et al., 1989). However, some clinopyroxene microphenocrysts from sample $55-05$ (N15 segment) are more evolved (Fig.4a) and in complete disequilibrium with their host glass with K_{D} 's >0.50 (Table 5a and Fig.5a). Some intersertal clinopyroxene microphenocrysts of sample S2-1 ($\mathrm{N}-\mathrm{S}$ segment) are also slightly more ferrous, which is probably the resulting of the coarser texture of this doleritic basalt (Fig.5c)...Further, samples K $8-2, \mathrm{~K} 8-3, \mathrm{~K} 9-4$ and K $9-5$ contain clinopyroxenes that are in general too evolved to have crystallized from their present host glass. This fact seems to indicate that some magma mixing occurred during the genesis of these basalts, although the magmas that mixed were probably closely related. In contrast, several basalts contain clinopyroxenes which are more primitive than would

Fig.4. Clinopyroxene compositions plotted in the En\%-Wo\%-Fs\% triangle. (a) N160 segment. (b) N15 segment. (c) N-S segment. (d) 174 E segment.
be the case if they were in equilibrium with their host glass. K_{D} ' $\mathrm{s}<0.20$ are observed in sample S502 on the N160 segment, in samples K9-1, S3-02 and S3-04 on the N15 segment, and in samples S1-04, S2-1 (zoned phenocryst, Table 5a) and S22 on the N-S segment. These clinopyroxenes are mainly euhedral to rounded phenocrysts, and can be considered as xenocrysts. They are possible relics of a higher pressure stage or they may have resulted from the mixing of closely related magma batches.

Olivine crystals show regular behaviour, being lined up (Fig.5) more or less around their theoretical equilibrium with their host glass ($K_{\mathrm{D}}=0.30$, Roedder and Emslie, 1970). However, their compositional range (Table 5b) varies from one segment to another, with values of $82<\mathrm{Fo} \%<90$, $78<\mathrm{Fo} \%<90,79<\mathrm{Fo} \%<87$ and $81<\mathrm{Fo} \%<88$ being observed for the N160, N15, N-S and 174E
segments respectively. Moreover, the range is also variable (Fig.5b) within each of these segments.
In the N160 segment, samples S5-03 and S5-05 have an average olivine composition of $\mathrm{Fo}_{85.2 \pm 0.6}$, the composition being relatively homogeneous and close to equilibrium with its host glass (Fig. 5 b and Table 5 b). In sample $55-04$, olivine compositions vary between $\mathrm{Fo}_{81.7}$ and $\mathrm{Fo}_{87.7}$ (Table 5b), with an average ($\mathrm{Fo}_{84.6}$) similar to that seen in samples S5-03 and 05 but a much higher standard deviation ($=2.6$). In sample $\mathrm{S} 5-02$, olivines are more Mg rich (average $\mathrm{Fo}_{87.8 \pm 2.2}$), and not in equilibrium with their host glass. Their strong crystal zonations (Table 5 b) suggest the possibility of magma mixing. As frequently observed in MORB, the most magnesian olivines are found in the most phyric basalts, in this case station K5, with euhedral phenocrysts of average composition of $\mathrm{Fo}_{89.2 \pm 0.8}$ close to equilibrium with their host glasses.

TABLE 5a
Selected electron microprobe analyses of some microphenocrysts and phenocrysts from the NFB. Clinopyroxene analyses: enstatite (En\%), wollastonite (Wo\%) and ferrosilite ($\mathrm{Fs} \%$) content as relative percentage of the clinopyroxene. $K_{\mathrm{D}}=$ partition coefficient of Mg and Fe between the clinopyroxene and its host glass (bulk rock for sample $\mathrm{S} 2-1$). Analyses performed on the CAMEBAX microprobe at the IFREMER Centre at Brest and on the JEOL superprobe at the Geological Survey of Japan at Tsukuba (analysts J.P. Eissen and G. Morvan). Arrows link centre and rim of a single phenocryst. $m p h=$ microphenocryst; $p h=$ phenocryst. The complete set of data is available from J.P. Eissen upon request

Olivine analyses: forsterite (Fo) content as relative percentage of the olivine. $K_{\mathbf{D}}=$ partition coefficient of Mg and Fe between the olivine and its host glass (bulk rock
for samples K17-1, S2-1 and SDT-06). For details, see Table 5a

N160 segment																						
station	55	55	55	55	55	55	S5		K29	K29			K17				K4					
Analyse	02	02	03	03	mph	\% 04	${ }^{04}$	05	mph	mph	11 mph	mph ${ }^{1}$	ph	$\stackrel{2}{2}$		center ${ }^{2}$	${ }_{\text {mph }}^{6}$	$\stackrel{1}{\text { mph }}$	mph	mph	mph	
SHO_{2}	40.56	40.09	40.33	40.24	40.02	40.85	39.71	39.86	40.00	39.89	40.72	39.73	41.04	40.96	40.33	40.50	39.83	38.70	38.12	38.16	40.20	39.52
$\mathrm{Al}_{2} \mathrm{O}_{3}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.08	0.05	0.05	0.02	0.06	0.06	0.02	0.00	0.00	0.02	0.06	0.01	.	. 01
FeO	9.66	13.86	13.48	12.44	15.27	12.00	17.21	14.28	15.74	14.69	13.02	17.87	11.81	9.46	10.92	11.40	14.56	20.11	18.88	17.98	14.57	18.14
MnO	0.07	0.04	0.11	0.09	0.10	0.13	0.05	0.34	0.22	0.31	0.31	0.41	0.24	0.15	0.71	0.17	0.20	0.35	0.49	0.35	0.28	0.22
MqO	49.72	46.20	47.43	47.45	45.06	47.88	43.13	45.56	43.53	43.87	44.31	41.01	47.06	48.91	47.36	47.99	45.46	41.85	42.15	43.29	5.42	1.33
CaO	0.34	0.21	0.28	0.30	0.34	0.26	0.27	0.23	0.30	0.33	0.35	0.36	0.33	0.33	0.27	0.33	0.31	0.36	0.28	0.32	0.35	0.25
$\mathrm{Cr2O}_{3}$	0.04	0.01	0.00	0.00	0.17	0.00	0.00	0.01	0.04	0.05	0.06	0.03	0.13	0.00	0.42	0.10	0.13	0.00	0.00	0.00	0.08	0.05
NiO	0.00	0.00	0.22	0.33	0.00	0.00	0.00	0.00	0.16	-0.09	${ }_{0}^{0.14}$	0.12	0.20	${ }_{99} 0.00$	100.03	100.48	(100.48	0.00 101.38	0.00 99.99	${ }^{100.11}$	100.89	99.52
Total	100.39	100.41	101.85	100.85	00.96	01.12	100.38	100.28	100.07	99.28	98.96	99.55	100.87	99.85	00.03	100.48	1.00 .48	101.38	99.99			99.52
Si	0.991	0.997	0.989	0.992	0.997	1.000	1.003	0.996	1.007	1.008	1.023	1.016	1.007	1.003	0.997	0.996	0.994	0.984	0.979	0.975	0.999	1.011
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.01	0.001	0.001	0.002	0.002	0.001	0.000	0.000	0.001	0.002	0.000	0.000	
Fe	0.197	0.288	0.276	0.256	0.318	0.246	0.363	0.298	0.331	0.310	0.273	0.382	0.242	0.194	0.226	0.234	0.304	0.428	0.406	0.384	0.303	0.388
Mn	0.001	0.001	0.002	0.002	0.002	0.003	0.001	0.007	0.005	0.007	0.007	0.009	0.005	0.003	0.015	0.003	0.004	0.007	0.011	0.007	0.006	0. 005
Mg	1.810	1.712	1.733	1.743	1.672	1.746	1.623	1.696	1.633	1.652	1.658	1.563	1.720	1.786	1.745	1.759	1.691	1.586	1.614	1.649	1.682	1.576
${ }_{\text {Ca }}$	0.009	0.006	0.007	0.008	0.009	0.007	0.007	0.006	. 0.008	0.009	0.009	0.010	-0.009	${ }_{0}^{0.009}$	${ }^{0.007}$	0.002		-0.010	${ }_{0}^{10.000}$	0.000	0.002	${ }_{0} .001$
${ }_{\text {cr }}$	0.001 0.000	0.000 0.000	0.000 0.004	0.000 0.007	0.003 0.000	0.000	0.000 0.000	0.000 0.000	0.001 0.003	0.001 0.002	0.001 0.003	0.001 0.002	0.003 0.004	0.000 0.000	0.008 0.000	0.002 0.000	0.003 0.000	0.000 0.000	0.000 0.000	0.000	${ }_{0} .000$	0.000
Total	3.009	3.003	3.011	3.008	3.002	3.000	2.997	3.004	2.991	2.991	2.976	2.983	2.991	2.996	2.999	3.003	3.005	3.016	3.020	3.025	3.000	2.988
Fot	90.2	85.6	86.2	87.2	84.0	87.7	81.7	85.0	83.1	84.2	85.8	80.4	87.7	90.2	88.5	88.2	84.8	78.8	79.9	81.1	84.7	80.2
Fat	9.8	14.4	13.8	12.8	16.0	12.3	18.3	15.0	16.9	15.8	14.2	19.6	12.3		11.5	11.8	15.2	21.2	20.1	18.9	15.3	19.8
кD	0.16	0.25	0.25	0.23	0.29	0.24	0.38	0.28	0.28	0.25	0.22	0.36	0.20	0.25	0.30	0.31	0.27	0.32	0.52	0.48	0.46	0.3

0.996	1.00	0.97	0.99	0.990	0.	1.	0.975	1.0	0.979	1.0	1.0	0.9	0.9	0.9	0.995	0.998	1.003	0.996	0.988	0.996	0.992
0.002	0.00	0.00	0.001	0.00	0.00	0.001		0.0		0.0		0.002	0.0		0.001	0.003	0.000			0.002	
0.324	0.310	0.361	0.430	0.430	0.249	0.304	0.310	0.278	0.382	0.403	0.270	0.368	0.207	0.406	0.315	0.371	0.420	0.2	0.375	15	0.329 0.004
0.007	0.004	0.006	0.007	0.007	0.000	0.006	0.004	0.001	0.006	0.005	0.005	0.00	0.002	0.005	0.0	0.005	0.0	0.003	. 0	0.	0.004
1.668	1.673	1.678	1.572	1.572	1.749	1.677	1.727	1.711	1.642	1.571	1.706	1.625	1.787	1.594	1.677	1.61	${ }^{1.561}$	1.724	1.633	1.676	1.673
0.006	0.010	0.010	0.008	0.008	0.008	0.008	0.007	0.009	0.008	0.011	0.014	0.008	0.010	0.011	0.008		0.00				0.001
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.000	0.000	0.003	0.000	0.00	0.002	0.001	0.002	0.001
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.002	0.000	0.000	0.005	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3.003	2.999	3.027	3.009	3.009		98	. 025	3.000	3.021	2.996	2.998	3.004	3.00	3.01	3.00	3.00		3.003		3.002	
									81		86.3	81.	89.6	79.	84.2	81.3	78.8	86.5	81.3	${ }^{15} .2$	${ }^{83.6}$
${ }^{16.3}$		17	21	21	12	15.3 0.31	15.2 0.29	14.0 0.2	18.9 0.26	20.	13.	18.5	10.4	20.	15.8 0.2	18.7	21.2	0.1	18.7 0.2		

TABLE 5b (continued)

Ns segment (following)																					
Station Analyse	$\begin{aligned} & 54 \\ & 04 \end{aligned}$	$\begin{aligned} & 54 \\ & 04 \end{aligned}$	$\begin{array}{r} K 14 \\ 1 \end{array}$	$\begin{array}{r} \mathrm{K} 14 \\ 5 \end{array}$	$\begin{array}{r} \mathrm{K} 15 \\ 7 \end{array}$	$\begin{array}{r} \mathrm{K} 15 \\ 7 \end{array}$	$\begin{gathered} \text { SDT } \\ 02 \end{gathered}$	SDT 05	$\begin{gathered} \text { SDT } \\ 06 \end{gathered}$	$\begin{gathered} \text { SDT } \\ 06 \end{gathered}$	$\begin{gathered} \text { SDT } \\ 10 \end{gathered}$	${ }_{10}^{\text {SDT }}$	$\begin{aligned} & 51 \\ & 03 \end{aligned}$	$\begin{aligned} & 51 \\ & 03 \end{aligned}$	$\begin{aligned} & 51 \\ & 04 \end{aligned}$	51 04	51 05	$\begin{aligned} & 51 \\ & 09 \end{aligned}$	$\begin{array}{r} \mathrm{K} 21 \\ 27 \end{array}$	$\begin{array}{r} \mathrm{K} 23 \\ 14 \end{array}$	$K 22$ 3
				mph	mph	mph	center				ph		cent	ph	ph	ph	mph	ph	mph	mph	
SiO_{2}	39.61	39.38	39.48	39.73	38.94	38.86	39.53	39.58	39.53	39.80	40.31	39.22	39.06	40.16	39.57	39.82	40.49	40.08	40.78	40.19	39.82
$\mathrm{Al}_{2} \mathrm{O}_{3}$	0.00	0.00	0.10	0.10	0.04	0.11	0.00	0.01	0.09	0.02		0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.03	0.04
FeO	15.22	16.04	15.76	14.83	18.24	17.85	13.99	14.84	14.96	14.17	14.28	15.76	17.15	14.85	15.03	17.76	18.09	15.17	11.68	14.99	17.14
Mno	0.29	0.47	0.14	0.22	0.18	0.31	0.25	0.27	0.45	0.26	0.18	0.12	0.24	0.30	0.35	0.21	0.30	0.20	0.25	0.28	0.32
Mgo	44.64	43.41	45.07	44.14	42.98	42.89	46.78	45.82	45.89	46.08	45.97	44.41	43.32	45.66	44,65	42.94	42.03	43.03	46.98	43.69	41.48
cao	0.32	0.38	0.30	0.33	0.34	0.30	0.30	0.31	0.33	0.28	0.33	0.29	0.26	0.39	0.32	0.25	0.30	0.36	0.26	0.34	0.27
$\mathrm{Cr}_{2} \mathrm{O}$	0.00	0.00	0.19	0.13	0.16	0.02	0.03	0.00	0.05	0.09	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.08	0.05	0.03
N1O	0.00	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.26	0.00	0.00	0.00	0.00	0.14	0.20	0.29	0.10	0.05
Tota	100.08	99.83	01.04	99.48	00.87	00.33	00.89	0.83	1.28	00.70	01.23	0.06	0.03	1.46	99.92	0.98	21.35	99.04	0. 38	99.67	9.15
si	0.996	0.998	0.986	1.002	0.986	0.988	0.982	0.987	0.983	0.990	0.997	0.990	0.992	0.994	0.996	1.002	1.016	1.017	1.005	1.012	1.018
al	0.000	0.000	0.003	0.003	0.001	0.003	0.000	0.000	0.003	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.001	0.001
Fe	0.320	0.340	0.329	0.313	0.386	0.379	0.291	0.309	0.311	0.295	0.295	0.333	0.364	0.307	0.316	0.374	0.380	0.322	0.241	0.316	0.366
Mn	0.006	0.010	0.003	0.005	0.004	0.007	0.005	0.006	0.009	0.005	0.004	0.003	0.005	0.006	0.007	0.004	0.006	0.004	0.005	0.006	0.007
Mg	1.673	1.640	1.678	1.650	1.622	1.625	1.731	1.702	1.700	1.708	1.695	1.671	1.640	1.685	1.675	1.611	1.572	1.627	1.726	1.640	1.580
ca	0.009	0.010	0.008	0.009	0.009	0.008	0.008	0.008	0.009	0.007	0.009	0.008	0.007	0.010	0.009	0.007	0.008	0.010	0.007	0.009	0.007
cr	0.000	0.000	0.004	0.003	0.003	0.000	0.001	0.000	0.001	0.002	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.002	0.001	0.001
N1	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,003	0.005	0.000	0.000	0.000	0.000	0.003	0.004	0.006	0.002	${ }^{0.001}$
Total	3.004	. 02	3.011	2.995	3.012	3.010	3.018	3.013	3.016	3.009	3.003	3.010	3.008	3.005	3.004	2.998	2.984	2.983	2.993	2.987	2.981
Fot	83.9	82.8	83.6	84.1	90.8	81.1	85.6	84.6	84.5	85.3	85.2	83.4	81.8	84.6	84.1	81.2	80.5	83.5	87.8	83.9	81.2
Fat	16.1	17.2	16.4	15.9	19.2	18.9	14.4	15.4	15.5	14.7	14.8	16.6	18.2	15.4	15.9	18.8	19.5	16.5	12.2	16.1	18.8
KD	0.28	0.30	0.31	0.29	0.37	0.36	0.27	0.29	0.29	0,27	0.27	0.31	0.34	0.28	0.24	0.30	0.33	0.30	0.29	0.30	0.27

TABLE 5c
Plagioclase analyses: anorthite (An) content as relative percentage of the plagioclase. $K_{\mathrm{D}}=$ partition coefficient of Ca and Na between the plagioclase and its host glass (bulk rock for samples K17-1, S2-1 and SDT-06). For details, see Table 5a

Station Sample	$\begin{array}{r} \mathrm{N} 160 \\ \mathrm{ss} \\ 02 \\ \mathrm{ph} \\ \mathrm{ph} \end{array}$	$\begin{gathered} \text { segment } \\ \text { s. } \\ \text { o2 } \\ \text { center- } \end{gathered}$	$\begin{array}{r} 55 \\ 02 \\ >012 \end{array}$	$\begin{array}{r} 55 \\ 03 \\ \text { center } \end{array}$	$\begin{gathered} 55 \\ 03 \\ \text { center } \end{gathered}$	$\begin{array}{r} 55 \\ 03 \\ ->\mathrm{r} 1 \mathrm{~m} \end{array}$	$\begin{array}{r} 55 \\ 03 \\ \text { mph } \end{array}$	$\begin{gathered} 55 \\ 03 \\ \text { center. } \end{gathered}$	$\begin{array}{r} 55 \\ ->\mathrm{r} 1 \mathrm{~m} \\ ->1 \end{array}$	$\begin{aligned} & 55 \\ & \text { 04 } \\ & \text { ph } \end{aligned}$	$\begin{gathered} 55 \\ \text { center- } \end{gathered}$	$\begin{array}{r} 55 \\ \mathbf{0 4} \\ \mathrm{r}-\mathrm{r} 1 \mathrm{~m} \end{array}$	$\begin{gathered} 55 \\ 04 \\ \text { center } \end{gathered}$	$\begin{array}{r} 55 \\ 54 \\ c \rightarrow>r 1 m \end{array}$	$\begin{aligned} & \text { s5 } \\ & 05 \\ & \text { ph } \end{aligned}$	$\begin{aligned} & 55 \\ & 05 \\ & \mathbf{0 5} \end{aligned}$	$\begin{array}{r} \mathrm{K} 29 \\ { }_{3}^{3} \end{array}$	$\begin{array}{r} \mathrm{k} 29 \\ 5 \\ \mathrm{mph} \end{array}$	$\begin{gathered} \mathrm{k} 29 \\ 11 \\ \mathrm{mph} \end{gathered}$	$\begin{array}{r} \mathrm{K} 17 \\ 1 \\ \text { ph } \end{array}$	$\begin{array}{r} \mathrm{K} 17 \\ 1 \\ \mathrm{ph} \end{array}$	$\begin{gathered} \mathrm{K} 17 \\ 2 \\ \mathrm{mph} \end{gathered}$	K5 2 ph	K5 2 ph
SHO_{2}	50.86	47.17	46.71	50,30	47.75	46	52.59	47.49	. 46	50.86	47.51	46.46	46.47	47.39	50.64	50.47	51.60	51.35	52.88	47.07	46.47	51.91	46.36	${ }^{46} 8.87$
${ }^{\text {Al }} 2^{\mathrm{O}}$	31.13	33.89	${ }^{33.85}$	30.62	32.31	31.01	28.01	34.05	32.30	31.12	33.15	34.61	33.83	33.64	31.65	31.46	30.47	29.86	29.56	32.99	33.29	29.83	34.10	33.73 0.34
FeO	27	0.21	0.53	0.37	41	0.33	. 17	. 21	24	. 27	. 28	38	0.24	0.36	${ }_{0} 0.19$	0.44	0.23	0.42	. 24	17	0.17	22	O.20	0.34 0.19
${ }_{\text {cao }}$	- 13.28	${ }_{17}{ }^{\text {0.22 }}$	0.24	0.27 5 5	16.29	16.43	${ }_{14.01}$	$\stackrel{17.54}{ }$	${ }^{15.53}$	${ }_{14.65}$	${ }_{16.70}$	17.70	${ }_{17.41}$	16.99	14.78	14.93	14.83	13.98	14.23	18.01	18.17	13.91	18.56	17.77
$\mathrm{Na}_{2} \mathrm{O}$	3.35	1.58	1.66	${ }_{2.80}$	2.22	2.67	3.97	1.54	2.77	3.10	1.91	1.30	1.47	1.69	3.24	3.00	3.26	3.46.	3.70	1.30	1.10	3.56	1.21	1.48
$\mathrm{K}_{2} \mathrm{O}$	0.00	0.01	03	0.04	0.05	0.08	0.12	0.00	0.00	0.02	0.00	0.02	0.01	0.00	0.05	0.04	0.03	${ }^{-9.04}$	0.03	0.02	0.02	0.05		0.01 0.38
Total	99.78	00.34	99.92	100.10	99.95	100.23	00.40	01.02	100.49	100.58	99.81	100.69	99.72	100.38	100.78	100.60	100.83	99.33	101.09	99.75	99.50	20.08	00.6	0.38
si	2.31 B	159	150	2.299	199	2.266	2.399	2.160	2.250	2.308	2.184	124	2.143	2.168	2.292	2.291	2.334	2.354	2.382	2.171	2.151	2.363	2.125	2.150
${ }^{\text {al }}$	1.672	1.828	1.837	1.650	1.754	1.674	1.506	1.825	1.732	1.664	1.797	1.865	1.839	1.814	1.689	1.683	1.625	1.613	1.569	1.793	1.816	1.600	1.843	1.823
Fe	0.010	0.008	0.020	0.014	0.016	0.013	0.045	. 008	0.009	. 0.022	0.011	0.015	0.011	0.014	. 0007	0.017	0.016	${ }_{0}^{0} 0.01$	0.017	${ }_{0}^{0.007}$	${ }_{0}^{0.011}$	O.024	${ }_{0}^{0.006}$	-.013
Mg	0.019	0.015	0.016	0.018	0.015	. 810	0.036	${ }_{0} .855$	0.757	0.712	0.823	0.867	0.860	0.833	0.717	0.726	0.719	0.68	0.687	0.89	0.90	0.678	0.912	0.873
ca	. 678	0.846	. 8.83	. 769	. 198	. 2306	0.651	0.136	0.244	0.273	0.170	0.115	0.131	0.150	0.28	. 26	0.2		0.3	0.1		0.31		
${ }_{\mathrm{K}}^{\mathrm{Na}}$	0.296	0.140	. 148	. 248	${ }_{0}^{0.003}$. 2337	. 351		0.000	0.001	. 100	.	.	- 000	0.003	0.003	- 0	0.00	0.002	0.001	0.00	0.003	0.0	0.001
${ }_{\text {Total }}$	4.994	4.997	${ }_{5} .007$	${ }_{5} .0001$	5.024	${ }_{5} 5$	${ }_{5}$	4.996	${ }_{5} .006$	4.997	5.002	5.002	5.003	5.000	5.007	5.001	4.997	4.995	4.996	4.991	4.991	4.996	5.00	5.004
Ant					80.6	. 9	65.7	86.3	75.6	72.2	82.9	88.2	86.7	84.7	71.4	73.1	71.4	68.9	67.9	88.	0.0	68.1	89.5	86.9
Ab*	30.4	14.2	15.1	24.3	19.1	22	33.7	13.7	24.4	27.7	17.1	11.7	13.2	15.3	28.3	26.6	28.4	30.9	31	11.	9.9	31.6	10.5	13.1
Ors	0.0	0.1	0.2	0.2	0.3	0.4	0.7	0.0	0.0	. 1	. 7	0.1	. 1	0.0	0.3	. 3	0.2	. 2			-1	0.3		
KD	0.9	2.3	2.1	1.2	1.7	1.3	0.8	2.5	1.2	0.9	1.7	2.6	2.3	1.9	1.0	1.	1.1	1.0	1.0	3.4	4.0	1.0	3.7	2.9

Station Sample	15 segment			$\begin{array}{r} \mathrm{K}_{4} \\ \hline \end{array}$	$\begin{gathered} \mathrm{K} 4 \\ 6 \end{gathered}$	$\begin{gathered} \text { K8 } \\ 1 \end{gathered}$	${ }_{1}{ }^{\text {¢ }}$	$\begin{array}{r} \text { Kg } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{k} \\ & 1 \\ & \mathrm{ph} \end{aligned}$	$\begin{aligned} & \mathrm{k} 8 \\ & 2 \\ & 2 \\ & \mathrm{ph} \end{aligned}$	$\begin{gathered} \text { Kg } \\ { }_{2}^{2 p h} \end{gathered}$	$\begin{aligned} & \mathrm{k} 8 \\ & 3 \\ & \mathrm{ph} \end{aligned}$	$\begin{gathered} \text { Kg } \\ \text { mph } \end{gathered}$	$\begin{aligned} & \mathrm{KB} \\ & 4 \\ & \mathrm{ph} \end{aligned}$	$\begin{aligned} & \text { Kg } \\ & \text { f } \\ & \text { ph } \end{aligned}$	$\begin{aligned} & \mathrm{kg} \\ & \mathrm{f} \\ & \mathrm{ph} \end{aligned}$	$\begin{array}{r} \text { K8 } \\ \text { mph } \end{array}$	K 91			K9	$\begin{array}{r} \mathrm{kg} \\ \mathrm{~m} \\ \mathrm{mph} \end{array}$	K9
		${ }_{\text {K4 }}^{1}$																	$\begin{gathered} \mathrm{K} 9 \\ 1 \end{gathered}$	1			
	ph														ph								
SHO_{2}	48	49.99	51.55	49.22	48	49.	47.73	52.63	46.07	46.72	52.18	45.73	49.60	48.54	46.31	47.63	52.86	47.		45.97			
$\mathrm{Al2}_{2}$	32.48	30.97	30.71	32.45	33.21	32.14	33.05	28.96	34.31	33.66	29.33	33,85	31.30	32.26	34.48	33.19	28.98	33.46	30.79	34.22	33.93	29.73	33.80
	58	0.51	. 55	0.38		47	44	76	0.25	. 24	0.65	0.39	48		0.28	0.48	1		0.54	18	0.32	0.58	0.44
Mgo	0.21	0.	0.2	0.23	0.		0.25	0.27	0.22	0.22	0.2	- 20	28		0.24	0.2	0.33	0.26	0.27	0.20	0.22	0.29	26
cao	14.66	14.		15.						18	3.	17	15.24	16.	9.06	17	13.32	16.63	23.97	7.25	7.19	12.80	7.98
Na20	2.46	3.20	3.38	2.32	2.14	2.55	1.93	4.34	1.38	1.62	4.21	1.45	3.07	2.24	1.28	1.79				1.15	1.30	3.77	1.49
$\mathrm{K}_{2} \mathrm{O}$	01	0.0	05	0.03	0.01	0.01	0.01	0.08	0.02	0.05	0.	0.02	. 03	0.00	0.03	0.04		0.03		0.00	0.00	. 0	0.00
Total	99.18	99.15	00.61	00.55	1.33	100.43	00.49	100.50	100.54	00.69	100.29	98.78	00.00	0.38	1.68	1.15	0.3	9.38	9.70	9.98	9.70		00.94
SI	2.244	2.300	2.334	240	2.197	2.243	2.184	2.39	115	. 141	2.374	2.130	2.272	2.221	2.107	2.171	2.399	2.179	2.320	2.132	2.152	2.394	2.145
A1	1.7			1.741	1.774	1.728	1.793	55	. 85	. 81	1.573	1.859	1.689	1.740	1.849	1.783	1.550	1.818	1.659	1.871	842	1.588	1.819
Fe	0.0	0.020	0.0	0.015	0.01	0.018	0.01		0.0		0.025		0.019	. 0	0.011	0.018	0.034	0.009	0.021	0.007	. 012	0.022	0.017
Mg	0.014	0.019	0.014	0.016	0.016	0.015	0.017	0.018	0.01	0.01	0.018	0.01	0.0	0.01		0.0	0.022		0.019	0.014	0.015	0.019	. 018
Ca	0.723	0.698	0.687	0.776	0.821	0.776	0.838	0.656	0.899	0.893	0.664	0.855		0.814	0.929	0.869	0.647	0.821	0.684	0.857	0.848	0.622	0.880
Na	0.219	0.286	0.297	0.205	0.188	0.225	0.171	0.382	0.123	0.144	0.371	0.131	0.273	0.199	0.113	0.158	0.345	0.132	0.293	0.103	0.116	0.332	0.131
	0.001	0.003	0.003	0.002	0.001	0.000	0.000	0.004	. 0.001	0.003	0.001	0.001	0.001	0.000	0.002	0.002	0.001	0.002	0.002	0.000	0.000	0.002	0.000
Total	4.985	5.004	4.996	4.993	5.011	5.005	5.010	5.028	5.019	5.023	5.026	5.006	5.021	5.009	5.026	5.018	4.999	4.9	4.998	4.984	4.9	4.97	5.011
		70.8	. 6	. 0	81.3	. 5	83.0	62.9	87.9	85.9	64.1	96.6	73.2	80.4	89.0	84.4	65.2	86.0	69.8	89.3	88.0	65.1	37.0
Abt	23.3	29.0	30.1	20.8	18.6	22.5	16.9	36.6	12.0	13.8	35.8	13.2	26.7	19.6	10.8	15.4	34.7	13.8	29.9		12.0	34.7	13.0
Or	0.1	0.3	0.3	0.2	0.1		. 0	0.4			0.1			0.0					0.8	0.0	2.7	0.2	

TABLE 5c (continued)

$\begin{aligned} & \text { Station } \\ & \text { Sample }\end{aligned}$
Sal \qquad

ng
K9
5

K 12
1
ph K 12
1
ph $k 12$
4
ph K 12
4
mph K 6 A
2

mph $\begin{array}{rr}\text { K6A } \\ 2 & \text { K6A } \\ 2\end{array}$ | K6A |
| :---: |
| 3 | $\underset{\rightarrow>\mathrm{rim}}{\substack{\mathrm{K} 6 \mathrm{~A} \\ 3}}$ K6A

3
center K6A
3
ph $\begin{array}{r}\text { K6 } \\ 3 \\ 3\end{array}$
center K 6
3
ph K 6
5
ph K 6
5
ph $\begin{array}{cr}\text { K6 } & 53 \\ 5 & 01 \\ \text { mph } & \text { center }\end{array}$ $\begin{array}{rr}53 & 53 \\ 01 & 01 \\ \text { nter } & \text { ph }\end{array}$

TABLE 5c（continued）

station Sample	$\mathrm{N}-\mathrm{S}$	egment	（follow	ng）	1	$\begin{array}{r} \mathbf{K 1 4} \\ 1 \end{array}$	$\begin{array}{r} \mathrm{K} 14 \\ 5 \end{array}$	$\begin{array}{r} k 14 \\ 5 \end{array}$	$\begin{gathered} k 14 \\ 6 \\ 6 \end{gathered}$	$\begin{array}{r} \mathrm{K14} \\ 8 \\ 0 \mathrm{~h} \end{array}$	$\begin{array}{r} \mathrm{K} 14 \\ \mathrm{~g} \end{array}$	${ }^{\mathrm{K} 15}{ }_{2}$	$\begin{aligned} & \mathrm{K} 15 \\ & 7 \end{aligned}$	$\begin{array}{r} \text { K15 } \\ 7 \end{array}$	$\begin{gathered} \text { SDT } \\ 02 \\ \text { ph } \end{gathered}$	$\begin{gathered} S D T \\ 02 \\ 0 h \end{gathered}$	$\begin{gathered} \text { SDT } \\ 02 \\ \text { mph } \end{gathered}$	$\begin{array}{r} \text { SDT } \\ 05 \\ \text { ph } \end{array}$	$\begin{gathered} \text { SDT } \\ 05 \\ \text { ph } \end{gathered}$		$\begin{gathered} \text { SDT } \\ 06 \end{gathered}$	$\begin{gathered} \text { SDT } \\ 09 \\ \text { mon } \end{gathered}$	$\begin{array}{r} \text { SDT } \\ 10 \end{array}$
	（04	－ $\begin{gathered}04 \\ \text { cente }\end{gathered}$	O4	05	1																		
SHO_{2}	51.62	46.98	47.74	50.21	48.31	50.81	50.99	52.07	51.89	47.16	51.19	51.90	52.08	52.48	45.53	47.89	49.55	44.74	46.32	44.64	45.51	51.30	44.94
$\mathrm{Al}_{2}{ }^{3}$	29.33	32.77	32.86	30.63	32.83	30.35	31.07	29.85	28.94	32.69	30.02	29.70	29.86	29.46	34.65	32.59	30.99	35.02	33.43	34.86	33.82	30.02	33.79
FeO	0.49	0.50	0.38	． 5	0.58	0.47	47	0.92	． 67	0.41	0.58	0.75	0.76	0.63	0.39	0.37	0.39	0.25	0.32	0.44	0.28	0.67	0.13
Mgo	0.24	0.23	0.21	0.24	0.24	0.31	0.29	0.46	0.36	0.17	0.27	0.35	0.30	0.30	0.23	0.28	0.25	0.17	0.25	0.15	0.22	0.23	0.13
CaO	14.56	16.79	16.81	15.39	15.70	13.79	14.73	13.88	14.38	17.70	14.81	13.77	13.85	12.94	17.69	16.32	14.15	18.36	17.14	18.53	17.41	24.58	18.59
$\mathrm{Na}_{2} \mathrm{O}$	3.28	1.95	2.20	2.72	2.03	3.54	3.10	3.56	3.47	1.55	3.15	3.50	3.93	4.18	1.35	2.19	3.48	0.99	1.74	0.78	1.42	3.09	0.81
$\mathrm{K}_{2} \mathrm{O}$	0.01	0.01	0.00	0.05	0.02	0.05	0.04	0.04	0.02	0.01	0.03	0.02	0.05	0.04	0.02	0.00	0.02	0.00	0.02	0.01	0.02	0.04	0.00
Tota	99.53	99.23	00.20	99.79	99.71	99.33	0.70	00.78	99.73	99.69	00．0s	99.99	100.83	100.03	99.87	99.64	98.82	99.52	99.23	99.42	98.68	99.93	98.39
S1	2.365	2.178	2.190	2.301	2.217	2.331	2.310	2.357	2.374	2.178	2.336	2.364	2.358	2.386	2.102	2.205	2.290	2.075	2.149	2.075	2.124	2.342	2.107
${ }^{\text {al }}$	1.584	1.791	1.777	1.655	1.776	1.641	1.659	1.593	1.561	1.780	1.615	1.595	1.593	1.579	1．886	1.769	1.688	1.914	1.828	1.910	1.860	1.615	1.867
Fe	0.019	0.019	0.015	0.021	0.022	0.018	0.018	0.035	0.026	0.016	0.022	0.029	0.029	0.024	0.015	0.014	0.015	0.010	0.012	0.017	0.011	0.026	0.005
Mg	0.016	0.016	0.014	0.016	0.015	0.021	0.020	0.031	0.025	0.012	0.018	0.024	0.020	0.020	0.016	0.019	0.017	0.011	0.017	0.010	0.015	0.016	0.009
Ca	0.715	0.834	0.826	0.756	0.772	0.678	0.715	0.673	0.705	0.876	0.724	0.672	0.672	0.630	0.875	0.305	0.700	0.912	0.852	0.923	0.871	0.713	0．934
Na	0.291	0.175	0.196	0.242	0.181	0.315	0.273	0.312	0.308	0.139	0.279	0.309	0.345	0.369	0.121	0.196	0.311	0.089	0.157	0.070	0.128	0.274	0.074
K	0.001	0.001	0.000	0.003	0.001	0.003	0.003	0.002	0.001	0.001	0.002	0.001	0.003	0.002	0.001	0.000	0.001	0.000	0.001	0.001	0.001	0.002	0.000 4.996
rot	4.990	5.014	5.019	4.994	4.986	5.007	4.998	5.004	5，000	5.001	4.996	4.994	5.020	s． 010	5.016	5.008	5.023	5.012	5.016	5.006	5.011	4.988	4.996
Ant	71.0	82.6	80.9	75.5	80.9	68.1	72.2	68.1	9.5	6.3	12.1	68.4	65.9	62.9	97.8	80.4	69.1	91.1	84.4	2.8	97.0	72.1	2.7
Abt	28.9	17.4	19.1	24.2	18.9	31.6	27.5	31.6	30.4	13.7	27.7	31.5	33.8	36.8	12.1	19.6	30.8	8.9	15.5	7.1	12.8	27.7	7.3
Or：	0.1	0.1	0.0	0.3	0.1	0.3	0.3	0.2	0.1	0.1	0.2	0.1	0.3	0.2	0.1	0.0	0.1	0.0	0.1	0.1	0.1	0.2	0.0
KD	0.9	1.8	1.6	1.1	1.7	0.8	1.1	0.9	1.0	2.4	1.0	1.0	0.9	0.8	2.8	1.6	0.9	3.6	1.9	4.4	2.3	1.0	4.7
	$\mathrm{N}-\mathrm{S}$	egmen	（follow																	74 E			
station	SDT	s1	s1	S1	S1	51	51	S1	51	51	51			51	S1	S1	S1	${ }^{1} 1$	S1		K23		
Sample	10	03	03	03	03	04	04	04	05	05	05	05	07	07	07	09	09	09	09	14	14		3
	ph	c	rim	ter	mph	ph	ph	mph	ph	cent	1 m	mph	ph	cent		center		ph	mph	ph	mph	ph	mph
$5 \mathrm{SO}_{2}$	50.32	45.33	50.96	47.83	52.04	47．88	47.91	53.05	46.77	45.68	53.04	52.71	52.47	44.36	48.18	45.85	49.54	47.76	53.77	47.66	50.31	48.17	52.27
$\mathrm{Al2}_{2} \mathrm{O}_{3}$	30.45	34.93	30.87	32.70	30.00	32.83	33.14	29.46	32.69	34.16	28.46	28.21	29.43	35.65	32.87	34.10	31.04	33.16	28.43	32.14	29.85	31.79	
FeO	42	0.35	0.46	． 41	0.80	0.38	0.42	0.48	0.50	0.44	0.85	0.72	0.60	0.38	0.40	0.47	0.47	0.46	0.67	0.26	0.41	0.51	0.56
Mgo	0.23	0.10	0.29	0.22	0.42	0.17	0.17	0.25	0.22	0.13	0.33	0.35	0.18	0.09	0.17	0.16	0.23	0.18	0.26	0.19	0.25	0.13	0.22
CaO	15.04	18.37	14.77	16.55	13.34	16.20	16.81	13.12	17.58	18.63	13.24	12.80	13.23	18.74	17.37	17.87	15.21	17.33	13.15	17.47	15.33	17.33	14.12
$\mathrm{Na}_{2} \mathrm{O}$	2.73	1.01	3.31	2.11	3.70	1.90	1.62	4.12	1.24	0.69	3.59	3.99	4.20	0.53	1.98	0.83	2.32	1.51	3.89	1.60	2.98	1.99	3.66
$\mathrm{K}_{2} \mathrm{O}$	0.02	0.00	0.00	0.02	0.00	0.01	0.02	0.00	0.02	0.00	0.06	0.02	0.00	0.01	0.04	0.01	0.01	0.02	0.00	0.02	0.02	0.00	0.02
Total	99.21	00.09	00.66	99.84	00.30	99.37	00.09	00.4	99.02	99.73	99.57	98.80	00．11	99.76	01.01	99.29	98.82	00.42	100.17	99.34	99.15	99.92	0.37
si	2.314	2.090	2.312	2，200	2.361	2.207	2.195	2.398	2.174	2.113	2.420	2.423	2.385	2.054	2.195	2.125	2.288	2.185	2.436	2.205	2.321	2.219	2.373
A1	1.651	1.898	1.651	1.773	1.605	1.783	1.790	1.569	1.791	1．863	1.531	1.529	1.577	1.945	1.765	1.863	1.689	1.788	1.518	1.753	1.623	1.726	1.580
Fe	0.016	0.013	0.017	0.016	0.030	0.015	0.016	0.018	0.019	0.017	0.032	0.028	0.023	0.015	0.015	0.018	0.018	0.017	0.026	0.010	0.016	0.020	0.021
Mg	0.016	0.007	0.020	0.015	0.028	0.012	0.012	0.017	0.015	0.009	0.022	0.024	0.012	0.006	0.012	0.011	0.016	0.012	0.018	0.013	0.017	0.009	0.015
Ca	0.741	0.907	0.718	0.816	0.649	0.800	0.825	0.635	0.875	0.923	0.647	0.631	0.644	0.930	0.848	0.888	0.753	0.850	0.638	0.866	0.758	0.855	0.687
Na	0.243	0.090	0.291	0.188	0.326	0.170	0.144	0.361	0.112	0.062	0.318	0.356	0.370	0.048	0.175	0.075	0.208	0.134	0.342	0.144	0.267	0.178	0.322
	0.001	0.000	0.000	0.001	0.000	0.001	0.001	0.000	0.001	0.000	0.003	0.001	0.000	0.001	0.002	0.001	0.001	0.001	0.000	0.001	0.001	0.000	0.001
Total	4.983	5.006	5.009	5.008	4.999	4.987	4.983	4.998	4.987	4.987	4.975	4.991	5.012	4.998	5.011	4.981	4.972	4.988	4.976	4.991	5.002	5.007	4.999
Ans	75.2	91.0	． 1	1.2	． 6	2.4	85.0	63.8	88.6	93.7	66.8	63.9	63.5	95.1	82.7	92.2	78.3	86.3	65.1	85.7	73.9	82.8	68.0
Abt	24.7	9.0	28.9	18.7	33.4	17.5	14.8	36.2	11.3	6.3	32.8	36.0	36.5	4.9	17.1	7.7	21.6	13.6	34.9	14.2	26.0	17.2	31.9
Ort	0.1	0.0	0.0	0.1	0.0	0.1	0.1	0.0	0.1	0.0	0.4	0.1	0.0	0.1	0.2	0.1	0.1	0.1	0.0	0.1	0.1	0.0	0.1
kD	1.1	3.7	0.9	1.6	0.7	1.8	2.2	0.7	2.9	5.5	0.8	0.7	0.7	7.8	1.9	4.9	1.5	2.6	0.8	2.3	1.1	2.7	1.2

Fig.5. Composition of the minerals as a function of the degree of evolution of their host glass given by $\mathrm{FeO} / \mathrm{MgO}$ ratio ($\mathrm{FeO}=$ $0.9 \times \mathrm{FeO}^{*}$). The range of the calculated partition coefficients (K_{D}) is given for each sample. (a) N160 segment. (b) N15 segment. (c) $\mathrm{N}-\mathrm{S}$ segment. (d) 174 E segment. Olivine: Line indicates the experimentally determined low-pressure K_{D} olivine/liquid equilibrium ($=0.30$, Roedder and Emslie, 1970). Clinopyroxene: Lines give the range of experimentally determined low-pressure K_{D} clinopyroxene/ liquid equilibrium ($=0.23$, Grove and Bryan, 1983; or $=0.27$, Irving and Frey, 1984). Plagioclase: Lines give approximate variations in the K_{D} plagioclase/liquid as a function of the evolution of the glass composition. The experimentally determined low-pressure K_{D} plagioclase/liquid equilibrium should be around 1.3 (after Drake (1976) and Grove and Bryan (1983)).

The compositional variations of the olivine are at their most important along the N15 segment. In sample $\mathrm{S} 3-04$, a few rounded olivine phenocrysts of Mg rich composition ($\sim \mathrm{Fo}_{89}$) occur and in
sample S3-01 (Table 5b) some less "primitive" ($\sim \mathrm{Fo}_{86}$) olivine phenocrysts are apparently not in equilibrium with their host glass. They could be xenocryst relics from a higher pressure stage or
the result of mixing of closely related magma batches, as observed for the clinopyroxene in sample S3-04. In all other samples from the N15 segment, the composition of euhedral to subeuhedral olivine phenocrysts and of the skeletal microphenocrysts is either near Fo_{84-86} (e.g. K46, K8-4, K9-1, K9-2, K9-3, S3-01, S3-03, and all the K6 samples) or near Fo_{80-81} (e.g. K8-1, K83 , K8-6, S3-02 and S3-04). Some slightly more Ferich olivines in a few samples of stations K 8 and K 9 (Table 5b), and the even more fayalitic olivines in samples K8-6 ($\mathrm{Fo}_{73.5}$), K9-5 ($\mathrm{Fo}_{78: 5 \pm 0.4}$) and $\mathrm{K} 6-3\left(\mathrm{Fo}_{77.8}\right)$ (Table 5 b), are in disequilibrium with their host glass. These latter crystals correspond to the generally skeletal microphenocrysts which crystallized very rapidly in the later stages of fractionation, such as during magma ascent before eruption, or just after basalt extrusion.

Along the $\mathrm{N}-\mathrm{S}$ segment, the olivine compositions are much more homogeneous, all the samples but two (K15-7 and S1-05) containing mainly, if not exclusively, phenocrysts and microphenocrysts with compositions around $\mathrm{Fo}_{84 \pm 0.7}$ (Table 5b). Some Fe-rich olivine crystals, like those found in the samples K15-7 and Sl-05, can coexist with more Mg -rich olivines as in samples S2-1 and S2-2 (with a few slightly zoned crystals, Table 5b) and in samples S1-03 and S1-04. In sample S2-2, more evolved skeletal microphenocrysts are also found ($\mathrm{Fo}_{78.8}$) (Table 5b). Olivines from this segment are generally close to equilibrium with their host glass (Fig.5b). However, some of them may be either less evolved than their host glass (e.g. S1-04, S2-2 and S4-01), or more evolved (as in samples S2-2 and K15-7). For sample S4-01, although there is a difference between glass and bulk rock analyses, this disequilibrium would disappear if the bulk rock was taken as the reference in the calculation. For the other samples, the relatively small discrepancies between K_{D} 's are probably related to mixing of compositionally closely related, mostly differentiated, magma batches, as would occur inside a magma reservoir.

The olivines from the 174 E segment are relatively magnesian and very homogeneous ($\sim \mathrm{Fo}_{87.5}$) in sample K21-27, and close to equilibrium with their host glass; samples K23-14 and K22-3 are slightly more evolved (Table 5b and Fig.5d).

Plagioclase is by far the most abundant mineral in the NFB basalts, being present in all the 138 studied samples (Table 2), although in highly variable modal abundance. Even when plagioclase crystals are optically zoned, their cores are commonly homogeneous. However, frequent normal zoning (e.g. S5-03, K9-1 and S2-2) (Table 5c) and occasional reverse zoning (e.g. S5-04) are observed between crystal cores and rims. In the case of normal zoning, rim compositions can be below An_{70} (e.g. $\mathrm{An}_{60.8}$ in $\mathrm{S} 2-1$, or $\mathrm{An}_{66.8}$ in $\mathrm{S} 1-05$, Table 5c). Usually, the more sodic compositions (even below An_{60}) correspond to the crystals of the mesostasis mainly represented by microlites and skeletal microphenocrysts. A distribution comprising a group of calcic phenocrysts separated by a gap in composition from the more sodic microphenocryst group is commonly observed along the four segments of the NFB spreading centre (Fig.5).

For the N160 segment, plagioclase compositions range between An_{88} and An_{65} in samples $\mathrm{S5-02}$, S5-03 and S5-04 (Table 5a), the phenocrysts being concentrated near An_{84-85} and the microphenocrysts around An_{70-75}. Strong normal and reverse zoning are observed in several of the analyzed crystals (Table 5c) and even some oscillatory zoning is observed in sample $\mathrm{S} 5-04$. When the phenocrysts are relatively close to equilibrium with their host glass, the microphenocrysts are in disequilibrium with it, being much too evolved ($K_{\mathrm{D}}<0.9$) (Fig.5c). Both the last two facts support the hypothesis of magma mixing which has already been suggested by the clinopyroxene and olivine analyses. In sample $55-05$, plagioclase microphenocrysts are predominantly very homogeneous $\left(\mathrm{An}_{71.8 \pm 1.6}\right)$. The most calcic plagioclase phenocrysts/megacrysts $\left(\mathrm{An}_{80-90}\right)$ are found in the most phyric basalts of stations K5 and K17 (Table 5c), and these crystals are relics of higher pressure stages not in equilibrium with the glass (Fig.5a).
Along the N15 segment, the compositional variations in plagioclase are significant, and disequilibrium between crystals and their host glass is common. In MORB, high-temperature minerals are commonly restricted to the most phyric lavas (Bryan, 1983; Stakes et al., 1985; Eissen et al., 1989). Here, the most calcic plagioclases $\left(\mathrm{An}_{88-90}\right)$,
as with the most magnesian olivines $\left(\mathrm{Fo}_{80-90}\right)$, appear in some sub-aphyric (e.g. K8-1 and 6) and moderately phyric (e.g. K9-1) basalts and in the most phyric basalts of station S3 (Fig.5b and Table 5c). They might represent xenocrysts, at least for samples K8-1, S3-02 and S3-04 where complex oscillatory zoning is observed. The similarity in xenocryst core compositions to those of the surrounding phenocrysts suggests that they are cognate xenocrysts produced in a slightly cooler and more crystalline part of the magma chamber, or alternatively that they equilibrated at a slightly higher pressure (Bender et al., 1978). The majority of the other plagioclase phenocrysts can be separated into two chemically coherent groups even when they cannot be distinguished morphologically, being always euhedral to sub-euhedral crystals. The first group consists of calcic plagioclase (An_{85-87}) which is dominantly found in the most phyric samples (e.g. K9-1 and K9-2 and the samples of station S3), but also in some less phyric lavas (e.g. K8-1, K8-2, K8-3, K8-6 and K6A-4). The second group is made up of less calcic plagioclase $\left(\mathrm{An}_{80-84}\right)$ and is generally found associated with the previously described group (e.g. K8-1, K8-3, K9-2, K6A-4, S3-02 and S3-04). In some samples (e.g. K8-4, K8-6, K9-4, K6-3 and K6-5), the first group of plagioclases is absent. The plagioclase microphenocrysts, which occur as long skeletal to sub-euhedral laths, are present in all these samples and commonly form skeletal glomerocrysts with clinopyroxene and/or olivine. Their composition range $\left(\mathrm{An}_{72-79}\right)$ is generally the composition of the rim of the larger plagioclases. Few of these microphenocrysts and microlites can reach much more sodic compositions (down to An_{61} in K9-5 and K8-3; Table 5c). Intermediate plagioclase phenocrysts ($78<\mathrm{An}_{<86}$) are frequently close to equilibrium with their host glass, but most of the more sodic plagioclases are in complete disequilibrium ($K_{\mathrm{D}} \ll 1.3$), except in the most evolved basalts. At several stations (S3, K8 and K9) basalts with different degrees of fractionation coexist. These basalts often have similar plagioclase "populations" exhibiting normal, reverse or oscillatory zoning, or any combination of the three, and a similar range of compositions; this supports the important role of magma mixing in their petrogen-
esis. As suggested above by some of the olivine and clinopyroxene mineral chemistry, the different components of the mixing must have been closely related magmas, i.e. more or less differentiated magma batches within a zoned magma reservoir.

The plagioclases of the $\mathrm{N}-\mathrm{S}$ segment show the widest range of compositions, from An_{47} to $\mathrm{An}_{95.1}$ and a relatively large amount of very calcic xenocrysts $\left(\mathrm{An}_{90-95}\right)$ in almost all the basalts sampled near $20^{\circ} \mathrm{S}$ (stations Sl and SDT) and in sample S2-2. These more or less rounded crystals, which are in complete disequilibrium with their host glass (with $K_{\mathrm{D}} \gg 2.0$), are probable relics of deep levels of fractionation. A deep magma reservoir may therefore exist below the spreading ridge near $20^{\circ} \mathrm{S}$. However, as noted on the N15 segment, the majority of the plagioclase phenocrysts are moderately calcic $\left(\mathrm{An}_{80-88}\right)$ with, in most samples from stations S2, DT and S1, a bimodal distribution around An_{86} or An_{84}. The microphenocrysts present in almost all these basalts usually have compositions in the sodic labradorite range $\left(\mathrm{An}_{70-76}\right)$. They are the dominant plagioclases in the basalts of stations S4 and K14, because the more calcic phenocrysts are very rare in these samples. The microliths and the most skeletal microphenocrysts reach bytownite compositions $\left(\mathrm{An}_{60-66}\right)$. They are present in all the samples but for the station SDT set and are the only plagioclases in the basalts of station K15. An_{47} plagioclase was found only in the massive basalt of station S2, where intergranular plagioclase could reach a higher degree of evolution in the liquids isolated between the larger phenocrysts. As noted in the N15 segment, the phenocrysts in the basalts from the $\mathrm{N}-\mathrm{S}$ segment are close to equilibrium with their host glass, whereas the more sodic plagioclases are often in complete disequilibrium ($K_{\mathrm{D}} \ll 1.3$).

Plagioclases were analyzed only in two basalts from the 174 E segment. In sample $\mathrm{K} 23-14$, the phenocryst composition is moderately calcic $\left(\mathrm{An}_{84.9-87.1}\right)$, whereas the microphenocrysts are more sodic $\left(\mathrm{An}_{68.2-73.9}\right)$, but close to equilibrium with the glass. In sample K22-3, the plagioclases were all more evolved, and the phenocrysts were less calcic $\left(\mathrm{An}_{82.8-81.1}\right)$, as were the microphenocrysts $\left(\mathrm{An}_{66.4-68.4}\right)$ (Table 5c and Fig.5c).

Abundances, crystal shapes and the mutual rela-
tionships between all the mineral phases indicate that plagioclase was probably the liquidus phase in the majority of these basalts. Its crystallization was closely followed by olivine, which is present in 87% of the samples, and then only by clinopyroxene. In only two samples (SDT-04 and K22DT2), was plagioclase obviously followed by clinopyroxene crystallization (olivine is absent in both of these samples). Interestingly, 52% of the NFB basalts reached the four-phase saturation of cocrystallization of plagioclase, olivine and clinopyroxene (+ liquid), behaviour that is not common in MORBs.

Geochemistry

Bulk rock and microprobe analyses permit the recognition of, respectively, 4, 6, 4 and 4 geochemical groups in 4, 9, 7 and 4 sampled stations from the N160, N15, N-S and 174E segments of the NFB central spreading centre. The observed major element variations are due essentially to low-pressure magmatic processes affecting magma compositions, which are dominantly controlled by crystal fractionation (Fig.3). However, other processes, such as magma mixing, may locally play an important role. Discrepancies between the bulk rock and glass compositions of stations K5, K8, K9 and S3 can be attributed to the mineral modal content (essentially plagioclase) on the bulk rock compo sitions.

Variations observed in the alkali elements, volatiles (only very locally masked by alteration) and LILEs suggest that the mantle sources involved in the petrogenesis of these basalts are distinct or heterogeneous.

MORB versus BABB (back-arc basin basalt)

The NFB spreading ridge is located between 300 and 600 km behind the active New Hebrides subduction zone, which is characterized by a high rate of convergence ($12-15 \mathrm{~cm} / \mathrm{yr}$; Louat and Pelletier, 1989). The 174 E segment is the segment closest to the subduction zone, but in an area where the subduction is oblique and relatively slow ($1.5 \mathrm{~cm} /$ yr; Louat and Pelletier, 1989; Maillet et al., 1989). Thus, it would seem to be difficult to involve
material coming directly from the subducted slab in the petrogenesis of the NFB basalts. However, the coexistence of MORB and BABB has been described in the NFB north of 16° S (Aggrey et al., 1988; Sinton et al., 1991). Since BABBs are enriched in LILEs ($\mathrm{K}, \mathrm{Rb}, \mathrm{Ba}$, etc.) and possibly volatiles relative to MORB (Saunders and Tarney, 1984; Hawkins and Melchior, 1985; Sinton and Fryer, 1987; Sinton et al., 1991), we will use some of these elements for a comparison between our data and results from other back-arc basins.

In the $\mathrm{Na}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{O}$ vs. Mg number diagram (Fig.6), the NFB basalts are compared to basalts from two very well studied back-arc basins, the Mariana Trough (Fig.6a), and the Lau Basin (Fig.6d) (Hawkins and Melchior, 1985), and to some basalts from the northern NFB (Fig.6c) (Sinton et al., 1991). The Mariana Trough, which is one of the most typical back-arc basins, produces exclusively typical BABBs. In the Lau Basin, Hawkins and Melchior (1985) describe an initial phase with BABB followed by the production of MORB. Sinton et al. (1991) also propose that during its early history the NFB was characterized by the production of $B A B B$. Its recent activity (post $3 \mathrm{~m} . \mathrm{y}$.), however, has only produced typical N-MORB, except along the South Pandora Ridge (Fig.2) which is considered to be a reactivated, older, intra-oceanic lineament.

Our data (excluding the most altered samples) indicate that the present-day distribution of basalts is more complex than previously proposed (Sinton et al., 1991; Eissen et al., 1990). Along the N160 segment (Fig.6a), all but two basalts from stations S5 and K29 are in the BABB field, but are not as alkali rich as the typical Mariana BABBs. Two samples with a very low total alkali content correspond to the most phyric samples of station K5 (enriched in phenocrysts). As already suggested, the N15 segment is much more complex (Fig.6b). Basalts from stations K6, K12 and S3 lie in the MORB field, whereas those from stations K4 and K8 are in the BABB field. Basalts from station K9 are in the BABB field (samples K9-5 and K9-6), or straddle the boundary between the two fields. By contrast, all the samples of the $\mathrm{N}-\mathrm{S}$ segment plot in the MORB field, demonstrating that this segment is not only the most mature morphologi-

Fig.6. Distinction between $B A B B$ and MORB for the NFB basalts based on total alkali content $\left(\mathrm{Na}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{O}\right.$ in weight percent of bulk rock analysis) vs. Mg number (atomic $100 \mathrm{Mg} / \mathrm{Mg}+\mathrm{Fe}$; calculated with all Fe as FeO). See text for explanation. The MORB-BABB field boundary is delineated using the set of data shown. (a) Basalts from the N160 segment=diamonds (approximate location of basalts from stations K5, S5, K29 and K17 is given); basalts from the Mariana Trough=small dot (Hawkins and Melchior, 1985). (b) Basalts from the N15 segment = large dot (approximate location of basalts from stations K9, K8, K4, S3, K6. and K 12 is given). (c) Basalts from the $\mathrm{N}-\mathrm{S}$ segment $=$ square (approximate location of basalts from station K 15 is given); basalts from the northern NFB $=$ small dot (Sinton et al., 1991). (d) Basalts from the 174 E segment $=$ triangle (approximate location of basalts from stations K22, K21 and K23 is given); basalts from the Lau Basin=small dot (Hawkins and Melchior, 1985).
cally but also petrogenetically. These samples are in the same range of composition as the typical MORBs (groups 16A, 16B and 16C defined by Sinton et al. (1991) in the northern NFB). The only slightly alkali enriched basalts from this N -S segment are those from station K15. Geochemical types observed along the 174 E segment are highly variable from one station to the next. Basalts from station K23 are typical MORBs, whereas lavas from the three other stations look like more typical BABBs, with a high total alkali content, as observed in the Mariana Trough or during the early opening of the Lau Basin (Fig.6d).

These results are confirmed in the $\mathrm{Rb} / \mathrm{Sr}$ vs. K/P diagram (Fig.7), where our NFB data are compared to the Mariana Trough basalts (Hawkins and Melchior, 1985). Here, more than half of the
basalts from the N160, N15 and 174E segments are in the BABB field, whereas most of the basalts from the $\mathrm{N}-\mathrm{S}$ segment are in the MORB field.

Preliminary rare earth elements (REE) data (Table 6) show quite large variations in REE contents (normalized to chondrite using data from Sun and McDonough, 1989) (Fig.8), demonstrating the wide variations in the LILEs and especially in the LREE contents of the basalts produced along this back-arc spreading centre. On the N160 segment (sample K29-4, Table 6), the REE pattern is quite flat to slightly LREE depleted (Fig.8), as is also observed in BABB (Saunders and Tarney, 1984; Hawkins and Melchior, 1985; Sinton et al., 1991). On the N15 segment (sample K4-1, Table 6), the REE pattern is again quite flat to slightly LREE depleted (Fig.8), but complementary analy-

Fig.7. Distinction between BABB and MORB for the NFB basalts based on $\mathrm{Rb} / \mathrm{Sr}$ vs. K / P diagram (in ppm). Diamond $=\mathrm{N} 160$ segment; dot $=$ N 15 segment; square $=\mathrm{N}-\mathrm{S}$ segment; triangle $=174 \mathrm{E}$ segment; asterisk $=$ Mariana Trough basalts (Hawkins and Melchior, 1985). The MORB-BABB field boundary is delineated using the set of data shown.

TABLE 6
Rare earth elements analyses of eight basalts from the NFB. Analyses performed by ICP at the Geological Survey of Japan at Tsukuba (analyst M. Nohara)

Sample	K29-4	K17-1	K4-1	K14-7	K15-6	K21-9	K23-1	K22-1
La	3.67	3.69	3.28	1.97	3.67	6.79	1.02	5.40
Ce	11.60	10.72	10.22	7.19	11.49	18.26	3.67	14.63
Pr	1.89	1.62	1.61	1.29	1.85	2.63	0.74	2.27
Nd	9.87	9.04	9.17	7.09	10.06	12.19	4.76	11.40
Sm	3.37	2.92	3.09	2.70	3.47	3.54	1.84	3.25
Eu	1.22	1.12	1.17	1.04	1.29	1.33	0.75	1.17
Gd	4.56	4.23	4.35	4.05	4.60	4.49	2.91	4.08
Tb	0.75	0.71	0.74	0.75	0.84	0.79	0.58	0.71
DY	5.19	5.04	0.51	5.07	5.59	4.87	3.85	4.48
Ho	1.07	1.05	1.11	1.11	1.26	1.05	0.88	0.99
Er	3.13	3.13	3.25	3.19	3.57	2.91	2.56	2.89
Tm	0.42	0.44	0.47	0.48	0.51	0.41	0.40	0.39
Yb	2.66	2.94	3.05	3.19	3.43	2.54	2.48	2.05
Lu	0.36	0.46	0.46	0.48	0.55	0.39	0.41	0.28

ses should show that LREE-depleted basalts also coexist in this segment, as suggested above. On the $\mathrm{N}-\mathrm{S}$ segment, a N -MORB with typical LREEdepleted pattern is found at station K14 (Fig.8), but a flat REE pattern is found at station K15 indicating that some BABB affinity might persist even on this more mature segment. On the short 174E segment, basalts showing depleted, flat and slightly LREE enriched patterns coexist, showing that the mantle source is probably quite heterogeneous below this segment, as it is also below the $\mathrm{N} 160^{\circ}$ and N15 segments. ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$ and ${ }^{143} \mathrm{Nd} /$
${ }^{144} \mathrm{Nd}$ ratios show the presence of small but distinct regional scale variations, which support similar conclusions (Nohara et al., 1989).

Along-strike variations

Another means by which the geochemical variations in the NFB basalts can be observed is by plotting selected parameters as a function of the latitude of the sampling site (Fig.9). The first of these parameters is the axial bathymetry of the spreading centre (Fig.9a). The different morpho-

Fig.8. Rare earth element abundances normalized to chondrite (chondrite values after Sun and McDonough, 1989) for selected samples from the NFB. (a) N160 segment = diamond; N15 segment $=$ dot. (b) $\mathrm{N}-\mathrm{S}$ segment $=$ square; 174 E segment $=$ triangle.
logical styles of the four segments clearly appear, with a smooth morphology for the $\mathrm{N}-\mathrm{S}$ segment, whereas strong bathymetrical irregularities appear along the others, like the rise towards the triple junction or the roughness of the 174 E segment.

Preliminary results related the chemical alongstrike variability in the N15 segment to a heterogeneous mantle source below this segment (Eissen et
al., 1990). The present new data allow us to clarify the situation. The most striking feature in Fig. 9 lies within the $\mathrm{N}-\mathrm{S}$ segment, which shows relatively low and uniform $\mathrm{Ba}, \mathrm{Rb}, \mathrm{K} / \mathrm{P}^{\prime}$ and $(\mathrm{K} / \mathrm{Ti})_{N}$ contents/ratios, as expected for N-MORBs. By contrast, the basalts of the N160, N15 and 174E segments show much higher average K / P ratios (between 1 and 8 instead of ca. 2 for the $\mathrm{N}-\mathrm{S}$

Fig.9. Variations as a function of latitude in terms of five parameters. (a) Bathymetry (m) (Lafoy, 1989). (b) Ba (in ppm). (c) Rb (in ppm). (d) K / P (in ppm). (e) $(\mathrm{K} / \mathrm{Ti})_{N}$ (chondrite normalized) ratio. Diamond $=\mathrm{N} 160$ segment; plus sign $=$ data from Sinton et al. (1991); circle $=$ N 15 segment; square $=N-S$ segment; triangle $=174 E$ segment. (Open symbols for glass and closed symbols for bulk rock analyses.) $T J=$ triple junction; $P R=$ propagating rift.
segment). All segments except the $\mathrm{N}-\mathrm{S}$ segment display more variable Ba and Rb contents and ($\mathrm{K} /$ $\mathrm{Ti})_{N}$ ratios (this latter ratio varies with $\mathrm{Nb} / \mathrm{Zr}$ and $\mathrm{La} / \mathrm{Sm}$ ratios; Romeur, 1987). Therefore, a large proportion of these basalts have a BABB affinity. Moreover, the mantle source of the N15 segment is probably heterogeneous because MORB and BABB presently coexist on this segment. However, the presence of N-MORB just east of the N160 axis (station T16; Sinton et al., 1991; Fig.2) and the variability of the 174 E segment probably indicates that these segments also show the presence of heterogeneous mantle sources along them. The
morphological and geochemical peculiarities of the $\mathrm{N}-\mathrm{S}$ segment compared to the others may be explained by its maturity. Indeed, it is the only spreading segment in the NFB which has been functioning in a steady state since 3 m.y. B.P.; it was not affected by the last reorganization ($1 \mathrm{~m} . \mathrm{y}$. ago) which created the N160 and N15 segments and their triple junction with the North Fiji Fracture Zone (Auzende et al., 1988c).

Because the NFB is a large, old back-arc basin, it is not directly influenced by the New Hebrides subduction. Compared to a back-arc spreading centre situated much closer to an active subduc-
tion, such as the Mariana Trough (Saunders and Tarney, 1984; Sinton and Fryer, 1987), enrichment of LILEs, LREEs and volatiles in the NFB mantle source as the basin gradually opened was much less. However, beneath active spreading segments such as N160, N15 and 174E, NFB upper mantle can be locally slightly enriched in these elements (compared to more typical N-MORB mantle sources) and therefore heterogeneous; this is in particular suggested by the (K/Ti) ${ }_{N}$ ratio. The $\mathrm{N}-\mathrm{S}$ segment, which has been in steady state since 3 m.y., produces almost exclusively magmas of the N-MORB type, in which the LILE and LREE component has already been removed during earlier stages of magma extraction. Therefore, the mantle source below this $\mathrm{N}-\mathrm{S}$ segment is significantly depleted in these elements (Fig.8), as is the case for the classical N -MORB mantle sources.

Summary and conclusion

(1) Oceanic spreading in the North Fiji Basin (NFB) is occurring between $16^{\circ} \mathrm{S}$ and $21^{\circ} 30^{\prime}$ S along four segments which each exhibit a specific morphology. This along-strike variability reflects the lack of stability in this basin. This instability is demonstrated by the $3 \mathrm{~m} . \mathrm{y}$. and $1 \mathrm{~m} . \mathrm{y}$. reorganizations of the spreading system, and, compared to more classical mid-oceanic spreading centres, has led to a relatively high number of features of local instability such as OSCs and propagating rifts.
(2) Twenty four new sampling stations were established along this spreading centre, and at each plagioclase \pm olivine \pm clinopyroxene basalts were recovered (plagioclase $>$ olivine $>$ clinopyroxene). The petrogenesis of these basalts is essentially controlled by low-pressure crystal fractionation. However, mixing of more or less differentiated compositionally closely related magma batches may occur locally within a single magma reservoir. These basalts have been described geochemically and mineralogically segment by segment. They have also been compared together with basalts from the Mariana Trough, the Lau Basin and the northern NFB.
(3) The N-S segment of the NFB spreading ridge has a uniform morphology between $18^{\circ} 20^{\prime} \mathrm{S}$ and $21^{\circ} \mathrm{S}$. Basalts from this segment have mineral-
ogical, petrological and geochemical characteristics typical of moderately evolved N-MORBs. This spreading segment is the only one in the NFB that has been functioning in a steady state since $3 \mathrm{~m} . \mathrm{y}$. It has therefore reached a mature stage, comparable to the more classical oceanic spreading centres, with a LILE- and LREE-depleted mantle source. However, a limited BABB geochemical signature, such as that observed at station K15, may locally occur along this segment.
(4) North and south of the $16^{\circ} 45^{\prime}$ S triple junction respectively the N160 and N15 segments show a steep bathymetrical rise towards the triple junction. Both segments have specific morphological characteristics, i.e. an assymmetrical rift section for the N160 segment and several instability features such as OSCs and propagating rifts on the N15 segment. The basalts are mostly characterized by LILE and slightly LREE-enriched magmas suggesting a BABB affinity, even though MORBs are also found on the N15 and N160 segments. The presence of magma of BABB affinity 500 km east of the active New Hebrides subduction zone might be explained by the youth of these segments. Active spreading started here $1 \mathrm{~m} . \mathrm{y}$. ago, in the middle of an older NFB crust with a possible marked BABB affinity. Below these recently formed segments, the mantle source is then heterogeneous, with some BABB affinities being locally retained.
(5) Morphological, petrological and geochemical data from the 174 E segment indicate that this segment, the one closest to the subduction zone, is also producing both BABB and MORB magmas. Therefore, the coexistence of basalts with depleted, flat and slightly enriched REE patterns seems to indicate that the mantle sources beneath this segment are also heterogeneous.
(6) Petrogenetically mature processes allow the production of N -MORB magmas only on the most steady-state segment, the $\mathrm{N}-\mathrm{S}$ segment. BABB still coexist today with MORB on the less stable and more recently created segments. Furthermore, the presence of $12 \mathrm{~m} . \mathrm{y}$. old ($\mathrm{K} / \mathrm{Ar} \mathrm{)} \mathrm{MORB} \mathrm{on} \mathrm{the}$ northwestern margin of the NFB (Monjaret et al., 1987) and of ferrobasalts with MORB affinity from the area north of the Fiji Islands (Sinton et al., 1991) indicates that MORBs have been produced since the early development of the NFB.

Acknowledgements

We wish to express our thanks to the captains and crews of the R.V. Jean Charcot and Kaiyo, and to all the co-chief scientists, scientists and technicians who participated in the sample collection on the SEAPSO Leg 3, KAIYO 87 and KAIYO 88 cruises. We thank also Jo Cotten for the geochemical analyses he performed in his laboratory at'the Université de Bretagne Occidentale at Brest, Marcel Bohn for his help in performing the microprobe analyses at the IFREMER Centre in Brest, and Masahiro Aoki for his help in performing the complementary microprobe analyses at the GSJ at Tsukuba. We also express our warmest appreciation to Ric Price and John Sinton for their careful review of this paper and their pertinent suggestions. Finally, we thank Jacques Récy, chief of the Unité de Recherche $1 F$ d'lORSTOM, for his assistance which allowed us to carry out this work.

References

Aggrey, K.E., Muenow, D.W. and Sinton, J.M., 1988. Volatile abundances in submarine glasses from the North Fiji and Lau back-arc basins. Geochim. Cosmochim. Acta, 52: 25012506.

Auzende, J.M., Eissen, J.P., Caprais, M.C., Gente, P., Gueneley, S., Harmegnies, F., Lagabrielle, Y., Lapouille, A., Lefèvre, C., Maillet, P., Mazé, J.P., Ondréas, H., Schaaf, A. and Singh, S., 1986. Accrétion océanique et déformation dans la partie méridionale du bassin Nord Fidjien: résultats préliminaires de la campagne océanographique SEAPSO III du N.O. Jean Charcot (Décembre 1985). C.R. Acad. Sci. Paris, 306: 971-978.
Auzende, J.M., Eissen, J.P., Gente, P., Lafoy, Y., Lagabrielle, Y., Schaaf, A. and Charlou, J.L., 1988a. The accretion system of the central part of the North Fiji Basin (SW Pacific) between $16^{\circ} \mathrm{S}$ and $21^{\circ} \mathrm{S}$ (SEAPSO Leg 3 cruise Dec 1985). Tectonophysics, 146: 317-351.
Auzende, J.M., Honza, E. and the Scientific Party of the Kaiyo 87 Cruise, 1988b. L'accrétion récente dans le Bassin NordFidjien: premiers résultats de la campagne franco-japonaise Kaiyo 87. C.R. Acad. Sci. Paris, 306(11): 971-978.
Auzende, J.M., Lafoy, Y. and Marsset, B., 1988c. Recent geodynamic evolution of the North Fiji Basin (SW Pacific). Geology, 16: 925-929.
Bender, J.F., Hodges, F.N. and Bence, A.E., 1978. Petrogenesis of basalts from the project FAMOUS area: Experimental study from 0 to 15 kbar. Earth Planet. Sci. Lett., 41: 277-302.
Brocher, T.H. (Editor), 1985. Investigations of the Northern Melanesian Borderland. (Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series 3. CPCEMR, Houston, Tex, 199 pp.

Bryan, W.B., 1983. Systematics of modal phenocryst assemblages in submarine basalts: Petrologic implications. Contrib. Mineral. Petrol., 83: 62-74.
Charvis, P. and Pelletier, B., 1989. The northern New Hebrides back-are troughs: history and relation to the North Fiji Basin based on tectonic and magnetic studies. Tectonophysics, 170: 259-277.
Chase, C.G., 1971. Tectonic history of the Fiji plateau. Geol. Soc. Am. Bull., 82: 3087-3110.
Cherkis, N.Z., 1980. Aeromagnetic investigations and sea-floor spreading history in the Lau basin and northern Fiji plateau. UN ESCAP, CCOP/SOPAC, Tech. Bull., 3: 37-45.
Craig, H. and Poreda, R., 1987. Data report, Papatua expedition, legs V and VI. Scripps Ref. Ser., 87:14, 80 pp.
Drake, M.J., 1976. Plagioclase-melt equilibria. Geochim. Cosmochim. Acta, 40: 457-465.
Eissen, J.P., Juteau, T., Dupré, B., Joron, J.L., Humler, E. and Al'mukhamedov, A.I., 1989. Petrology and geochemistry of basalts from the Red Sea rift at 18° north. J. Petrol., 30: 791-839.
Eissen, J.P., Morvan, G., Lefêvre, C., Maillet, P., Urabe, T., Auzende, J.M. and Honza, E., 1990. Pétrologie et géochimie de la zone d'accrétion du centre du Bassin Nord Fidjien (SW Pacifique). C.R. Acad. Sci. Paris, 310(II): 771-778.
Falvey, D.A., 1978. Analysis of paleomagnetic data from the New Hebrides. Aust. Soc. Explor. Geophys. Bull., 9: 117-123.
Gente, P., 1987. Etude morphostructurale comparative de dorsales océaniques à taux d'expansion variés. Schéma d'évolution morphologique de l'axe de dorsales: liaison avec l'hydrothermalisme. Thèse, Univ. Bretagne Occidentale, Brest, 371 pp .
Grove, T.L. and Bryan, W.B., 1983. Fractionation of pyruxene phyric MORB at low pressure: an experimental study. Contrib. Mineral. Petrol., 84: 293-309.
Hawkins, J.W. and Melchior, J.T., 1985. Petrology of Mariana Trough and Lau Basin basalts. J. Geophys. Res., 90: 1143111468.

Hey, R.N., 1977. A new class of "pseudofaults" and their bearing on plate tectonics: a propagating rift model. Earth Planet. Sci. Lett., 37: 321-325.
Irving, A.J. and Frey, F.A., 1984. Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis. Geochim. Cosmochim. Acta, 48: 1201-1221.
Karig, D.E., 1971. Origin and development of marginal basins in the western Pacific. J. Geophys. Res., 76: 2542-2561.
Karig, D.E., 1974. Evolution of arc systems in the western Pacific. Annu. Rev. Earth Sci., 2: 51-75.
Kroenke, L.W., 1984. Cenozoic tectonic development of the southwest Pacific. UN ESCAP, CCOP/SOPAC, Tech. Bull., 6: 122 pp .
Kroenke, L.W. and Eade, J.V. (Editors), 1991. Bäsin Formation, Ridge Crest Processes and Metallogenesis in the North Fiji Basin. (Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series Vol. 12.).
Kroenke, L.W. and Shipboard Scientific Party, 1987. Cruise report. CCOP/SOPAC North Fiji Basin expedition. R/V Moana Wave cruise MW 87-01. 37 pp .
Lafoy, Y., 1989. Evolution géodynamique des bassins margi-
naux Nord-Fidjien et de Lau (Sud-Ouest Pacifique). Thèse, Univ. Bretagne Occidentale, Brest, 261 pp.
Lafoy, Y., Auzende, J.M., Gente, P. and Eissen, J.P., 1987. L'extrémité occidentale de la zone de fracture fidjienne et le point triple de $16^{\circ} 40^{\prime}$ S: Résultats du Leg III de la campagne SEAPSO du N.O. Jean Charcot (Décembre 1985) dans le bassin Nord-Fidjien (SW Pacifique). C.R. Acad. Sci. Paris, 304(II): 3: 147-152.
Larue, M.B., Pontoise, B., Malahoff, A., Lapouille, A. and Latham, G.V., 1982. Bassins marginaux actifs du sud-ouest Pacifique: plateau Nord-Fidjien, bassin de Lau. In: Equipe de Géologie-Géophysique du Centre ORSTOM de Nouméa (Editors), Contribution à l'Etude Géodynamique du SudOuest Pacifique. Trav. Doc. ORSTOM, 147: 363-406.
Louat, R. and Pelletier, B., 1989. Seismotectonics and presentday relative plate motions in the New Hebrides-North Fiji basin region. Tectonophysics, 167: 41-55.
Maillet, P., Eissen, J.P., Lapouille, A., Monzier, M., Baleivanualala, V., Butscher, J., Gallois, F. and Lardy, M., 1986. La dorsale active du Bassin Nord-Fidjien entre $20.000^{\circ} \mathrm{S}$ et 20.53° S: Signature magnétique et morphologie. C.R. Acad. Sci. Paris, 302(II): 135-140.
Maillet, P., Monzier, M., Eissen, J.P. and Louat, R., 1989. Geodynamics of an arc-ridge junction: The New Hebrides arc/North Fiji Basin case. Tectonophysics, 165: 251-268.
Malahoff, A., Feden, R.H. and Fleming, H.S., 1982. Magnetic anomalies and tectonic fabric of marginal basins north of New Zealand. J. Geophys. Res., 87: 4109-4125.
Monjaret, M.C., Bellon, H., Maillet, P. and Récy, J., 1987. Le volcanisme des fossés arrière-arc des Nouvelles-Hébrides (campagne SEAPSO Leg 2 du N/O Jean Charcot dans le Pacifique Sud-Ouest): Datations K-Ar et données pétrologiques préliminaires. C.R. Acad. Sci. Paris, 305(II): 605-609.
Nohara, M., Urabe, T., Joshima, M. and Honza, E., 1989. REE and isotope constraints on the origin of back-arc basalts in the North Fiji Basin. CCOP/SOPAC Misc. Rep., 79: 95.
Pelletier, B., Charvis, P., Daniel, J., Hello, Y., Jamet, F., Louat, R., Nanau, P. and Rigolot, P., 1988. Structure et linéations magnétiques dans le coin Nord-Ouest du bassin NordFidjien: résultats préliminaires de la campagne Eva 14 (août 1987). C.R. Acad. Sci. Paris, 306(II): 1247-1254.

Presnall, D.C., Dixon, J.R., O'Donnell, T.H. and Dixon, S.A., 1979. Generation of mid-ocean ridges tholeiites. J. Petrol., 20: 3-35.

Roedder, P.L. and Emslie, R.F., 1970. Olivine-liquid equilib.. rium. Contrib. Mineral. Petrol., 29: 275-289.
Romeur, M., 1987. Variabilité locale de la composition des MORB. Etude du rapport K / Ti dans les verres basaltiques des axes des rides Médio-Atlantique et Est-Pacifique. Rapp. D.E.A., Univ. Bretagne Occidentale, Brest, 91 pp.

Ruellan, E., Auzende, J.M., Honza, E. et al., 1989. L'accrétion dans le bassin Nord Fidjien méridional: premiers résultats de la campagne franco-japonaise STARMER/KAIYO 88. C.R. Acad. Sci. Paris, 309: 1247-1254.

Saunders, A.D. and Tarney, J., 1984. Geochemical characteristics of basaltic volcanism within back-arc basins. In: B.P. Kokelaar and M.F. Holwells (Editors), Marginal Basins: Geology, Volcanism and Associated Sedimentary and Tectonic Processes in Modern and Ancient Marginal Basins. Blackwell, Oxford, pp.59-76.
Sinton, J. and Fryer, P., 1987. Mariana Trough lavas from $18^{\circ} \mathrm{N}$: Implications for the origin of back-arc basin basalts. J. Geophys. Res., 92: 12782-12802.

Sinton, J., Price, R.C., Johnson, K.T.M., Staudigel, H. and Zindler, A., 1991. Petrology and geochemistry of submarine lavas from the Lau and North Fiji Basins. In: L.W. Kroenke and J.V. Eade (Editors), Basin Formation, Ridge Crest Processes and Metallogenesis in the North Fiji Basin. (Circ-um-Pacific Council for Energy and Mineral Resources, Earth Science Series, 3.) Vol. 12, pp. 155-177.
Stakes, D.S., Shervais, J.W. and Hopson, C.C., 1985. The volcano-tectonic cycle of the FAMOUS and AMAR valleys, Mid-Atlantic ridge ($36^{\circ} 47^{\prime} \mathrm{N}$): evidence from basalt glass and compositional variations for a steady state magma chamber beneath the valley midsections, AMAR 3. J. Geophys. Res., 89: 6995-7029.
Staudigel, H. and Bryan, W.B., 198I. Contrasted glass-whole rock compositions and phenocryst redistribution, IPOD sites 417 and 418. Contrib. Mineral. Petrol., 78: 255-262.
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Editors), Magmatism in the Ocean Basins. Geol. Soc. Spec. Publ., 42: 313-345.
Walker, D., Shibata, T. and DeLong, S.E., 1979. Abyssal tholeiites from the Oceanographer Fracture zone. II: Phase equilibria and mixing. Contrib. Mineral. Petrol., 70: 111-125.

[^0]: ${ }^{1}$ Member of GDR 910, "Genèse et Evolution does Domaines Océaniques", Brest

