Dichlorolissoclimide, a New Cytotoxic Labdane Derivative from Lissoclinum voeltzkowi Michaelson (Urochordata)

C. Malachet-Grivoisa, P. Cotelleb, J.F. Biarda, J.P. Hénichartc, C. Debitusd, C. Roussaka and J.F. Verbiesta.

aSubstances Marines à Activité Biologique, Faculté de Pharmacie, BP 1024, 44035 Nantes, France.
bURA 351 CNRS Université des Sciences et Techniques de Lille Flandres Artois, 59655 Villeneuve d’Ascq, France.
cUnité 16 INSERM, Place de Verdun, 59045 Lille Cedex, France.
dLaboratoire de Pharmacologie, ORSTOM, BP A5, Nouvelle Calédonie.

Abstract: Spectral methods were used to determine the structure of a new cytotoxic compound, dichlorolissoclimide 1, isolated from the New Caledonia ascidian Lissoclinum voeltzkowi Michaelson.

It is known that ascidians usually contain original nitrogenous compounds1,2. We isolated a new nitrogenous labdane cytotoxic substance, dichlorolissoclimide 1 (0.004%), from the EtOH extract of Lissoclinum voeltzkowi Michaelson (Urochordata, Didemnidae) gathered in 1988 on Platier du Mont Dore, New Caledonia. Isolation was performed by liquid/liquid purification and HPLC and monitored by cytotoxic bioassay using SESAME mathematical analysis3. The molecular formula of compound 1, C\textsubscript{20}H\textsubscript{29}Cl\textsubscript{2}NO\textsubscript{4}, \(\delta \text{C} = -20 \), was determined by analysis of its spectral mass and NMR data(Table 1). The \(^{13}\text{C} \) spectra revealed 20 carbons attached to a total of 26 hydrogen atoms. The highest FAB mass peaks at m/z 418, 420 and 422 (C\textsubscript{20}H\textsubscript{29}Cl\textsubscript{2}NO\textsubscript{4}) were thus attributed to the (M+H+) ion. FAB mass spectra revealed other peaks at m/z 400, 402 and 404 (C\textsubscript{20}H\textsubscript{28}Cl\textsubscript{2}NO\textsubscript{3}) attributable to (M+H+-H\textsubscript{2}O) fragmentation. The highest mass peak at m/z 399.1367 (C\textsubscript{20}H\textsubscript{27}N\textsubscript{O}\textsubscript{3}Cl\textsubscript{2}) in the EIHRMS confirmed the loss of a molecule of H\textsubscript{2}O (The 400/402/404 (100%, 87%, 37%) ratio is consistent with two chlorine atoms).

The deshielded \(^{13}\text{C} \) NMR resonances of \(\delta \) 184.8 (C) and 182.6 (C) indicated the presence of two ester and/or amide functional groups (IR: \(\nu \) 1710 cm-1) and implied the existence of a methylenic double bond at \(\delta \) 153.7(C) and 108.6 (CH\textsubscript{2}). Compound 1 thus had to be tricyclic to account for its unsaturation number.

\(^{1}\text{H} \) COSY, NOE (one and two dimensional experiments) and single-bond HECTOR NMR experiments routinely elaborated the spin systems for H-1 to H-14. The relative configurations of C-2, C-3, C-5, C-7, C-9 and C-10 were determined on the basis of the coupling constants and NOEs (fig.1). Long range \(^{1}\text{H}^{-^{13}\text{C}} \) correlations were observed using ordinary \(^{1}\text{H}^{-^{13}\text{C}} \) shift correlation pulse sequence4 rather than COLOC pulse sequence5, with delay times optimized for long-range couplings (D 1 and D 2 set at 50 ms and 25 ms).

\[\text{Figure 1} \]
These correlations (fig. 1) enable us to propose structure 1 for dichlorolissoclimide. Naturally occurring succinimides are very rare, and only one other succinimide compound has been isolated from a marine organism: isosegoline A from another ascidian, Eudistoma sp. 6. Compound 1 is the first labdane and the first chlorinated substance isolated from Urochordata. Its strong cytotoxic activity has been determined on human carcinoma KB cells (IC50: 14 ng/ml) and P388 leukemia cells (IC50: 1 ng/ml).

Acknowledgement: The authors wish to thank Mrs F. Monniot for identification of the ascidian and Mr J. Le Botterff for cytotoxic tests.

REFERENCES

(Received in France 13 June 1991)