Monoxenic Culture of Banana-Parasitic Nematodes on *Musa acuminata* cv. Poyo shoots

THIERRY MATEILLE

Key words: *Radopholus similis*, *Helicotylenchus multicinctus*, *Hoplolaimus pararobustus*, banana, in vitro.

Among nematodes parasitizing bananas throughout the world, *Radopholus similis* and *Helicotylenchus multicinctus* are the most widespread and damaging species. Besides these two nematodes, *Hoplolaimus pararobustus* is encountered frequently in Ivory Coast and has been increasing in banana growing areas for the past 25 years (6,10).

In vitro culture systems could facilitate screening for resistance and rearing of large numbers of monoxenic nematodes for experiments. The most common techniques used to rear *R. similis* monoxenically involve callus tissues, usually carrot (13). Root callus from okra, grapefruit, and alfalfa (12) and leaf callus from citrus (9) also have been utilized. On the other hand, the burrowing nematode has been mass produced on differentiated tissues such as excised okra roots (7). *Radopholus similis* was cultured on citrus roots produced from leaves (9), on citrus seedlings growing in sandy soil irrigated with nutrient solution (5), and on citrus roots growing in an agar medium (8). Brown and Vessey (2) demonstrated that *R. similis* thrives on banana fruit callus. *Helicotylenchus multicinctus*, however, failed to survive on the same callus. There is no report of mass production of *H. pararobustus* on aseptic plants or plant tissues in culture. However, Dasgupta et al. (4) reared *Hoplolaimus indicus* on excised roots of sorghum. The objective of this experiment was to determine whether *R. similis*, *H. multicinctus*, and *H. pararobustus* could be propagated asexptically on rooted banana shoots in tissue culture.

Aseptic leafy shoots of banana, *Musa acuminata* cv. Poyo, belonging to the Cavendish subgroup, were transferred onto a rooting medium in test tubes (11). Cultures were incubated for 2 weeks under a 12-hour photoperiod at 30°C and a 12-hour dark period at 27°C. *Radopholus similis* (Cobb, 1893) Thorne, 1949, *H. pararobustus* (Schuurmans Stekhoven & Teunissen, 1938) Sher, 1963, and *H. multicinctus* (Cobb, 1893) Golden, 1956 were extracted from field banana roots and corms. Nematodes were sterilized by soaking for 18 hours in 0.1% streptomycin sulfate solution. Twenty rooted banana plantlets were each inoculated with 10 gravid females of each nematode species. Plantlets in test tubes with nematodes were maintained under the same light and temperature conditions as described before, but the bottom portions of the test tubes containing the medium, roots, and nematodes were kept in the dark (15). One week after inoculation, five plantlets were harvested and the roots were stained with acid fuchsin to permit observation of nematodes inside tissues (5). Eighty days after inoculation, nematodes were extracted with a mist chamber (14) from the remaining 15 plantlets. Free nematodes in the agar were counted after mixing the agar in water.
Figs. 1–3. 1) Specimens of *Radopholus similis* stained with acid fuschin in roots of banana plantlets in vitro. e = eggs. n = nematode. 2) Female of *Hoplolaimus pararobustus* parasitizing a root of a banana plantlet in vitro. 3) Pathogenic effects of *Radopholus similis* on banana plantlets in vitro. Left: uninoculated plantlet. Right: banana plantlet 15 days after inoculation with 10 females.

Observations of stained roots revealed that *R. similis* completely penetrated the primary root tissues (Fig. 1), whereas only the anterior portions of *H. multicinctus* and *H. pararobustus* were embedded in roots (Fig. 2). Outer leaves of plantlets were discolored 15 days after inoculation with *R. similis*; the discoloration later extended to the inner leaves. Roots infected with *R. similis* stopped growing and blackened (Fig.
3); after 80 days, the shoots turned brown and died. Roots infected with *R. similis* in the field have red-brown lesions (1). The atypical color of roots in vitro may have been due to inhibition of phenolic oxidation. Plantlets inoculated with *H. multicinctus* or *H. pararobustus* did not have significant symptoms of decay.

Radopholus similis reproduced well on these banana cultures, increasing to 16,000 individuals per culture in 80 days, whereas *H. multicinctus* and *H. pararobustus* reproduced poorly or not at all (Table 1). The failure to culture *H. multicinctus* and *H. pararobustus* may be due to the ectoparasitic behavior of these nematodes in vitro (2).

In vitro banana shoot cultures permitted rapid rearing of aseptic *R. similis*. The technique is unsuitable, however, for screening banana cultivars for resistance to *R. similis*, because in vitro plantlets may be too sensitive to reveal variations in resistance. Furthermore, the in vitro system would not be useful for all parasitic nematodes of concern in Ivory Coast banana plantings.

Literature Cited

