EARTHWORM COMMUNITIES OF TROPICAL RAIN FORESTS

CARLOS FRAGOSO* and PATRICK LAVELLE

1Instituto de Ecología, Apdo 63, 91000 Xalapa, Veracruz, México and
2Laboratoire d’Écologie, École Normale Superieure, 45 rue d’Ulm, 75230 Paris Cedex 05, France

Summary—A comparative study of tropical rain forest earthworm communities was carried out to try to identify general patterns of organization. The study included 5 sites in México and Central America, 3 in South America, 2 in Central and Western Africa and 2 in Southeast Asia. Data base comprised 15 biological variables and 11 climatic and edaphic variables.

Average earthworm values of abundance and biomass were 68 ind m⁻² and 12.9 g m⁻² respectively, which were not very different to those values occurring in temperate woods; however, they were considerably lower when compared to temperate and tropical grasslands. Density and biomass showed a bell shape response in function of annual rainfall, with maximal values between 2000 and 4000 mm. Earthworms were mainly concentrated in the first 0–10 cm of soil depth.

Two kinds of communities were differentiated: one dominated by litter-feeding epigeics and anecics and the other one by geophagous endogeics. The former group was associated to oligotrophic soils from South America and Africa, whereas the second one was characteristic of the rich, neutral soils of México and Africa (one site). It is concluded that environmental variables, more than phylogenetic constraints, are the most important factors in determining the structure of these communities.

Comparisons with other soil macrofauna groups revealed that earthworms are the most important group regarding biomass and rank third in terms of abundance.

The importance of these organisms in the dynamics of tropical rain forest soils is discussed in terms of the kind of community found elsewhere.

INTRODUCTION

The role of earthworms in the processes of decomposition, building and maintenance of soil structure have been well documented for soils of temperate climates (see reviews in Edwards and Lofty, 1977; Satchell, 1983; Lee, 1985). In the tropics, considerable research has been carried out in savannas (Lavelle, 1978, 1983a; Martin et al., 1990; Blanchart et al., 1991) and pastures (Lavelle et al., 1981; Dash and Patra, 1979). In contrast, little has been done in tropical rain forest (TRF), and it is not yet possible to answer their role in these processes.

A general view that has limited this research is the current belief that earthworms are little abundant in tropical rain forest and consequently play unimportant roles in the soil dynamics (Golley, 1983; Anderson and Swift, 1983). This belief comes from early studies in which very low abundances were found, mainly due to the use of inadequate formalin sampling methods (Madge, 1965; Block and Banage, 1968), and from the results obtained in Asiatic forests (Kitazawa, 1971; Collins, 1980; Anderson et al., 1983).

In another series of studies in Mexican forests Lavelle and Kohlmann (1984) and Fragoso and Lavelle (1987) found higher abundances of earthworms, mainly endogeic-soil feeders, suggesting that earthworms probably have an important role in soil dynamics.

In a recent paper about decomposition in tropical rain forests, Swift and Anderson (1989) point out that termites and earthworms are the most relevant macrodecomposer groups; these authors indicate that savanna and some forest earthworms may have profound pedological effects, although they expressed doubts concerning the consumption of litter by earthworms.

The present paper summarizes all the information (published or not) about the ecological aspects of tropical rain forest earthworms, in order to obtain the general patterns of these communities. A brief discussion on the role of earthworms in these ecosystems is also provided.

METHODS

The data set comprised 31 communities from 14 different localities (6 from Central America, 3 from South America, 2 from Africa and 3 from Asia) (Tables 1 and 2). Nine edaphic variables (pH, organic matter, N, C:N, Ca, Mg, sand, clay, and litter) and two climatic variables (annual rainfall and seasonality) described the environment. Communities were characterized by mean absolute values of population density.
Table 1. Environmental and edaphic variables from different tropical rain forest earthworm communities. All edaphic data from first 0–10 cm layer

<table>
<thead>
<tr>
<th>Locality</th>
<th>Annual rainfall (mm)</th>
<th>Dry season*</th>
<th>Soil type (FAO)</th>
<th>Organic matter (%)</th>
<th>Ca (mg 100 g⁻¹)</th>
<th>Mg (mg 100 g⁻¹)</th>
<th>pH</th>
<th>Sand (%)</th>
<th>Clay (%)</th>
<th>C:N</th>
<th>Litter (g m⁻²)†</th>
<th>Key References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chajul, Mexico</td>
<td>2963</td>
<td>4</td>
<td>Alluvial</td>
<td>6.1</td>
<td>0.27</td>
<td>12.6</td>
<td>3.5</td>
<td>5.5</td>
<td>32</td>
<td>16</td>
<td>22.5</td>
<td>chp Fragos, (1985)</td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td></td>
<td>Gley-ferra</td>
<td>6.5</td>
<td>0.23</td>
<td>6.4</td>
<td>2.8</td>
<td>5</td>
<td>62</td>
<td>9</td>
<td>28.2</td>
<td>chs Fragos and Lavelle (1987)</td>
</tr>
<tr>
<td>Bonampak, Mexico</td>
<td>2600</td>
<td>3</td>
<td>Rendzina</td>
<td>2.2</td>
<td>0.11</td>
<td>7.25</td>
<td>3.6</td>
<td>6.5</td>
<td>35</td>
<td>50</td>
<td>20</td>
<td>bk Lavelle and Kohlmann (1984)</td>
</tr>
<tr>
<td>Lag, Verde, Mexico</td>
<td>1889</td>
<td>6</td>
<td>Vertisol</td>
<td>1.86</td>
<td>0.09</td>
<td>7.25</td>
<td>4.9</td>
<td>6.5</td>
<td>60</td>
<td>15</td>
<td>20</td>
<td>lv7 Lavelle et al. (1981)</td>
</tr>
<tr>
<td>Pang Perú</td>
<td></td>
<td></td>
<td>Vertisol</td>
<td>1.38</td>
<td>0.07</td>
<td>8</td>
<td>5.7</td>
<td>6.5</td>
<td>60</td>
<td>15</td>
<td>20</td>
<td>lv1 Lavelle et al. (1981)</td>
</tr>
<tr>
<td>Los Tuxtlas, Mexico</td>
<td>4725</td>
<td>1</td>
<td>Andosols</td>
<td>12.5</td>
<td>0.47</td>
<td>13.6</td>
<td>4.6</td>
<td>6.1</td>
<td>50</td>
<td>5</td>
<td>33</td>
<td>tsx Fragos (in preparation)</td>
</tr>
<tr>
<td>Rio Negro, Venezuela</td>
<td>3521</td>
<td>0</td>
<td>Latoisol</td>
<td>9.9</td>
<td>0.06d</td>
<td>0.18</td>
<td>4.3</td>
<td>93.3a</td>
<td>4.3a</td>
<td>32</td>
<td>600e</td>
<td>rul Lavelle and Pashanski (1989)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Podzol</td>
<td>4.7</td>
<td>0.07d</td>
<td>0.3a</td>
<td>1.55b</td>
<td>4.6</td>
<td>ND</td>
<td>ND</td>
<td>25</td>
<td>rup Lavelle and Pashanski (in preparation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lat-pod</td>
<td>4</td>
<td>0.07d</td>
<td>0.24</td>
<td>0.78</td>
<td>ND</td>
<td>ND</td>
<td>25</td>
<td>425</td>
<td>ruy Lavelle and Pashanski (1989)</td>
</tr>
<tr>
<td>Pangiana, Peru</td>
<td>2403</td>
<td>2</td>
<td>Cambisol</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>5.6</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>pan Lavelle and Schaeffer (1974)</td>
</tr>
<tr>
<td>Lamto, Ivory Coast</td>
<td>1276</td>
<td>5</td>
<td>Gley-ferra</td>
<td>1.45</td>
<td>0.63</td>
<td>1.68e</td>
<td>2.3e</td>
<td>5</td>
<td>82</td>
<td>15</td>
<td>2.3</td>
<td>rcm Lavelle (1978)</td>
</tr>
<tr>
<td>Dzimorika, Congo</td>
<td>1600</td>
<td>5</td>
<td>Alluvial</td>
<td>3.3</td>
<td>0.16</td>
<td>1.2</td>
<td>1.9</td>
<td>3.8</td>
<td>29f</td>
<td>34f</td>
<td>20</td>
<td>cna Garnier-Sillam (1987)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Podzol</td>
<td>1.05</td>
<td>0.04</td>
<td>12.6</td>
<td>6</td>
<td>3.8</td>
<td>ND</td>
<td>ND</td>
<td>25</td>
<td>ccm Montadert (1985)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Podzol</td>
<td>2.95</td>
<td>0.07</td>
<td>0.15</td>
<td>0.3</td>
<td>3.4</td>
<td>ND</td>
<td>ND</td>
<td>42</td>
<td>cmn Nemeth, 1981: Nemeth and Herrera (1982)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Podzol</td>
<td>3.9</td>
<td>0.13</td>
<td>0.20</td>
<td>0.5</td>
<td>3.6</td>
<td>ND</td>
<td>ND</td>
<td>25.5</td>
<td>cnc Rombke and Veitch (1990)</td>
</tr>
<tr>
<td>Gunung Mulu, Sarawak</td>
<td>5087</td>
<td>0</td>
<td>Alluvial</td>
<td>9.7</td>
<td>0.54</td>
<td>8.3</td>
<td>0.59</td>
<td>5</td>
<td>45</td>
<td>10</td>
<td>18.5</td>
<td>gma Proctor et al. (1983b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Podzol</td>
<td>11</td>
<td>0.51</td>
<td>0.04</td>
<td>0.18</td>
<td>4.1</td>
<td>10</td>
<td>10</td>
<td>21.5</td>
<td>gmd Proctor et al. (1983a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Podzol</td>
<td>29</td>
<td>0.91</td>
<td>0.67</td>
<td>1.5</td>
<td>3.6</td>
<td>10</td>
<td>10</td>
<td>31.8</td>
<td>gmh Proctor et al. (1989)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inceptisol</td>
<td>42</td>
<td>2.5</td>
<td>6.1</td>
<td>6.1</td>
<td>6i</td>
<td>ND</td>
<td>ND</td>
<td>16.8</td>
<td>gni Proctor et al. (1983b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inceptisol</td>
<td>6.8</td>
<td>2.5</td>
<td>7.7</td>
<td>24.6</td>
<td>5.7</td>
<td>ND</td>
<td>ND</td>
<td>53.3</td>
<td>gsc Proctor et al. (1988)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inceptisol</td>
<td>7.5</td>
<td>2.3</td>
<td>15.7</td>
<td>5.8</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>737h</td>
<td>gs3 Leakey and Proctor (1987)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inceptisol</td>
<td>7</td>
<td>4.2</td>
<td>11.5</td>
<td>6.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>522h</td>
<td>sp Leakey and Proctor (1987)</td>
</tr>
<tr>
<td>El Verde, Puerto Rico</td>
<td>3280</td>
<td>ND</td>
<td>pr Moore and Burns (1970)</td>
</tr>
<tr>
<td>Sepilok, Borneo</td>
<td>3206</td>
<td>ND</td>
<td>sp Kitazawa (1971)</td>
</tr>
</tbody>
</table>

*Number of months with < 100 mm of rainfall.
†Data from rain season except ml, Gunung Mulu, Gunung Silam (annual estimations) and Dzimorika (average of dry and rain seasons).
<table>
<thead>
<tr>
<th>Locality</th>
<th>Density (ind m^{-2})</th>
<th>Biomass (g m^{-2})</th>
<th>No. spp</th>
<th>Loc.</th>
<th>Diversity</th>
<th>Loc.</th>
<th>Epigees</th>
<th>D (%)</th>
<th>B (%)</th>
<th>Spp</th>
<th>Aecies</th>
<th>D (%)</th>
<th>B (%)</th>
<th>Spp</th>
<th>Endogees</th>
<th>D (%)</th>
<th>B (%)</th>
<th>Spp</th>
<th>Key</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chajul, Mexico</td>
<td>80</td>
<td>34.2</td>
<td>11</td>
<td>17</td>
<td>4.5</td>
<td>4.55</td>
<td>(0.9)</td>
<td>0.3</td>
<td>0.3</td>
<td>1</td>
<td>0.3</td>
<td>(1)</td>
<td>0</td>
<td>0</td>
<td>79.2</td>
<td>33.8</td>
<td>10</td>
<td>chp</td>
<td>Fragoso (1985)</td>
<td></td>
</tr>
<tr>
<td>Bonampak, Mexico</td>
<td>121</td>
<td>42.4</td>
<td>7</td>
<td>2.58</td>
<td>(0.9)</td>
<td>0.4</td>
<td>0.4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>(1)</td>
<td>0</td>
<td>0</td>
<td>120.0</td>
<td>42</td>
<td>2</td>
<td>chs</td>
<td>Fragoso and Lavelle (1987)</td>
<td></td>
</tr>
<tr>
<td>Laguna Verde, Mexico</td>
<td>80</td>
<td>10.6</td>
<td>8</td>
<td>8</td>
<td>4.1</td>
<td>4.1</td>
<td>14</td>
<td>0.5</td>
<td>0.5</td>
<td>2</td>
<td>0.5</td>
<td>(0.5)</td>
<td>0</td>
<td>0</td>
<td>66.6</td>
<td>10</td>
<td>6</td>
<td>bk</td>
<td>Lavelle and Kohlmann (1984)</td>
<td></td>
</tr>
<tr>
<td>Yurimaguas, Peru</td>
<td>80</td>
<td>0.6</td>
<td>2</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>44.0</td>
<td>3.2</td>
<td>4</td>
<td>lv1</td>
<td>Lavelle et al. (1981)</td>
<td></td>
</tr>
<tr>
<td>Montebello, Mexico</td>
<td>44</td>
<td>3.2</td>
<td>4</td>
<td>ND</td>
<td>0</td>
<td>44.0</td>
<td>3.2</td>
<td>4</td>
<td>lv1</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Los Tuxtlas, Mexico</td>
<td>60</td>
<td>11.2</td>
<td>5</td>
<td>9</td>
<td>2.7</td>
<td>4.1</td>
<td>(2)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>(2)</td>
<td>0</td>
<td>0</td>
<td>22.0</td>
<td>4.9</td>
<td>3</td>
<td>tx2</td>
<td>Fragoso (in preparation)</td>
<td></td>
</tr>
<tr>
<td>Volcan Barva, Costa Rica</td>
<td>401</td>
<td>35.4</td>
<td>ND</td>
<td>crl</td>
<td>Atkin and Proctor (1988)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yurimaguas, Peru</td>
<td>280</td>
<td>71.9</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>49.8</td>
<td>13.9</td>
<td>2</td>
<td>1.79</td>
<td>0.9</td>
<td>1</td>
<td>1.79</td>
<td>0.9</td>
<td>12.4</td>
<td>7</td>
<td>2</td>
<td>yrp</td>
<td>Lavelle and Pashanasi (1989)</td>
<td></td>
</tr>
<tr>
<td>Rio Negro, Venezuela</td>
<td>64</td>
<td>21.8</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>49.8</td>
<td>13.9</td>
<td>2</td>
<td>1.79</td>
<td>0.9</td>
<td>1</td>
<td>1.79</td>
<td>0.9</td>
<td>12.4</td>
<td>7</td>
<td>2</td>
<td>yrp</td>
<td>Lavelle and Pashanasi (in preparation)</td>
<td></td>
</tr>
<tr>
<td>Panguana, Peru</td>
<td>68</td>
<td>16.6</td>
<td>8</td>
<td>3.2</td>
<td>46.9</td>
<td>3.2</td>
<td>(69)</td>
<td>(20)</td>
<td>2</td>
<td>0</td>
<td>0.6</td>
<td>3.2</td>
<td>0.6</td>
<td>3.2</td>
<td>30.9</td>
<td>6.55</td>
<td>5</td>
<td>rnp</td>
<td>Lavelle (1985a)</td>
<td></td>
</tr>
<tr>
<td>Lamento, Indonesia</td>
<td>42</td>
<td>10.3</td>
<td>7</td>
<td>3.07</td>
<td>33.2</td>
<td>2.7</td>
<td>2</td>
<td>0.77</td>
<td>5</td>
<td>1</td>
<td>0.77</td>
<td>5</td>
<td>1</td>
<td>8.2</td>
<td>2.59</td>
<td>4</td>
<td>rny</td>
<td></td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Gunung Mulu, Sarawak</td>
<td>42</td>
<td>2.69</td>
<td>ND</td>
<td>pan</td>
<td>Rombike and Verhaagh (1992)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guunung Slam, Malaysia</td>
<td>64</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>(13)</td>
<td>(31)</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>30.4</td>
<td>1.13</td>
<td>4</td>
<td>lmt</td>
<td>Lavelle (1978)</td>
<td></td>
</tr>
<tr>
<td>El Verde, Puerto Rico</td>
<td>166</td>
<td>22.7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>22.6</td>
<td>1.6</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21.7</td>
<td>0.43</td>
<td>7</td>
<td>crr</td>
<td>Montadert (1985)</td>
<td></td>
</tr>
<tr>
<td>Sepilok, Borneo</td>
<td>78</td>
<td>3.3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>4.5</td>
<td>0.6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>45.9</td>
<td>2.52</td>
<td>7</td>
<td>cnb</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>BN</td>
<td>43.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>6.2</td>
<td>2.4</td>
<td>1</td>
<td>0</td>
<td>2.4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.2</td>
<td>0.09</td>
<td>1</td>
<td>cn</td>
<td>Moore and Burns (1970)</td>
<td></td>
</tr>
</tbody>
</table>

Key References

- Atkin and Proctor (1988)
- Lavelle and Pashanasi (1989)
- Lavelle and Pashanasi (in preparation)
- Nemeth (1981)
- Nemeth and Herrera (1982)
- Lavelle (1985a)
- Lavelle (1978)
- Montadert (1985)
- This study
- Rombike and Verhaagh (1992)
- Rombke (1987a)
biomass, species richness and diversity \(1/\text{Simpson index; Smith, 1980}\). Number of species, abundance and biomass (absolute and relative values) of the three ecological categories as defined by Bouché (1977) were also included. Separation of species into these categories was made as follows: the epigeic included all those litter-feeding worms with dorsal pigmentation and spasmodic movements that live in the litter or in the first 5 cm of soil. Anecics were soil-burrowing species with antero-dorsal pigmentation and a flattened posterior end that live in the soil but feed on litter. The endogeics were all those unpigmented soil-dwelling species with slow movements which feed on soil.

Data from ecosystems derived from formerly tropical forests (Cook et al., 1980) and from studies which only used formalin as sampling method (Madge, 1965; Block and Banage, 1968; Standen, 1988) were discarded. Only studies which used the handsorting method were considered.

Using data of Tables 1 and 2 the communities were ordinated and classified by means of PCA (principal component analysis) and no hierarchical clustering (average-linkage, UPGMA) methods (Gauch, 1982). In the first case the matrix association was obtained with correlation coefficients whereas in the second case Gower index was used. These analyses were made using PATN (Belbin, 1986) and STATGRAPHICS software.

RESULTS

Species richness and diversity

These parameters were calculated on a community basis (\(\alpha\) diversity) and at the regional scale (landscape diversity).

The number of species for a given community (\(\alpha\) 1 ha) varied from 4 to 14, with a mean value of 6.5 spp ± 1.3 \((P < 0.05, n = 19)\); diversity showed a mean value of 3.6 ± 0.7 \((P < 0.05, n = 15)\), ranging

Fig. 1. Relationship between (a) density and (b) biomass vs annual rainfall in earthworm communities from different tropical rainforest. Costs Rica values excluded.
from 1.7 to 6.5 (Table 2). At the regional scale (ca 100 ha) both species richness and diversity increased, with mean values of 10.7 spp ± 4 ($P < 0.05$, $n = 7$ and range of 7–17) and 4.4 ± 2.5 ($P < 0.05$, $n = 6$ and range of 1.7–8.9) respectively.

Differences between communities and localities indicates that environmental heterogeneity within the same locality (β diversity) is important in promoting earthworm diversity in tropical rain forests, as it has been shown by Fragoso and Lavelle (1987) in the forests of Chajul, México.

Population density and biomass.

Average values for density and biomass were 68 ind m$^{-2}$ ± 32 ($P < 0.05$, $n = 30$, range of 4–401) and 12.9 g m$^{-2}$ ± 6.22 ($P < 0.05$, $n = 31$, range of 0.2–71.9) respectively. Central American forests of Chajul (México) and Volcan Brava (Costa Rica) presented the highest values, mainly due to the presence of the exotic earthworm *Pontoscolex corethrurus* (Fragoso, 1985; Fragoso and Lavelle, 1987; Lavelle, pers. obs.). This species probably colonized these forests in the past, when disturbances (e.g., human settlements) destroyed natural vegetation. If Costa Rica values are excluded these averages decrease to 49 ind m$^{-2}$ and 10.09 g m$^{-2}$.

In the same locality rich soils supported greater densities and biomasses of native earthworms than poor soils (Gunung Mulu and Chajul forests). A bell shape response of density and biomass to increasing

![Fig. 2.](image-url)
annual rainfall (Fig. 1) was the only relationship of these parameters with edaphic and environmental variables. Maximal values of density and biomass were found in forests with precipitations of 2000–4000 mm. These results indicate that tropical forests with annual rainfall below 2000 mm are too dry to support optimum earthworm populations; forests with rainfall >4000 mm or with periodical flooding are too wet for earthworms to inhabit the soils. In the later situation Lavelle and Barois (1988), Adis and Righi (1990) (in the Amazonian forests) and Lee (1969) (in the Solomon Islands) have observed that earthworms change their habitat towards epiphytes and decaying logs.

Spatio-temporal patterns

Horizontal distributions. The only detailed study of horizontal patterns of distribution has been made by Fragoso and Lavelle (1987) in the forest of Chajul. They found that almost all species presented aggre-
gative distributions, mainly explained by soil texture, organic matter and litter quality. In relation to the last parameter Nemeth (1981) and Nemeth and Herrera (1982) proposed that differences of earthworm abundance between laterite and podzols soils of San Carlos Rio Negro could be explained by the presence of polyphenols in soil litter.

Vertical distributions. Earthworms of tropical rain forests generally occur at depths of 0–40 cm with a clear concentration in the upper 10 cm [Fig. 2(a)]. The average vertical niche overlap (Pianka index: Pianka, 1974) calculated for the forests of San Carlos de Rio Negro-SCRN (Venezuela) (0.50, Lavelle, 1983b after Nemeth, 1981), Chajul (México) (0.47, Fragoso and Lavelle, 1987) and Dimonika (Congo) (0.74, Montadert, 1985) gives a value of 0.57 which is lower than the mean value of 0.91, calculated for temperate climates (Lavelle, 1983b). This is a clear indication of an extended vertical distribution of earthworms in tropical forests as compared to temperate equivalents.

Temporal distributions. At Chajul (México), earthworm populations showed clear seasonal variations with maximal values concentrated in the wet season (Fragoso, 1985) [Fig. 2(b)]. Vertical distribution was also influenced by seasonality, with worms migrating to deeper layers in the dry season. This pattern also occurs in other forests with seasonal rainfall cycles (Dimonika: Montadert, 1985; SCRN: Nemeth, 1981); in non-seasonal forests a more uniform pattern is expected to prevail.

Community structure

Earthworm communities were classified into epigeic-anecics (surface-litter feeding) or endogeics (geophagous) on the basis of the contribution of each group to the total density and biomass. The community was considered as epigeic-anecic or endogeic when any one of these groups accounted for 50% or more of total density and biomass. Table 3 indicates that all the Central American and two African (Lamto and Dimonika b) communities are endogeics whereas all South American and the other African communities are epigeic-anecics. Asian communities were not classified due to the lack of data. In order to confirm this separation a PCA was realized with data of Table 2, excepting the absolute values of the ecological categories (Fig. 3(a)). Two factors were extracted which explained 63% of total variance. The first factor (41%) clearly opposed the epigeic-anecic communities to endogeic ones, whereas the second factor (22%) opposed communities with low abundances to the ones with high abundances. A cluster analysis further identified three groups: the first comprised all the endogeic communities whereas the second and third ones grouped the epigeic-anecic communities.

Later patterns can be explained at least by two factors: (1) environmental and soil variables and (2) phylogenetic determinants.

In the first case a PCA and a cluster analysis were made with edaphic and climatic variables of Table 1 (excepting litter, sand, and clay). PCA produces two factors [Fig. 3(b)] that accounted for 73% of total variance. The first factor (45%) ordinates the localities along an axis of soil moisture contents (relatively wet vs very wet soils); second factor (28%) separates the forests on the basis of their nutrient status. Cluster analysis produced four groups: the first grouped the Mexican forests of Los Tuxtlas, characterized by rich soils with abundant rainfall; the second isolates the Asiatic forests from Sarawak, located over soils with high nitrogen and organic matter contents and with heavy rainfalls; the third grouped Lamto and Mexican forests characterized by rich soils with seasonally low rainfalls; the fourth comprises South American and African forests in low nutrient soils with seasonally low rainfalls. The comparison of Fig. 3(a) with (b) indicates that geophagous endogeic communities are characteristic of rich nutrient soils, whereas surface litter-feeding epigeic-anecic are normally present in oligotrophic soils. Significant relationships of density and biomass of epigeics with litter, pH, Ca, Mg and N [Fig. 4(a)–(e)] confirms the edaphic factor as an important determinant in the structure of earthworm communities.

If the feeding strategy (litter vs soil) is the result of a common inherited genetic pattern then closer
taxa must have the same strategy. In Central America almost all native species belong to the family Megascolecidae tribes Acanthodrilini and Dichogastrini (Gates, 1982; Jamieson, 1971). In Central Africa the communities are dominated by species of the family Eudrilidae and of the tribe Dichogastrini (mainly Dichogaster), whereas in West Africa acanthodrilins and dichogastrins are more important than eudrilids (Omodeo, 1958; Sims, 1987). South American communities, on the other hand, are dominated by the families Glossoscolecidae and Ocnerodrilidae (Righi, 1971; Jamieson, 1971; Brinkhurst and Jamieson, 1971). In terms of phylogenetic relationships the earthworm fauna of Central America is closer to the earthworms of Central and West Africa than to the earthworms of South America, e.g. African dichogastrins are very closely related to Central American ones, whereas South American glossoscolecids are very distant from African Eudrilidae (Jamieson, 1989).

Without discarding at all phylogenetic constraints it seems clear that environmental variables are very important in the determination of the structure of TRF earthworm communities. Such an environmental determinism is not specific to TRF. In temperate
forests from Belgium, Muys et al. (1992) have also demonstrated that the nutrient status of soil is the main determinant of the structure of earthworm communities.

Relative importance of earthworms in tropical rain forest macro-invertebrate communities

Comparing 12 communities from different tropical rain forests, we found that termites and earthworms are the most important groups of soil macrofauna. Earthworms account for 51% of total biomass whereas termites make up 13%; regarding abundance, termites dominate with 37% followed by ants (23%) and earthworms (9%) [Fig. 5(a)].

It has been proposed that earthworms and termites occupy the same niche, and that termites are the tropical equivalent of temperate earthworms (Drummond, 1886, quoted in Lee and Wood, 1971; Anderson and Swift, 1983; Golley, 1983). This hypothesis can be tested by looking for the kind of relation between these two groups. Using data from Lavelle and Fragoso (1992) no relationship is found between absolute values of density and biomass of both groups. When this analysis is extended to include savanna, grassland and cultivated soils an inverse correlation between relative values of these groups is clear [Fig. 5(b)]. This relation is explained by the dominance of termites and the near absence of earthworms in soils with less than 900 mm annual rainfall and with a dry season of more than 5 months (Lavelle, 1988b).

With the precedent evidence we cannot conclude that in soils of TRF earthworms and termites are in competition. To reach this conclusion it would be necessary to make some kind of laboratory or field experiment (removal of one or another group). More than competitive exclusion, the likely explanation is that when environmental conditions exclude one of

Fig. 4. Relationship between percentage of biomass (B%) and density (D%) of TRF epigeic worms and different soil variables: (a) B% vs litter, (b) D% vs pH, (c) D% vs Ca, (d) D% vs Mg and (e) D% vs N (r significantly at P < 0.05).
these two groups, the other one occupies the empty niche.

On the other hand earthworms of TRF are the most important group in terms of biomass, no matter if termites have high or low abundances.

DISCUSSION

Species richness and diversity of TRF earthworm communities are not significantly different from those of temperate forests. The average value of 5.7 spp (±2.02) calculated from 15 temperate forest communities (quoted by Lee, 1985), is very similar to our estimates for TRF. At a larger regional scale (β diversity), however, tropical countries harbour more species than temperate ones: e.g. India has more than 400 species (Senapati, 1980) whereas in England and France only 27 (perhaps 28) and 97 species respectively have been reported (Sims and Gerard, 1985; Bouché, 1972). This is partly explained by the depauperative effect that glaciations had on Northern earthworm fauna, and the several evolutionary and environmental patterns responsible for the large species diversity of tropical countries.

Tropical rain forest earthworm communities have lower abundances and biomasses than temperate pastures (reviewed in Lee, 1985) and tropical savannas and grasslands (Lavelle, 1983a). Temperate deciduous

Fig. 5. (a) Main soil macroinvertebrate groups (D and B >1%) from different tropical soils. EW: earthworms; TE: termites; CO: coleoptera; MY: Myriapoda; AN: ants; SP: spiders; IS: isopoda; DP: diptera. (b) Relationship between relative biomass of earthworms and termites in different tropical soils (savannas, forests and disturbed lands).
and cold coniferous forests, on the other hand, show similar values of density (64 ind m⁻² ± 19), with biomass twice as high (30 g m⁻² ± 20) as those of TRF (calculated from data of Lee, 1985; Pop, 1987; Römbke, 1987).

Lavelle (1983b) has found that the structure of world earthworm communities is mainly determined by the temperature. However, when temperature is the same in markedly different edaphic or environmental conditions, other factors tend to predominate. In TRF, temperature remains nearly constant all year (Lauer, 1989); under these conditions we found that the nutrient status of soils is the variable that determines the structure of the community. Since a wide range of nutrient status have been observed in soils of TRF (Sánchez, 1989), it is expected that epigeic and endogeic populations will dominate respectively in poor and rich soils. In soils with comparable nutrient status, seasonality of rains emerges as a further determining variable, e.g. the majority of soils of Mexican TRF (Bonampak, Chajul, Laguna Verde) are rich in nutrients and their communities are composed by endogeic worms. At Los Tuxtlas Mexican forest, however, epigeic populations comprise almost 50% of total biomass; the main difference with the other Mexican TRF is a shorter dry season.

It is thus clear that the structure of earthworm communities is determined by a suite of hierarchical organized factors: temperature operates at the higher hierarchical level, followed by edaphic (nutrient status) and environmental (seasonality) factors.

The effect of earthworms on decomposition and mineralization processes in TRF depends on the composition of their community. In communities dominated by epigeic and anecic species, worms feed on leaf litter mixed with some soil. Epigeics act as efficient agents of comminution and fragmentation of leaf litter that they transform in stabilized organic matter. Anciecs have two main effects on the soil: (1) to modify the soil physical properties by their burrowing activity and (2) to enhance decomposition of plant debris by burying and mixing them to the soil (Lavelle, 1988a). Endogeic communities, on the other hand, are dominated by worms that live in the soil and mainly feed on soil organic matter that they digest in association with soil microflora (Barois and Lavelle, 1986; Lavelle, 1984; Lavelle et al., 1989). These worms have an important impact on soil aggregation. As a result in South American and some African forests epigeic earthworms probably affect significantly the decomposition of litter, whereas in Central American forests endogeic ones must have important interactions with soil microflora, affecting the process of soil organic matter decomposition and the nutrient cycling.

The response of earthworm communities to the clearing of tropical forests also varies as a function of the ecological category. In communities dominated by epigeics most species disappear, whereas in communities dominated by endogeics and anecies some species may survive, as it occurs with Ramiellona strigosa in induced pastures of Chajul. After native earthworms have disappeared the disturbed soils of the humid tropics may be colonized by a few peregrine species, which soon overdominated the community. This is the case of Pontoscolex corethrurus in Peru and México soils (Lavelle et al., 1981; Lavelle and Pashanasi, 1989) and Polypheretima elongata in soils of New Guinea (Standen, 1988) and Martinique (Barois, pers. commun.). It is hypothesized that one feasible way to recover and improve the fertility of disturbed tropical soils would be to manipulate these communities, by introducing a mixture of native and alien savanna-like species (well adapted to low nutrient conditions and with a wide physiological and ecological plasticity) (Lavelle et al., 1989).

CONCLUSIONS

The present study is a synthesis of the current information available on earthworm communities from TRF. Some general patterns have been observed which exemplify the plastic response of these communities towards environmental factors. More research is needed to consolidate or to change these observations. Studies on Indian forests might change some of these patterns, as suggested by the preliminary data of Ferry (in preparation), who found high biomasses of earthworms (up to 90 g m⁻²) in very wet Indian forests (5000—7000 mm of annual rainfall).

Earthworms are an important component of tropical rain forest ecosystems. However, we do not know yet their exact role in the global dynamics of energy and matter fluxes. Further research must be focused on this aspect. This must be urgently achieved in the near future because tropical forests are disappearing at very high rates (Mabberley, 1983; Myers, 1983), with many of their patterns and processes still remaining unknown.

REFERENCES

Römbke J. and Verhaagh M. (1992) About the earthworm community in a recently developed pasture in comparison with a rain forest site in Peru. *Amazoniana*.

