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STATISTICAL ANALYSIS OF POINT AND AEREAL HOURLY RAINFALLS

(APPLICATION TO DESIGN FLOOD BY THE GRADEX METHOD)
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I. INTRODUCTION
Prbhobbidob ool

In development projects on small rural river
basins and in the growing field of urban hydro-
logy, rainfall over periods of less than one day
becomes of great interest. Hourly rainfall has a
different spatial distribution than daily rain-
fail and also a differemt temporal distribution,
especially in relation to non-negligible auto-
correlation and the large number of zero values.
The use of hourly rainfall information is handi-
capped by the scarcity of long terme recording
raingages graphs as compared to daily rain gage
records. Moreover the extreme flood estimation
approach dealt with in this paper, called the
Gradex method, requires an accurate knowledge of
the temporal distribution of the average amount
of precipitation for periods close to the water-
shed time of concentration.

For a region in France subject to parti-
culary violent and sudden flooding,” this paper
presents an attempt to make best use of available
information to estimate rainfall amounts of gi-
ven return periods for different durations bet-
ween one and twenty-four hours.

Figure 1.1 Location of the study area.

2. DISTRIBUTION OF EXTREME RAINFALL VALUES AT A
SINGLE STATION

2. | - Gumbel distribution

Q

It is generally accepted that the asymp-
totic behavior of probabilistic rainfall models
must involve an exponential decay (SHITH-SCHREIBER
1973 ; SUMNER 1978 ; WOOLHISER 1979, 1982 ;
REVFEIM 1982). The assumption can be justified
by the following reasoning : assuming that the
total amount of rainfall x failling over a unit
time period (in the order of an hour or a day)
comes from an inexhaustible source (the atmos-
phere) at a random rate, then the probability of
this source delivering an additional quantity h
is independent of the total amount emitted. Un-
der these conditions :

G(x + h) = G(x) x g(h) for all x and (x + h) > O

vhere G(x) is the probability of the rainfall ex-
ceeding x and g(h) is the probability of an addi-
tional amount exceeding h.

The only functions G and g that satisfy
this functional equation are :

G(X) = K ¢ X/a

* g (h) = e"h/&

If the probabilistic rainfall model is a single
exponential, it is easy to show that the maximum
of N occurrences follows a Gumbel distribution.
Assuming this is the case for rainfalls exceeding
a level So :

2.2

(x - x0)/a

N(X{ > x) = e 2.3

- e"'(so- Xo) /a

ﬂ(So) = N 2.4

n is the number of times that Xj has a
value equal to or greater than x ;

where :

N is the number of observations with
Xi > 5, for a given period.

A relative frequency can be defined :

n'(x) = Eéil = e—(x -~ So)/a = P (Xi > x) 2.5
e“<x = Xo)/a N x e“(x = S0)/a 2.6
which gives :

Xg = S, + alog W 2.7
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If we look at a random variable X, equal to the
maximum obtained for N occurences of Xj, them :

P(X € %) =[P (i ¢ x)]N - [1 - B0 “]’:y )
- 2.8
P(X < x) = EXP (-EXP —(X - %o)) 2.9

which is the Gumbel distribution.

-

The parameter a is the "gradex" (the ex~-
ponential gradient).

For any model with an asymptotic exponen-
tial- decay, it is always possible to find a level
above which the distribution behaves as a single
exponential and a number N sufficiently large to

.justify approximation 2.8, The Gumbel distribu-

tion is therefore gemerally valid and supports
the conclusions of Hershfield (1960) based on a

‘systematic study of rainfall all over the world.

One frequently used probabilistic rain-
fall model involves the sum of two exponentials
(DUBAND 1967) :

F(x) =.1 - yeX/2 _ gg=X/c 2.10

with a > ¢, where a is the gradex. .

In the model, rainfalls are comsidered to
come from a mixture of two populations with one
occurring less frequently but, giving much higher
waximums than the other. In“mgay regious, the me-
teorological origin of precipitagion corresponds
to this scheme.

2, 2 - Small times periods

In our study involving the Cevennes re-—
gion, problems were frequently encountered in
fitting the Gumbel distribution to monthly maxi-
mum l-hour and 2-hour rainfall data (figure 2.1)
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2 HOURS RAIMFALL (mm)

U (Gumbel variable)

Figure 2.1 Extreme value distribution

of two hours rainfall (.1mm);PUECHABON,
Solid line: Gumbel fit by moment method
Broken line:gumbel fit by M.L method.
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A homogeneous season was used (3 autumn months)
and the length of the series made it impossible
to always select only the season maximum (e, g.
39 autumn months instead of 13 seasons).

For this short duration rainfall data,
8 in model 2.10 is large with respect to ¥y and
N must therefore be very large to obtain maxi-
mums which follow a Gumbel distribution.

Table 2.1 Computed coefficients of
mixed exponential (model 2.10),.

Y B F(o) a c
1-hour
rainfall| .015 .060 .925 6.5 ?.4
24-hour .
rainfall] . 14 . 19 .670 31.5 11.0
Station : Puechabon )

Although based on larger samples with a lower
proportion of high values, model 2.10 shows a
sampling distribution of the parameter “a" with
a fairly high dispersion. Furthermore, there is
a high autocorrelation for 1-hour and 2-hour
rainfalls (figure 2.2) and fitting on decorrela-
ted subsets is often highly dependent on the

subset chosen.
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Figure 2.2

Autocorrelation of hourly rainfalls (Le Vigan)

For the 50 stations dealt with, we en-
countered these fitting problems in about ten
cases, all located on the western or southern
boundary of the region concerned, In these
transition zones between two predominant clima-
tic influences, the mixture of populations is
in proportions such that, for short durationms,
the events of the more rare population occur
only once every 3 to 10 years. This has already
been observed for tropical regions subjected to
extremely violent but rare cyclones (Bois 1969).

On the other hand, within the actual stu-
dy zone, the Gumbel distribution appears to be
well suited for all durations from | to 24 hours;
it gives gradex estimations near, even if some-
what lower than those obtained by fitting model
2.10 to all the comsecutive rainfalls,
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3. EXTENSION TO SPATIAL RAINFALL

3. 1 = Calculation of spatial rainfall amounts

The average rainfall falling on a water-
shed during 1 hour can be calculated using a
two~dimensional spline interpolation method
(LEBEL, CREUTIN 1983).

The entire recording rain gage mnetwork
of the Cevennes region (97 stations over about
15 000 km®?) was used for these calculations,
which were carried out for four adjacent water-
sheds (Figure 3.1).

In reality, only 20 to 30 stations have
significant weights. Furthermore, the temporal :
distribution study requires a base involving on-
1y those stations with a wecord lasting more
than 10 years, i.e. 13 of the 30 statioms
(Table 3.1).

Table 3.1 : Influence of the 13 long temm

stations on the calculation of °
areal rainfall by spline method.
WEIGHT VEIGHT WEIGHT WEICHT
STATION GRADEX | GRADEX
(NUMB. & KAME) |! HOUR 24 HOUR | GANDR CAJEA CANMIA GANDU
1710 {1710 w0](53 Kn?) F(265 kn') 1(265 Kn? X (545 Xa?]
201 ALES Bl 3% {-.014 - 004 05 (078
206 COULETY 140 50 |- .66 |- .06 J1 By
208 SODORGE | 131 SR {-.001 320 056 308
25STEVF 1% 752 64 290 S 333
216 BARRED ¢ 91 518 s 168 253 148
217 MNTQLUS & 36 003 001 001 R0 i/4
219 BESSEGES 179 13 02 02 FO06 OB
20 tALOYS ] s |-.0B81 .04 RO03 OO
223 QUISSAC 18 29 |-.03 .05 03 (B4
26 VAL.RUG H 648 590 373 (56 RV
227 LE VIGN 8 ¥ oi-.00 .01 R0 0L
222 NIMES & 2R 0B 0B 001 RO
263 VALFLAIN N %6 Rie 0® E FOB

The spatial means were recalculated using
the 13-station subnetwork and they appear to
still give a good estimation of the hourly rain-
fall on each basin (LEBEL, CREUTIN 1983).

We therefore have four temporal series
of spatial rainfalls over the period 1971-1980.

Table 3.2 : Maximum rainfalls (.lmm) on
Gardon d'Anduze watershed
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3. 2 - Fitting a Gumbel distribution to spatial
rainfall

A gpatial rainfall value estimated by a
weighted average of Gumbelian variables should
not itself be Gumbelian unless all intercorrela-
tions between stations are equal to 1.

However the Gumbel distribution is only a
probabilistic model representing in our view the
best approximation of the rainfall distribution
at a single station. As shown in figure 3.2, the

model remaing applicable to series of mean rain-
falls calculated on sufficiently small water-
sheds (< 1 000 km®? in the Cevennes region).

The method of moments can be uscd to es-
timate the parameters of the Gumbel distribution,
with the parameter Teta calculated for a sample
of monthly maximums (3 per year for the autumn
season). The 10-year rainfall is obtained using
the following transformations :

TETA = TETA + GRADEX x Logy (VA) 3.1
P10 = TETA -~ Ly(-Ly (. 9)) = GRADEX 3.2
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Figure 3.2 :
Solid line :

Moment method fit. Broken line :

Extreme values distribution of areal rainfall on two watersheds.

Maxima likelihood fit.

The quality of fit is as good as the commonly obtained fit on statioms,
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Table 3.3 : Areal gradex (.lmm) calculated by fitting a Gumbel distribution
on areal rainfalls estimated by spline method on a 13 long temm

stations network.

WEISRSIBIENETIIRA 042 TR LN R LBRITLESRERRISTTURIRLER
s TCRADEXIGRAVEY ¢ TCTA + TETA | F.10 { .10 &

L INONCHT T VR AL SHOREHT LR, VA THOHLNT I URA L ¢
Semavanwsnan L T T T T T LT e Y
s . I 79, t 74, 1 74, 1 73, 1 330. 1 320. %
L] 28, 1 128, 4 120, ¢ £21. 1 120, 1 Ta7, 1 TDLL 08
2 aH. I 107, 1 120, 4 377, ¢ 179. 1 BOS. t 747, &
s SH. I 244, 1 219, t 228. 1 23C., 131044, | 9%, ¢
T 124, 1 330, 0 328, t 331, 1 330. {1303, 11427, 8
X 24H. T 817, F 515, 1 A4 1 44T, 12492, {21469,
BESABUBIIRILERSEI32 USRI RRERISELRINRACIBEABRES

Hatershed: GANDR(53 sz)

BERSIIOLIASSATCHSENRSETEIIBRITLESLIARBETREALEERENL
1] IGHALEXIGRALEXY TETA ¢t TETA 1 P10 1 F.10 3
* THONE HT 1M VA, THORENT 1 H.URAL THORENTIN.URA. &

ETTITTY PP TS 4

femcannssmasnsrancanonnseTREnTmL "
L4 1. 1T 77,0 0 78, ¢ 141, t 154, & 333, 1 322, 02
& 2. 1 1430 1 132, 1 2090 1 2Y9. { 604, 1 SY6.
s 4H. I 297, 1 190. ¢ 420, { 411. ¢ 694, t 038,
] €M, 1 2020 240. | B34, 1 S2G. 11104, 11043,
* 12, T 341, ¢ 342, 1 742, 1 734, 11500. 11703,
3 24aH, I T2, t S24, 11103, 130%7. (2348. 2234,
SEVAIESRATITIRALEISETRAILEILALESISSSLINAISARERRES

Watershed: GAJEA(165 Km%)
M.VRA.: Maximum likelihood method.
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4
*
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*
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‘--------‘-----ul------c-u--x--------c------------‘
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* 4H. 1 2L0. 1 204, { 150, t 201, 11029. t 8R4,
* SH. 1 2940 1 253, | 248. | 254, 11231, 11101, @
3 12H. 1 301, | t 340. | 348. t1425. 113523, 3
®  24H, 1 S83. t 514, t 444. | AS51, 12397. 12179, %
"‘l“tll""‘ll"'ll'!‘3"3“‘.lli"l"“'ll‘i““

HWatershed: GAMIA(265 sz)

BESRESETINBRRNIEIRIIVRR IR TLS SRR IR OSSR 0RRSRBIRIRS
IGKADEXIGRADEX! YETA ¢ TETA ¢ F.10 { F.10
THOMENTIH.URA. {HOMENT 1M VAL THORENT TH.VURA. ¢

L]

* LLELT TS
’ IHe T Bl 1 74, 1 75. F 75, 1 3446, 1 323, &
L4 2H. 1 143, ¢ 126. 1 128. 1 130. t 405, | S53, #
* 4H. 1 210, © 192, ¢t 126, { 201, | 926. 1 943. 8
* SH. T 263, 1 237, 1 251. t 294, 11139. 11035.
% 12d, X 348, 1 3T, | 349, 1 IA7. 11308, 11444, %
®  D4M. 1 533, (| 403, ¢ 453, 1 4SS, 2239, 12071, %
FATIRKERAIARABRATLAE BRI ENNRNRSREIRRIEI o082 RR0kaR

Watershed: GANDU(585 KmZ)

Note that there is no reduction in va-
lues as watershed size increases, whatever the
duration. The calculations were also made using
the maximum likelihood method (broken line). The
difference between the two fits shows the im-
portance of the break observed in the lower part
of the point swarm. This break is due to the pre-
sence of maximums coming from the first popula-
tion and tends to disappear if annual maximums
are used.

3. 3 - Estimation of spatial Gradex without cal-
culating mean rainfalls

It often happens that long temporal
series of spatial rainfall values cannot be cal-
culated but several long point series with Gum-
belian distributions are available.

To be on the safe side, we may decide to
calculate the spatial gradex according to the
following formula :

n

o
=L Aigi 3.3

gA i=1

This is equivalent to considering that all inter-

station correlations are equal to 1.

This assumption is pessimistic and the
modeling of the structure of the spatial field
(e.g. variogram or correlogram) becomes useful.

The variance of a linear combination of
random variables can be written :

o (L A{ X;) = ¥ § Al Aj cov (X{ Xj) 3.4

Consider a spatial rainfall estimated by :

P, = I Ai Pi Pi : rainfall at a station i
A Ai : weighting of this station

We are looking for :
ga =K 2 gy with :

0gs @ temporal standard deviation of spatial
rainfalls
ga © gsradex of spatial rainfalls
K : 0.78 for the method of moments
2
op =L I AL Xj COV (PL Pj)

3

3.6

[

The problem is therefore reduced to the estima-
tion of COV (Pi Pj).

This is possible using a generalized cova-
riance model or a variogram model with a finite
variance. In this case :

Y(h) = o (1 = P(h) 3.7

v(h) : variogram model

p(h) : correlogram model

p : spatial variance of the random field.
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The identification of a variogram model
characterized by a shape parameter B and a scale
parameter a, does mnot require a very long tempo-
ral series, only a certain number of intense
rainfall eventg from a period of less than 10
years (LEBEL, CREUTIN 1983).

For the sperical model (y(h) = gy *+ (o4 - ab) %
h _- . . s .

p.S — = 0,5 &é})ﬂ the unit variogram is obtai-
dp

ned by expressing og =1 and ¢, = %le

with ¢ > 1.

This gives the relationship :
v a =0 3.8
AN - ’ 8
Lo and we can write :

Y() =1 -P(h) or P(M)=1-vyCh) . 3.9

For a pair of stations (i,j) separated by a dis-
tance hij’ the covariance is :

cov _(Pi,Pj) = (1 -vyij) = 3 j 3.10
and furthermore :
gi = Koi 3
. 11
gj = Koj

gi and :gj being the gradex values at stations i
and j.

Substituting (3.6), (3.7) and (3.11) in (3.10),
we obtain :

| Lo = Losaiasa-vyipegigi - 312
v K A K
gy = (L M AJ (1 - vij) gigid*e 3.13
1]
Furthermore : EA = LAiPi 3.14
giving : - 8, =X, - 0,577 g4 3.15

The two parameters of the distribution are thus
identified and this calculation is valid for any
distribution which is a function of only the
first two moments of the random variable. :

\ 3. 4 - Application to the Cevennes region

From a series of 103 hourly rainfall
fields studied first separately and then using
climatological approach, the spherical model was

‘ found' to be the theoretical variogram model best
adapted to our raw variograms (figure 3.3).

This model has the following form :

¥(0) =0
Y =00 + (og -0 ) x (1,50 0,58
° 57 0y »2 4P 24
o <h< dP
Y = oy

22

o is the spatial variance of the field, which
is easy to calculate.

0, (nugget ) and dp (range) are however more
difficult to establish since their estimation
often depends on the method used to fit the
theoretical model (BASTIN and G.EVERS 1983),

For 103 fields, approximately 75 Z have
a well defined sill with the range falling bet-
ween 20 and 30 kms and 2/3 between 25 and 30 kms.
The climatological variogram in figure 3.3 has
a range of 27 to 30 kms and a zero nugget.
180 e s —

150
120
o~
B
Nﬁ
o
o
R
]
30 L. t L. . Range = 30
e S . . St «169.6p
. . L. . R Nugaete @
i} pi] DISTANCE (Kms) 50 S0

Figure 3.3

CLIMATOLOGICAL VARIOGRAM FOR 49 FIELDS
Selecting 3 values for the range (20, 25
and 30 kms) and 3 values for the .nugget (0, 20
and 40 7 of the variance "é)’ we obtain 9 pos-
sible spherical variograms.

Using the gradex values from the 13 long-
record stations, we calculated the spatial gra-
dex and P10 values for the 4 basins described in
section 3.1 using formula 3.13 and the 9 propo-
sed variograms. The nugget .effect is slight :
for the largest basins, the differences between
the P10 and PI10O estimations are less than 4 Z
for a constant range. We therefore consider that
the nugget is zero ; this assumption can only be
on the safe side since it always leads to over-~
estimations (greater intercorrelations between

stations).

-

_ The best spatial gradex estimation is
obtained for a range of 25 kms for the I-hour
and 2-hour durations, and 30 kms for the 4-hour
and 6-~hour durations.

This difference is normal since the
spatial fields are more structured when the
hours of rainfall are cumulated, thereby giving
a greater range.

A rigorous solution would employ, for
each duration, the variocgram fitted using the
rainfalls of the corresponding duration. The
12 and 24 hour durations cannot be considered
here since the range is likely around 50 kms.

In a region of very rugged topography
where intense precipitation events are associa-
ted with complex meteorological phenomena, the
large overestimations resulting from the use of
‘formula 3.1 stress the importance of making
best use of available information on the spatial
rainfall frequency distributions.




Table 3.4 : COMPARISON OF AREAL GRADEX (.IMM) CALCULATED BY 3 METHODS

1. Gradex calculated on areal rainfall

2. Gradex estimated by a sperical variogram

3. Gradex estimated by the weighted mean of the point gradex
(correlation between every couple of stations equal to 1.0)

Estimation of the areal gadex for 2 values of tha range {spherical model) {
The last colums of each table consist  Uw: arcal gradex estimated as "
the weighted mean of the point grodex

1 ] Renge @ 25 ¥ms bhighted menn Rayre © X0 Hms

Areal gradex comprated on ereal rainfall

H Weighted mean

GRADEX|GADEX | TETA | TETA | P.10 | P.10 y ; — — . .

vt bexaet v cRa. e |t ven, [ FVOEXTWEX | P10 | PY0 | QOEX] P10 {AV0EX P10 | o0 {Gvarx! PO |
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14 88 77177 79 ( 373 { 335 1H. g1l 421! 636F 124t 51311 961 4351 661} 124 ] S13 '

2H 1561 134 1131 1 134 | 652 | 584 2H 149; 674;1020) 197, 8C7%;156; 69al10621 1871 807

6H | 294§ 253 1248 | 254 1231 11101 6H 277112161 18671 3671 1465;129011253{1935] 367 {1466

12§ 381! 351 !348 ! 348 1625 1523 } 124 354! 1560] 2392} 478l 190413721161012485] 47811904

1
{
]
: i ay | 250! 204 1190 § 201 ho29 { 88a || au | 23511028{1582] 305(1222{245 10561634 305 j1222
4
|

24H | S83 | S16 ;446 | 451 2397 2179 || 24H 490 2124; 3277 656; 2584} S14; 2191, 3401] 656{2384

by

' A Matershed @ Gordon d'AIANZE (GNOU @ 545 ¥m2)

l ! 1H 81 74 75 75 § 346 322 1H 81 3951 %86} 126 520, 07 411 617 126 § S20

! 2H | 143 126 ti2a 130 { 605 { 553 2H 132, 630, 942} 201 8131] 141 6561 990] 201t 819

4 | 218 ; 192 1196 | 201 ; 926 ! B8a3 4H 191 897 1348] 286, llajf 204 934, 1415)] 286} 1161
: 6H | 265 | 239 (251 254 11139 {1055 GH 2261 10651 1597| 3431 138}| 2421 11104 1680} 343§ 1389

124 1 346 328 349 347 11508 {1446 124 286 1359} 20331 441! 1783f| 308! 1419 2143} 441} 1789

244 | 533 § 483 {453 | 455 12239 12071 244 404, 1868; 2817} 615 2459] 433, 1950, 2970} 415] 2435

gradual saturation of the soil and the blocking

EXTREME VALUE FLOOD ANALYSIS of infiltration paths.

. During high water periods, the runoff vo-
lume is equal to the rainfall less a random quan-
tity, the retention, which tends towards an upper
limit,related to the initial dryness of the soil,
as the rainfall increases. When basin saturation
is approached, any increase in precipitation AP
tends to produce an equal increase in discharge,
i.e. AQ —AP and the discharge extreme devia-
tions take on the same order of magnitude as for
the rainfall.

4. APPLICATION TO EXTREME VALUE FLOOD ANALYSIS:
the Gradex method

Thismethod uses the rainfall gradex as a
basis for the extrapolation of flood volumes.

Rainfall gradex values are equivalent to
runoff as long as common integration times grea-
ter than or equal to the base time of the basin
overland flow hydrograph are adopted for both ;
rainfall peaks of shorter durations are spread
out and damped by transfers within the drainage
system.

Now let's look more closely at these dif~
ferent points. First of all, in the quadrant (P,
Q), the upper limit of the observed points is
the first bisector as can be seen in figure 4 a ;

The Gradex method in no way involves the
extrapolation of a runoff coefficient, or a the amount of water that flows cannot exceed the .

rainfall-discharge correlation, fitted to a sam- amount that falls. h
ple of observed floods (which would be meaning-
less in view of the dominant role of the ran-

dom “retention" in this low part of the distri-

In actual fact, it is possible for Q to
exceed P in relatively rare cases involving rain-
fall reinforced by abundant snowmelt. This snow-—

bution). Instead it is assumed that the margi-
nal runoff coefficient tends towards one in the
case of extreme value rainfalls due to the
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melt contribution to very large floods is never-—
theless limited to values in the order of 30 or
40 mm by the necessary heat exchanges and in no
way weakens the following arguments.




30 mm
Q = Flood Vélume
95 %
20 mm 90 3
io .
s ‘10 3
[ . — 5 Z
s S précipitation) )
7 b ’
10 mm 20tin <) 30 mm

Figure 4. a

For a given value of P, a certain distri-
bution of Q is observed. P - Q depends on nume-
rous complex and interrelated physical factors
characterizing the state of the basin before the
rainfall Pi generating the flood. It is logical
to consider the retention (P - Q) as a random
variable with a distribution that can be related
to P by the quantiles 5 %..., 95 Z... (figure 4a)
uhos% loci, as P varies, form the "quantile cur-
ves.'

As basin saturation is approached, any
additional precipitation tends to be fully incor-
porated in the discharge ; the quantile curves
therefore straighten and finally become parallel
to the quadrant bisector with the location of
each asymptote depending on the initial basin
conditions. The related distribution Hp(Q) tends
to become homoscedastic.

Retention certainly has an upper limit a-
mounting to between 50 and 200 mm depending on
watershed morphology and type of soil. Accurate
knowledge of this maximum retention capacity is
unnecessary ; only its average value, during ma-
jor precipitation events, matters.

Knowing the marginal distribution F(P) and
the related distribution Hp(Q), the marginal dis~
charge distribution is given by :

@) = fie H(@ . dF(P)

If a sufficiently large sample of rain-
fall-flood data is available to determine Hp(Q),
then G(Q) can be established by summing up Hp(Q)
per interval of P.

On conventional Gumbel probability paper,
it can thus be shown that the extreme value flood
curve is concave towards increasing Q values and
asymptoticto a straight line parallel to the pre-

cipitation distribution (Figure 4. b).
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Figure 4. b

The distance between the two distribution
is pot the maximum capacity of the dry ground
voids, but simply the statistical expectation of
the difference between the water stored and deli-
vered by the basin during the base time. The most
realistic approach for estimating this distance
is to rely on the least poorly known part of the
extreme flood distribution, usually under return

“periods from one to several decades.

Experience gained from applications to nu~
merous basins (more than 300 applications have
been made in France since 1965) shows that the
100~year and 1000-year floods calculated using the
Gradex method are compatible with estimations,
vwhen available, of catastrophic flood flows which
took place on certain rivers in past centuries.

The few decades of actual discharge measu-—
renents which are generally available is insuffi-
cient to determine the direction of extrapolation
but can be used only to give a good estimate of
the y-intercept, the starting point, for the dis-
tribution of extreme floods. Conventional distri-
butions (e.g. log-normal or log-Pearson III), to-
tally unadapted to distant extrapolations, can be
sufficient if the problem is limited to the 10-
year or 50~year flood.

1f however an estimate of the 1000-year or
10,000~-year flood is required, for instance in
the case of a reservoir located upstream of an
inhabited region, then only rain gage records,
summarized by the Gradex, can give the necessary
information. Furthermore it is an error to state,
as MASSON & BEDIOT (1981), that nothing can be do-
ue with less than 30 years of observations. Twenty
or even 10 years of good quality rainfall records
is sufficient for such an estimation, which tells
ug more about the risks of extreme floods than 50
or even 100 years of stream gage records. And this
is by no means the least advantage of the Gradex
method . '

W




To proceed from the distribution of extre-~
me values of average flood flows (flood volume)
to that of peak flood flows, the averages can be
multiplied by a similarity factor equal to F, the
mean value of the peak to mean flow ratios obser-
ved for known floods. This is an adequate appro-
ximation if the shape of the flood is a random va-
riable independent of its magnitude, as is gene-
rally confirmed by samples of knowns floods. It
can also be shown that the estimation procedure
is robust with respect to the integration time
chosen ; a doubling of this time results in a
change of less than 5 Z in the calculated 1000~
year peak flows.

5. CONCLUSION

Even a few years record of hourly Rain-
fall is enough to fit a spatial variogram ,
which allows to estimate the Gradex of the ave-
rage rainfall on a watershed. Provided a proper
time of integration be chosen, about the time
length of the overland flow hydrograph, the gra-
dex of rainfall is now considered by French hy-
drologists as the logical extrapolation guide to
extreme floods flows, more significant than any
statiscal parameter of the floods distribution
(e.g. log-skew), more realistic than any assess-
ment of the so~called P M P.
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