Effect of natural naphthoquinones in BALB/c mice infected with Leishmania amazonensis and L. venezuelensis

A. Fournet1,2, A. Angelo Barrios2, V. Muñoz2, R. Hocquemiller3, A. Cavé3

1 Institut Français de Recherche Scientifique pour le Développement en Coopération (ORSTOM), Département Santé, 213,

Abstract

Plumbagin, 3,3'-biplumbagin and 8,8'-biplumbagin are naphthoquinones isolated by activity-directed fractionation from a Bolivian plant, Pera benensis, used in folk medicine as treatment of cutaneous leishmaniasis caused by Leishmania braziliensis. BALB/c mice were infected with L. mexicana or L. venezuelensis and treated 24 h after the parasitic infection with plumbagin (5 or 2.5 mg/kg/day), 3,3'-biplumbagin, 8,8'-biplumbagin (25 mg/kg/day) or Glucantime (200 mg/kg/day). Lesion development was the criterion employed to evaluate the inhibitory effect. The bis-naphthoquinones were less potent than Glucantime against L. amazonensis and L. venezuelensis. Plumbagin and Glucantime delayed the development of L. amazonensis and L. venezuelensis.

Introduction

Cutaneous and mucocutaneous leishmaniasis are endemic diseases in the tropical subandean regions. Cutaneous leishmaniasis is popularly known as espundia in the area of Bolivia called Oriente by the natives. The use of medicinal plants for the specific treatment of cutaneous leishmaniasis, is quite widespread, specially Pera benensis (Euphorbiaceae). The fresh stem barks are applied directly on the lesion.

We have previously reported the study of the chemical identification of active compounds and the leishmanial and trypanocidal activities in vitro of three active naphthoquinones (Fig. 1), plumbagin, 3,3'-biplumbagin and 8,8'-biplumbagin (Fournet et al., 1990). These compounds isolated by activity-directed fractionation from the stem barks and root barks of Pera benensis, displayed activity in vitro at 10 pg/ml against three strains of promastigote forms of Leishmania species, L. amazonensis (PH 8 and H-142), L. braziliensis (y42903) and L. donovani (2682) and six strains of epimastigote forms of Trypanosoma cruzi.

Plumbagin was also active.

Accepted 13 October 1992

© Georg Thieme Verlag Stuttgart, New York

Fig. 1

Structures of (a) plumbagin; (b) 3,3'-biplumbagin; (c) 8,8'-biplumbagin against amastigote forms of L. amazonensis (PH 8) infecting the mouse peritoneal macrophages.
Effects of plumbagin (2.5 mg/kg/d) and Glucantime (200 mg/kg/d) on the development of *L. amazonensis* (PH 8) in BALB/c mice (n = 10, S.E.M.). Treatments were given for 14 d period commencing 1 d after inoculation of *L. amazonsensis*.

Table 1: Effect of Glucantime (200 mg/kg/d), 3,3'-biplumbagin (25 mg/kg/d), 8,8'-biplumbagin (25 mg/kg/d) on the development of *L. amazonensis* (PH 8) in BALB/c mice (n = 10, S.E.M.). Drug were given for 14 d-period commencing 1 d after inoculation of *L. amazonensis*.

<table>
<thead>
<tr>
<th>Diameter of lesion (mm)</th>
<th>Control</th>
<th>Glucantime</th>
<th>3,3'-biplumbagin</th>
<th>8,8'-biplumbagin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>0.3 (0.15)</td>
<td>0.3 (0.08)</td>
<td>0.5 (0.13)</td>
<td>0.4 (0.11)</td>
</tr>
<tr>
<td>Week 4</td>
<td>1.4 (0.34)</td>
<td>1.08 (0.28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 6</td>
<td>3.8 (0.6)</td>
<td>1.7 (0.52)</td>
<td>2.7 (0.55)</td>
<td>2.6 (0.33)</td>
</tr>
<tr>
<td>Week 8</td>
<td>6.0 (0.88)</td>
<td>3.23 (0.87)</td>
<td>4.58 (0.84)</td>
<td>5.05 (0.62)</td>
</tr>
<tr>
<td>Week 9</td>
<td>6.9 (0.70)</td>
<td>3.66 (1.03)</td>
<td>5.05 (0.83)</td>
<td>5.63 (0.74)</td>
</tr>
</tbody>
</table>

Average measurement (in mm) for 8 mice. **-/+ Standard error of the mean (S.E.M.)**

Leishmania strains *L. amazonensis* (FLAIBR167/IPH 8) and *L. venezuelensis* (VE/74/PM-H3) were used. The source and history of this isolate have been described by Bonfante-Garrido (1983). BALB/c mice (n = 10, n = 8 or n = 6) were infected subcutaneously in the right rear footpad with 1 X 10^6 amastigotes obtained from infected hamsters. The parasites were delivered in 200 pl phosphate buffered saline (PBS), with control mice receiving PBS only.

The growth of the lesion was determined weekly by measuring the diameter of both rear feet with a direct reading vemier caliper (Ref: Kroelin 1981). The size of lesion in millimeters (Index of Leishmaniasis) was calculated by subtracting the measurements obtained for the uninfected foot from that the infected foot. Measurements started one day prior to the inoculation of amastigotes and continued for 8 or 9 weeks.

Dnig treatment

Two experiments were conducted. Mice in the first experiment were treated by subcutaneous route. Glucantime was given at a dose of 200 mg/kg/4 plumbagin at 5 or 2.5 mg/kg/d, 3,3'-biplumbagin and 8,8'-biplumbagin at 25 mg/kg/d. Drug treatment started one day after the inoculation of amastigotes and continued once daily for 14 days.

In the second experiment, mice were treated directly on the infected rear footpad with a single dose 14 days after inoculation of parasites. For this experiment, mice were treated with Glucantime at 400 mg/kg/d, plumbagin at 10 mg/kg/d, 3,3'-biplumbagin and 8,8'-biplumbagin at 50 mg/kg/d. The naphthoquinones were dissolved in 40 pl of polysorbate (Tween 80, Prolabo). For each experiment was calculated the mean and standard error of the mean (S.E.M.).

Results

Activity of naphthoquinones of *Leishmania amazonensis*

Separate experiments were conducted in which plumbagin was administered at different doses (7.5, 5, and 2.5 mg/kg daily) beginning 24 hr prior to infection with *L. amazonensis* (PH 8). Mice treated with 7.5 mg died within four weeks after the beginning of experiment. Figure 2 shows the combined results obtained with mice treated with 2.5 mg/kg daily of plumbagin compared to mice treated with 200 mg/kg daily of Glucantime. After eight weeks mice treated with plumbagin or with Glucantime had an average lesion size of 1.2 mm compared with 6.8 mm for control. We did not observe toxic effect of plumbagin at 2.5 mg/kg daily. We have obtained the same effects when plumbagin was administered at 5 mg/kg.

Table 1 presents the experiments of treatment with bis-naphthoquinones, 3,3'-biplumbagin and 8,8'-biplumbagin. These compounds were less toxic than plumbagin but less efficient at 25 mg/kg daily. After nine weeks, mice treated...
infected with *L. amazonensis* (LV/78) or *L. donovani* (LV9). A bis-naphthoquinone isolated from the Indian plant, diospyrine, a dimer of 7-methyl-juglone is also active *in vitro* against *L. donovani* (Hazra et al., 1987). Several authors have reported an antiprotozoal activity of naphthoquinones (Callahan et al., 1988; Pinto et al., 1987; Wright and Phillipson, 1990), particularly of lapachol and β-lapachone isolated from *Tabebuia rosea* (Bignoniaceae) against *Plasmodium falciparum* (Carvalho et al., 1988) and against *Trypanosoma cruzi* (Goncalves et al., 1980), and a derived of lapachone, lapinone (Hudson et al., 1985) against *Plasmodium vivax*. Recently synthetic naphthoquinones (566C80) have been described as active against *Pneumocystis carinii* (Wellcome Foundation, 1990). Several authors have described the activity of naphthoquinones against skin diseases, plumbagin (Gujar, 1990) and 2-hydroxy-1,4-naphthoquinones for prevention of dermatitis on the scalps (Tscha and Yutaka, 1990).

In conclusion, the results of this study show that treatment with a topical application directly on the lesion of leishmaniasis of stem barks of *Pera benensis* may be effective against leishmaniasis. It could be possible to propose an effective ointment prepared locally with a low concentration of plumbagin or an other derived of this naphthoquinone less toxic to the healthy skin. Further studies would be developed in the near future.

