Influence of valley type on the scaling properties of river planforms

Anicet A. Beauvais
Institut Francais de Recherche Scientifique pour le Développement en Coopération, Bondy, France

David R. Montgomery
Department of Geological Sciences and Quaternary Research Center, University of Washington, Seattle

Abstract. Scaling properties of 44 individual river planforms from the Cascade and Olympic Mountains of Washington State were defined using the divider method. Analysis of the standardized residuals for least squares linear regression of Richardson plots reveals systematic deviations from simple self-similarity that correlate with the geomorphological context defined by valley type. A single fractal dimension describes rivers flowing through bedrock valleys. Those flowing in inherited glacial valleys exhibit two distinct fractal dimensions, with a larger fractal dimension at small scales. Rivers flowing in alluvial valleys are also described by two fractal dimensions, but with a larger dimension at large scales. We further find that the wavelength of the largest meander defines an upper limit to the scaling domain characterized by fractal geometry. These results relate scaling properties of river planforms to the geomorphological processes governing valley floor morphology.

Introduction

The irregular planform of rivers invites description by fractal geometry [Mandelbrot, 1977, 1983; Hjelmfelt, 1988; Tarboton et al., 1988; Snow, 1989; Nikora, 1991; Nikora et al., 1993; Gan et al., 1992]. Although a fractal dimension (D) describes the geometry of many geomorphic forms [Church and Mark, 1980; Goodchild, 1980; Mark and Aronson, 1984; Goodchild and Mark, 1987; Klinkenberg, 1992], few studies relate D to processes governing these forms [Woronow, 1981; Phillips, 1993]. Indeed, the relatively narrow range of fractal dimensions describing a variety of natural patterns suggests the futility of searching for ties with physical processes [Turcotte, 1992]. Some geomorphic features, however, exhibit scale-dependent variations in D, motivating examination of physical causes of such variations [Church and Mark, 1980; Goodchild, 1980; Dutton, 1981; Lam and Quattrochi, 1992; Beauvais et al., 1994]. Efforts to evaluate potential connections between geomorphological process and scaling properties of river planforms are complicated by the many ways to calculate D.

Some workers calculate the fractal dimension of river planforms from the relation between mainstream length and basin area [Hack, 1957]:

\[L = \beta A^\alpha \]

(1)

where L is the length of the river planform, \(\beta \) is a constant of proportionality, and A is the drainage area. Mandelbrot [1977], and later Church and Mark [1980] and Hjelmfelt [1988], interpreted the exponent \(\alpha \) as being half the fractal dimension of the river planform (i.e., \(\alpha = D/2 \)). The relatively small range of \(\alpha \) for most drainage basins (see data compiled by Montgomery and Dietrich [1992]) implies that D defined in this manner is equal to approximately 1.2 for rivers in general [Mandelbrot, 1983; Tarboton et al., 1988; Turcotte, 1992]. This implies that the D derived from length-area relations is not useful for examining differences among rivers. Furthermore, Robert and Roy [1990] showed the unreliability of using \(\alpha \) to infer the fractal dimension of rivers due to the effect of cartographic generalization.

Another common method used to derive the fractal dimension of both individual rivers and channel networks relies on the statistical properties of branching networks known as Horton's laws [e.g., Feder, 1988; Tarboton et al., 1988; La Barbera and Rosso, 1989]. For the main river of any drainage basin, Feder [1988] derived

\[D = 2(\log R_L / \log R_B) \]

(2)

while the length-area relation (1) led Rosso et al. [1991] to suggest

\[D = 2(\log R_L / \log R_A) \]

(3)

where D is the fractal dimension, \(R_L \) is the stream length ratio, \(R_B \) is the bifurcation ratio, and \(R_A \) is the stream area ratio (see Horton [1945] and Schumm [1956] for definitions of these ratios). Although Rosso et al. [1991] noted that D derived from (3) agreed with that estimated using the box-counting method [Lovejoy et al., 1987], Horton ratios can yield fractal dimensions less than 1 for individual river planforms [Phillips, 1993]. Horton ratios also vary nonsystematically with the size of the source areas used to define the channel networks [Helmlinger et al., 1993]. Consequently, methods based on Horton's laws do not provide reliable approaches for determining D.

An alternative method for defining the fractal dimension of a river planform is the divider method first used by Richardson [1961] to measure the length of complex curves, and employed by Mandelbrot [1967] to estimate the fractal dimension of a coastline. Following Mandelbrot [1977], many workers used this method to characterize the fractal geometry of river planforms [Hjelmfelt, 1988; Tarboton et al., 1988; Snow, 1989;
Figure 1. (a) Richardson plot characterized by a length scale e_{max} above which the variance increases about the central tendency. (b) Definition of e_{max} based on the variance (σ) of the standardized residuals of Richardson plot.

Nikora, 1991; Gan et al., 1992; Beauvais et al., 1994], as well as that of other geologic and geomorphic features [e.g., Goodchild, 1980; Aviles et al., 1987; Brown, 1987; Culling and Datko, 1987; Andrle and Abrahams, 1989; Gilbert, 1989; Matsushita et al., 1991; Power and Tullis, 1991; Klinkenberg and Goodchild, 1992]. The divider method involves measuring the length L of a curve using a ruler or divider of variable length e. If the curve exhibits fractal scaling, then the length of the curve is a power law function of e, such that

$$L = be^{1-D}$$

where b is a proportionality constant. Typically, D is calculated from logarithmic plots of L versus e, known as Richardson plots, using

$$\log L = \log b + (1-D) \log e$$

The slope of a Richardson plot defines D, which indicates how fast the river planform length increases as e decreases [Mandelbrot, 1967]. The power law function defined by (5) holds at all scales for self-similar curves such as Koch or Peano curves [Mandelbrot, 1983] and describes statistically self-similar and self-affine curves only over a limited range of scales [Mandelbrot, 1985; Matsushita and Ouchi, 1989; Nikora, 1994].

Mandelbrot [1977] anticipated that many natural objects are described by several fractal dimensions identifiable over discrete scaling domains. Dutton [1981] later showed that irregular curves often are described by different fractal dimensions over discrete scaling ranges. Such ranges in scaling properties might reflect the scales over which specific phenomena or processes operate or dominate the form of a system [Church and Mark, 1980; Lam and Quattrochi, 1992]. Nikora [1991], for example, hypothesized that the river and valley width respectively define lower and upper limits for the application of fractal analysis to river planform geometry. Similarly, Snow [1989] argued that the scale of meander representation defines an upper limit for e. Here we use the divider method to investigate the scaling properties of natural river planforms and explore their relation to the geomorphological context defined by valley type.

Methods

The divider method only applies over a limited range of scales, and misapplication can lead to inconsistent results [Goodchild, 1980]. Richardson plots obtained from the classical application of the divider method generally exhibit two scaling thresholds that bound the range of scales over which a single dimension is estimated using least squares linear regression. For river planforms, the smaller-scale cutoff (e_{min}) is related to the width of the river simply because the river cannot meander at finer length scales. The upper limit to defining D from Richardson plots (e_{max}) generally is taken to be the e value above which the variance of residuals about the regression abruptly increases (Figure 1). These two limits define the range of scales over which fractal analysis can describe the geometry of an object measured to derive a Richardson plot.

A problem with the divider method is that the results are sensitive to the treatment of the remainder length at the end of the planform [Aviles et al., 1987; Klinkenberg and Goodchild, 1992; Andrle, 1992]. Richardson plots also can exhibit deviations from simple power law scaling, as revealed by systematic curvature of the structure of the standardized residuals [Andrle and Abrahams, 1989; Andrle, 1992; Klinkenberg and Goodchild, 1992]. Andrle [1992] and Klinkenberg [1994] provide more indepth discussions on the divider method.

Remainder Length

The number of “steps” (N) needed to traverse the length L of a curve is typically a noninteger, as a fractional e length often remains at the end of the planform. This implies an increase in measurement error as e increases. There are three ways to treat the remainder length using the divider method [Aviles et al., 1987]: (1) add the remainder length to the estimate of L; (2) neglect the remainder length; and (3) round N up to the nearest whole number. Aviles et al. [1987] found that retaining the remainder length produced Richardson plots with slightly greater scatter and higher D values; and that rounding greatly increased the scatter in the plots. Here we further examine the influence of the first two approaches on estimates of D.

Curvature in Richardson Plots

The linearity of Richardson plots was examined according to the method of Andrle [1992] to test whether the fractal dimension is scale-independent. This method examines the curvature in the Richardson plots for deviation from strict self-similarity, using the standardized residuals from least squares linear regression of log L versus log e [Andrle and Abrahams, 1989; Andrle, 1992]. If there was no structure to the regression residuals, then a single D was estimated using least squares linear regression of data between e_{min} and e_{max}. Richardson plots exhibiting systematic structure to regression residuals were examined for distinct linear trends over length scales between e_{min} and e_{max} (Figures 2a and 2b). We then performed
regressions over each range of e values characterized by a
linear structure of residuals in the original composite regression to estimate D over these more restricted scaling domains (Figures 2c and 2d).

![Figure 2](image)

Figure 2. Illustration of the procedure for differentiating two scaling domains in Richardson plots. (a) An initial least squares linear regression of log L versus log e is used to construct (b) a plot of the standardized residuals, which identifies scaling ranges well described by least squares linear regression over more restricted scaling ranges defined by (c) $e_{\text{min}} < e < e_c$, and (d) $e_c < e < e_{\text{max}}$.

<table>
<thead>
<tr>
<th>River</th>
<th>D</th>
<th>σD</th>
<th>e_{max}</th>
<th>A,</th>
<th>λ,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascades</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chute Cr.</td>
<td>1.114</td>
<td>0.002</td>
<td>168</td>
<td>132</td>
<td>264</td>
</tr>
<tr>
<td>Clendenen Cr.</td>
<td>1.047</td>
<td>0.001</td>
<td>120</td>
<td>48</td>
<td>144</td>
</tr>
<tr>
<td>Gee Cr.</td>
<td>1.048</td>
<td>0.001</td>
<td>168</td>
<td>72</td>
<td>216</td>
</tr>
<tr>
<td>Hatchery Cr.</td>
<td>1.071</td>
<td>0.001</td>
<td>144</td>
<td>72</td>
<td>192</td>
</tr>
<tr>
<td>Little Deer Cr.</td>
<td>1.103</td>
<td>0.002</td>
<td>168</td>
<td>168</td>
<td>312</td>
</tr>
<tr>
<td>Little Deer Cr.*</td>
<td>1.076</td>
<td>0.001</td>
<td>144</td>
<td>72</td>
<td>192</td>
</tr>
<tr>
<td>Little Deer Cr.†</td>
<td>1.176</td>
<td>0.001</td>
<td>168</td>
<td>168</td>
<td>312</td>
</tr>
<tr>
<td>North Branch Cr.</td>
<td>1.079</td>
<td>0.001</td>
<td>144</td>
<td>60</td>
<td>216</td>
</tr>
<tr>
<td>O'Toole Cr.</td>
<td>1.044</td>
<td>0.001</td>
<td>168</td>
<td>48</td>
<td>192</td>
</tr>
<tr>
<td>Presentine Cr.</td>
<td>1.074</td>
<td>0.002</td>
<td>168</td>
<td>96</td>
<td>276</td>
</tr>
<tr>
<td>Quartz Cr.</td>
<td>1.095</td>
<td>0.001</td>
<td>168</td>
<td>108</td>
<td>264</td>
</tr>
<tr>
<td>DeForest Cr.</td>
<td>1.051</td>
<td>0.002</td>
<td>144</td>
<td>48</td>
<td>192</td>
</tr>
<tr>
<td>S. F. Nooksack R.</td>
<td>1.126</td>
<td>0.003</td>
<td>168</td>
<td>216</td>
<td>312</td>
</tr>
<tr>
<td>Olympics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alder Cr.</td>
<td>1.123</td>
<td>0.002</td>
<td>144</td>
<td>96</td>
<td>192</td>
</tr>
<tr>
<td>Braden Cr.</td>
<td>1.082</td>
<td>0.003</td>
<td>168</td>
<td>108</td>
<td>240</td>
</tr>
<tr>
<td>Cedar Cr.</td>
<td>1.101</td>
<td>0.001</td>
<td>168</td>
<td>156</td>
<td>264</td>
</tr>
<tr>
<td>Elk Cr.</td>
<td>1.061</td>
<td>0.001</td>
<td>216</td>
<td>72</td>
<td>240</td>
</tr>
<tr>
<td>S. F. Hoh R.*</td>
<td>1.069</td>
<td>0.001</td>
<td>144</td>
<td>144</td>
<td>240</td>
</tr>
<tr>
<td>Jackson Cr.</td>
<td>1.125</td>
<td>0.001</td>
<td>144</td>
<td>72</td>
<td>216</td>
</tr>
<tr>
<td>Lost Cr.</td>
<td>1.046</td>
<td>0.001</td>
<td>144</td>
<td>48</td>
<td>192</td>
</tr>
<tr>
<td>Maple Cr.</td>
<td>1.103</td>
<td>0.002</td>
<td>168</td>
<td>108</td>
<td>216</td>
</tr>
<tr>
<td>Mosquito Cr.</td>
<td>1.172</td>
<td>0.004</td>
<td>192</td>
<td>168</td>
<td>420</td>
</tr>
<tr>
<td>Mount Tom Cr.</td>
<td>1.097</td>
<td>0.002</td>
<td>168</td>
<td>108</td>
<td>252</td>
</tr>
<tr>
<td>Owl Cr.</td>
<td>1.107</td>
<td>0.003</td>
<td>216</td>
<td>84</td>
<td>264</td>
</tr>
<tr>
<td>Steamboat Cr.</td>
<td>1.127</td>
<td>0.002</td>
<td>168</td>
<td>120</td>
<td>288</td>
</tr>
<tr>
<td>Winfield Cr.</td>
<td>1.125</td>
<td>0.003</td>
<td>168</td>
<td>132</td>
<td>264</td>
</tr>
</tbody>
</table>

BV: bedrock valley; σD, standard deviation of D; e_{max}, upper limit of fractal scaling at which the divider method breaks down; A, largest meander amplitude; λ, largest meander wavelength; Cr., creek; R., river. Here $r^2 > 0.99$ for all the river analyses.

*Upstream reach.
†Downstream reach.

Procedure and Precision of the Divider Method

The precision of the divider method depends on both map scale and the smallest e value used in the analysis. River planform lengths were measured manually using a compass from U.S. Geological Survey 1:24,000 scale topographic maps; measurement paths followed the centerline of the main channel. The smallest e length equaled 2 mm (48 m), with subsequent measurements increasing at 1 mm (24 m) intervals of e length (Figure 1a). The largest e length used for each river equaled one tenth the total planform length. This procedure resulted in a large number of e values, as recommended by Andrle [1992] for estimating D. Following Andrle and Abraham [1989], replicate measurements on a number of rivers evaluated the precision of manual application of the divider method using a compass [Richardson, 1961; Mandelbrot, 1967, 1983; Korvin, 1992]. For all e in the range of e_{min} to e_{max} the number of compass walks in different measurement trials varied by at most 1% over the entire planform length.

Study Areas and River Characteristics

We analyzed 44 individual river planforms from Washington State. Twenty reaches are located in the Cascade Range, and 24 are from the Olympic Peninsula. Three types of reaches were defined based on valley-scale geomorphology (Tables 1–3). Twenty-six of the reaches flow through confined bedrock valleys (BV rivers), which have only a thin alluvial mantle over
Table 2. Fractal Scaling Properties and Sinuosity Characteristics of GV River Planforms Described by Two Fractal Dimensions With \(D_s > D_l \)

<table>
<thead>
<tr>
<th>River</th>
<th>(D_s)</th>
<th>(\sigma D_s)</th>
<th>(D_l)</th>
<th>(\sigma D_l)</th>
<th>(e_{\text{res}})</th>
<th>(e_{\text{max}})</th>
<th>(A)</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alder Cr.</td>
<td>1.134</td>
<td>0.002</td>
<td>1.070</td>
<td>0.001</td>
<td>82</td>
<td>360</td>
<td>120</td>
<td>360</td>
</tr>
<tr>
<td>Cumberland Cr.</td>
<td>1.121</td>
<td>0.002</td>
<td>1.051</td>
<td>0.001</td>
<td>96</td>
<td>288</td>
<td>108</td>
<td>300</td>
</tr>
<tr>
<td>Finney Cr.</td>
<td>1.229</td>
<td>0.002</td>
<td>1.106</td>
<td>0.001</td>
<td>157</td>
<td>408</td>
<td>216</td>
<td>432</td>
</tr>
<tr>
<td>Finney Cr.*</td>
<td>1.143</td>
<td>0.001</td>
<td>1.109</td>
<td>0.001</td>
<td>73</td>
<td>264</td>
<td>108</td>
<td>288</td>
</tr>
<tr>
<td>Grandy Cr.</td>
<td>1.149</td>
<td>0.002</td>
<td>1.060</td>
<td>0.002</td>
<td>63</td>
<td>264</td>
<td>84</td>
<td>312</td>
</tr>
</tbody>
</table>

GV, glacial valley; \(D_s \), small-scale fractal dimension; \(D_l \), large-scale fractal dimension; \(e_{\text{res}} \), scaling threshold separating two fractal scalings characterized by two fractal dimensions. See Table 1 for additional information.

*Upstream reach.

Table 3. Fractal Scaling Properties and Sinuosity Characteristics of AV River Planforms Described by Two Fractal Dimensions With \(D_s < D_l \)

<table>
<thead>
<tr>
<th>River</th>
<th>(D_s)</th>
<th>(\sigma D_s)</th>
<th>(D_l)</th>
<th>(\sigma D_l)</th>
<th>(e_{\text{res}})</th>
<th>(e_{\text{max}})</th>
<th>(A)</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finney Cr.*</td>
<td>1.103</td>
<td>0.001</td>
<td>1.201</td>
<td>0.002</td>
<td>132</td>
<td>312</td>
<td>216</td>
<td>432</td>
</tr>
<tr>
<td>Finney Cr.†</td>
<td>1.122</td>
<td>0.002</td>
<td>1.205</td>
<td>0.001</td>
<td>155</td>
<td>264</td>
<td>156</td>
<td>360</td>
</tr>
</tbody>
</table>

AV, alluvial valley. See Tables 1 and 2 for additional information.

*Downstream reach.
†Downstream shorter reach.

bedrock and thus lack floodplains (Table 1). Ten reaches are incised into glacial outwash filling narrow and relatively straight U-shaped valleys (GV rivers) (Table 2). Eight reaches flow through wide alluvial valleys (AV rivers) with large active floodplains (Table 3). Some of the AV rivers flow through areas glaciated during the Pleistocene, but these rivers are not closely confined by valley or terrace walls. Six of the largest rivers were partitioned into upstream and downstream reaches based on differences in channel gradient and width; in addition to composite analyses, each of these reaches was analyzed individually.

Sinuosity Characterization

Within each reach, we measured the wavelength (\(\lambda \)) and the amplitude (A) of the largest meander because they define natural length scales that can be identified objectively. Adopting the method of Williams [1986], we measured these parameters on individual meander apexes along each river planform using a rule and compass. Meander characteristics were compared to the scaling thresholds derived from Richardson plots to explore ties between scaling limits and geomorphological length scales.

Results

Richardson Plots

Richardson plots for each of our channel reaches exhibit increased variance of the standardized residuals with larger \(e \). An abrupt increase in the variance of the residuals defines the upper limit of application of the divider method (i.e., \(e_{\text{max}} \)), and a narrow range of power law scaling characterizes each of the study reaches. As discussed above, each of the reaches exhibit structure to regression residuals that define domains more appropriately described by separate fractal dimensions in Richardson plots. The threshold separating these scaling domains, \(e_{\text{res}} \), is defined as the intercept of the two linear regressions determined from the residual structure of the composite regression (Figure 2). Examination of the standardized residuals of the Richardson plots reveals that neglecting the remainder length yields a lower variance and hence a better estimate of \(D \) at small length scales. Conversely, at larger length scales (\(e > e_{\text{max}} \)), neglecting the remainder length yields greater variance in \(L \), and power law scaling breaks down. Within each scaling domain identified in our analysis, all the river planforms exhibit linear structures in the residual plots, as well as an equal number of positive and negative standardized residual values; all the regressions exhibit \(r^2 > 0.99 \) at the 95% level of confidence.

Richardson plots from our reaches exhibit either a single fractal dimension or two fractal dimensions defined over distinct scaling ranges. These scaling ranges are separated by a scaling threshold \(e_{\text{res}} \), with either \(D_s > D_l \) or \(D_s < D_l \), where \(D_s \) is the fractal dimension at scales below \(e_{\text{res}} \), and \(D_l \) is the fractal dimension at scales above \(e_{\text{res}} \) (Tables 1–3). Nearly all the rivers studied are narrower than the minimum ruler length
employed to measure the planform length \(L \); only data from the widest AV river (South Fork Hoh River) exhibit a discernible lower cutoff (\(e_{\text{min}} = 120 \) m).

The three valley types (BV, GV, and AV) are described by three different types of Richardson plots. The BV rivers that define the majority of our sample are described by a single fractal dimension that ranges from 1.04 to 1.18 (Table 1; Figures 1 and 3). The GV rivers exhibit \(D_s > D_l \), with \(D_s \) ranging from 1.10 to 1.23, and \(D_l \) from 1.05 to 1.14 (Table 2; Figure 4). In contrast, the AV rivers are described by \(D_s < D_l \), with \(D_s \) ranging from 1.08 to 1.17, and \(D_l \) from 1.19 to 1.30 (Table 3 and Figure 5). At short \(\varepsilon \) length scales, the BV and AV rivers have similar fractal dimensions, while the GV rivers are described by higher \(D \) values. At large \(\varepsilon \) length scales, the fractal dimension of AV rivers exceeds that of the GV rivers. GV and AV rivers exhibit \(e_{\text{max}} \) values roughly double those of BV rivers. AV rivers further exhibit a transition scaling threshold (\(e_{\varepsilon} \)), as well as maximum meander amplitudes and wavelengths roughly twice those of GV rivers.

Among the river planforms partitioned into upstream and downstream reaches, the upstream sections of these reaches are described by a lower \(D \) than the downstream sections (Figures 6 and 7). Upstream reaches correspond either to BV rivers with low \(D \) or to GV rivers described by \(D_s > D_l \), while downstream reaches correspond either to BV rivers with larger \(D \) or to AV rivers described by \(D_s < D_l \).

Scaling Thresholds and Sinuosity

The scaling thresholds defined by \(e_{\varepsilon} \) and \(e_{\text{max}} \) are related to the amplitude (\(A \)) and wavelength (\(\lambda \)) of the largest meander in each river planform (Figure 8). The scaling thresholds identified above are correlated to meander length scales in each valley type (Table 4). Also, the wavelength of the largest meander defines an upper limit to \(e_{\text{max}} \) for all data (Figure 8a), whereas the meander amplitude provides a reasonable predictor of the transition scaling threshold (\(e_{\varepsilon} \)). Hence the size of the largest meander amplitude and wavelength appears to limit the scale range over which fractal scaling describes river planforms. The scaling threshold \(e_{\varepsilon} \) for GV and AV rivers is less than the largest \(\lambda \) and is approximately equal to the largest \(A \) (Figure 8b and Table 4). These results reveal that the largest meander wavelength limits \(e_{\text{max}} \) and that \(e_{\varepsilon} \) approximately equals the largest meander amplitude for both GV and AV rivers (Table 4).

Discussion

Many workers have explored characterizing river planforms using fractal dimensions, but none related differences in form (i.e., \(D \)) to differences in process, in part because estimates of \(D \) using Hortonian or allometric relations provide unreliable fractal dimensions [Andre, 1992; Klinkenberg and Goodchild, 1992; Heiminger et al., 1993; Phillips, 1993; Klinkenberg, 1994]. Moreover, the wide range of scales typically used to calculate fractal dimensions by the divider method [e.g., Aviles et al., 1987; Hjelmfelt, 1988; Tarboton et al., 1988; Snow, 1989; Rosso et al., 1991; Gan et al., 1992] often exceed length scales intrinsic to the method, thereby undermining the ability to relate fractal dimensions to physical processes. Distinct scaling properties of the three river types discussed above document a relation to
valley morphology. The channel width and the largest meander wavelength bound these scaling domains over which fractal geometry describes river planforms. This narrow scale range demonstrates that though river planforms may be self-affine, they are strictly self-similar only over a restricted range of scales.

The interplay of water flow, sediment transport, bed topography, and the nature of channel bank material controls meander development. Although some aspects of river planform geometry may reflect random processes [Langbein and Leopold, 1966; Thakur and Scheidegger, 1970; Ghosh and Scheidegger, 1971; Shreve, 1969, 1974; Ferguson, 1976; Wallis, 1978; Turcotte, 1992], the form and scale of meander patterns depend on interactions among channel gradient, valley floor material and the ratio of the river width to the valley width [Wolman and Leopold, 1957; Bagnold, 1960; Leopold and Wolman, 1960; Schumm, 1963; Ferguson, 1975; Hey, 1976; Davies and Tinker, 1984; Williams, 1986]. The form and size of meanders also depend on the river width-to-depth ratio, discharge, and the hydraulic properties of flow through bends [Dury, 1955, 1969; Einstein and Shen, 1964; Engelund and Skovgaard, 1973; Ferguson, 1975; Parker, 1976; Dietrich et al., 1979; Howard and

Table 4. Relations Between Fractal Scaling and Meander Features

<table>
<thead>
<tr>
<th></th>
<th>e_{max} Versus λ</th>
<th>e_e Versus A</th>
</tr>
</thead>
<tbody>
<tr>
<td>All data</td>
<td>$e_{\text{max}} = 72.8 \pm 1.02\lambda; \quad r = 0.85$</td>
<td>$e_e = -9.4 + 0.99A; \quad r = 0.81$</td>
</tr>
<tr>
<td>BV rivers</td>
<td>$e_{\text{max}} = 109 + 0.22\lambda; \quad r = 0.58$</td>
<td>$e_e = -0.76 + 0.79A; \quad r = 0.94$</td>
</tr>
<tr>
<td>GV rivers</td>
<td>$e_{\text{max}} = -20.6 + 0.59\lambda; \quad r = 0.96$</td>
<td>$e_e = 11.9 + 0.57A; \quad r = 0.49$</td>
</tr>
<tr>
<td>AV rivers</td>
<td>$e_{\text{max}} = 39.4 + 0.65\lambda; \quad r = 0.86$</td>
<td>e_e</td>
</tr>
</tbody>
</table>

Least squares linear regression equations of Figure 8 plots. BV, bedrock valley; GV, glacial valley; AV, alluvial valley.
Hemberger, 1991. Our results indicate that the morphological signature of these processes defines the range of scales over which fractal geometry describes river planforms.

The relation between a channel and its valley helps explain the different scaling patterns of BV, AV, and GV rivers. BV rivers occupy narrow, confined valleys in which bedrock structure, strength, and fracture patterns may influence channel orientation. Resistant bedrock valley walls impede meandering, leading to quasi-linear planforms described by a single low D. The single D implies a lack of a preferential scale to the planform of bedrock rivers. GV rivers confined within incised glacial terraces meander freely at short length scales within the valley, but the inherited glacial form constrains channel form at larger scales. This restriction at large scales results in higher D at short wavelengths and lower D at longer wavelengths. In contrast, AV rivers occupying wide floodplains typically have low gradients and unconsolidated bank material that encourage meander development, and meander wavelength is proportional to discharge [Dury, 1955, 1969; Carlston, 1965; Ikeda et al., 1981; Richards, 1982]. Although AV rivers are free to meander at all length scales, the lower D observed at shorter length scales documents simpler fine-scale channel form. We infer that the transitional scale (i.e., ε̄) represents a scale above which random influences dominate channel pattern and below which the interplay of flow hydraulics and sediment transport governing channel form [Einstein and Shen, 1964; Englund and Skovgaard, 1973; Parker, 1976; Dietrich et al., 1979; Ikeda et al., 1981; Dietrich and Smith, 1983] results in relatively smooth meanders. These differences among BV, GV, and AV rivers imply that the scaling properties of river planforms may reveal the range of scales over which different types of processes influence river planforms.

Conclusions

Our analyses reveal that river planforms exhibit fractal scaling properties over scaling ranges bounded by the channel width and the largest meander wavelength. In mountain drainage basins of Washington State, a single, low fractal dimension describes rivers flowing in confined bedrock valleys (BV rivers). A scaling threshold related to the amplitude of the largest meander separates distinct scaling domains apparent in Richardson plots of river planforms flowing either in inherited glacial valleys (GV rivers) or in wide alluvial valleys (AV rivers). GV rivers exhibit higher values of D at small scales and lower values of D at large scales, while AV rivers display the opposite relation. We believe these analyses to be the first to relate the scaling properties of river planforms to the genetic relation between a river and its valley.

Acknowledgments. This work was supported (A. A. B.) by the Institut Français de Recherche Scientifique pour le Développement en Coopération UR12-TOA (ORSTOM, Paris, France) during a year of scholarship visiting at the University of Washington. Many thanks to Tim Abbe, John Buffington, Mariza Costa-Cabral, Bernard Hallet, and three anonymous reviewers for helpful comments and suggestions.

References

A. A. Beauvais, ORSTOM, Centre d‘Ile de France, 32 av. Henri Varagnat, 93143 Bondy Cedex, France. (e-mail: beauvais@bondy. orstom.fr)

D. R. Montgomery, Department of Geological Sciences and Quaternary Research Center, University of Washington, Seattle, WA 98195-1310.

(Received May 19, 1995; revised January 10, 1996; accepted January 18, 1996.)