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Abstract. In this paper, the well-established multi-layer model originally devised by Waggoner and 
Reifsnyder (1968) is used. This steady-state model based on an electrical analogue simulates the energy 
exchange between the vegetation and the atmosphere. A purely mathematical development of the basic 

of the canopy as a function of the net radiation absorbed in each layer, the soil heat flux, the water vapour 
pressure deficit at a reference height and the whole set of elementary conductances (stomatal, boundary- 
layer and aerodynamic). These new equations can be considered as a generalization ofthe familiar Penman's 
formulae to a multi-layer model. 
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< equations of this model yields explicit expressions of the total fluxes of sensible and latent heat at the top 

List of Symbols 

Sensible heat flux density in vertical direction (W m-2); 
specific heat of air at constant pressure (J kg- K- '); 
saturation deficit of air (Pa); 
defined by Equation (19) (s m-'); 
air water vapour pressure (Pa); 
saturated vapour pressure at temperature T (Pa); 
aerodynamic conductance in vertical direction (m s- '); 
boundary-layer conductance of leaves (m s-'); 
stomatal conductance (m s- '); 
equivalent conductance for horizontal heat transfer (m s- I) 
equivalent conductance for horizontal vapour transfer (m s - I) 
defined by Equation (35) (W m-'); 
eddy diffusivity for heat and vapour (m2 s - I); 
leaf area index (m'm-'); 
net radiation flux density (W m-2); 
soil heat flux density (W m-*); 
air temperature (OC); 
leaf temperature ("C); 
psychrometric constant (66 Pa K- I); 
slope of the saturated vapour pressure curve (Pa K- I); 
thickness of layer i (m); 
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6LAIi leaf area index of layer i (m2 mm2); 
sensible heat flux density emanating from layer i (W m-2); 

6AEi latent heat flux density emanating from layer i (W m-'); 
6&ii net radiation flux density absorbed in layer i (W m-'); 
AE latent heat flux density in vertical direction (W m-'); 
p air density (kg m-3); 
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Subscripts: 

a for air; 
c for sensible heat; 
i for layer i; 
L for leaves; 
n for soil surface; 
O for above canopy parameters; 
u for latent heat (water vapour). 

1. Introduction 

For natural surfaces, the partitioning of available radiative energy (Rn - S) into sensible 
heat flux (e) and latent heat flu (LE) is commonly expressed by means of the familiar 
Penman’s formulae (Penman, 1948, 1953) based on the energy balance approach 

y*(Rn - S )  - pcpGaDa 
A + y* 

C =  ? 

A(Rn - S )  + pcpGaDa 
A +  y* 

I E  = Y 

in which Da is the vapour pressure deficit of the air at a reference height, Ga the 
aerodynamic conductance calculated between the surface level and the reference height, 
A the slope of the saturated vapour pressure versus temperature curve and y* the 
apparent psychrometric constant defined as: 

y* = y(1 + Ga/Gs) , (3) 

Gs being the surface conductance for water vapour transfer. This approach allows one 
to describe and analyse convective transfers from a surface acting as a single source. 
When applied to a vegetation stand (Monteith, 1981), this approach is often referred 
to as the single-layer approach because the stand is treated as a single equivalent surface 
absorbing radiative energy and transferring sensible and latent heat to the air. 

In the multi-layer approach (Waggoner and Reifsnyder, 1968), the canopy is divided 
into several layers. They are all characterized by a given thickness and a mean value 
of relevant variables; leaves in all layers are treated as an equivalent surface exchanging 
sensible and latent heat with its environment. The multi-layer approach describes fairly 
well the transfers within the whole canopy but unfortunately does not yield simple and 
explicit expressions of total fluxes above the canopy as in the single-layer approach. 
Nevertheless? Shuttleworth (1976) succeeded in deriving a so-called combination 
equation from a continuous model (in which all the variables are continuous functions 
of height z) but the relevant resistances were redefined in an uncommon way. Chen 
(1984), using a discrete model, gives explicit expressions of total fluxes, the resistances 
being retained in their ordinary sense. In his calculation algorithm, he has to define a 
new flux linked with a fictitious variable called ‘saturation heat’. The purpose of this 
paper is to derive, from a discrete approach? general expressions for sensible and latent 
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heat fluxes like Chen's by means of a more direct algorithm which does not require the 
introduction of a fictitious flux. 

2. The Basic Equations of Multi-Layer Models 

The basic equations are those of the model originally devised by Waggoner and 
Reifsnyder (1968) and used by Waggoner and Turner (1972), and Halldin and Lindroth 
(1986). The crop canopy is assumed to be horizontally homogeneous and is divided into 
several parallel layers ( 1  to n). Air within layer i is specified by its mean temperature 
Ta, i ,  its mean water vapour pressure ea, i .  'LAI, is the leaf area index of layer i and TL, i 
is the mean temperature of the leaves. eL,i is the water vapour pressure inside the 
substomatal cavity assumed to be saturated at the leaf temperature 

'* 

) 
i. 

eL, i = es(T', i) (4) 

The whole stand is visualized as an electrical analogue where sensible and latent heat 
fluxes replace current; corresponding driving potentials are pep T for sensible heat and 
(pc,/y)e for latent heat (Figure 1). The latent heat flux experiences two kinds of 
conductance: a stomatal conductance and a boundary-layer conductance denoted, 
respectively, by gsi and gbi. Sensible heat experiences only a boundary-layer con- 
ductance gbi which is assumed to be the same as for latent heat. 

The elementary fluxes of sensible and latent heat diffusing inside layer îfrom the leaves 
to the air are written as: 

with 
ge,, i = 26LAIigbi, 

geu,i = 26LA1, - ( g::s,) * 

Vertical fluxes denoted by Ci and .LEi experience diffusive conductance gai when 
crossing layer i. This diffusive conductance is linked with turbulent diffusivity K by the 
following relation: :A 

zi-  1 

gai = 1 [ l/K(z)] dz M KJSz,, 
Zi s (9) 

where zi is the height of layer i, Ki is a mean diffusivity for the given layer and 6zi is the 
layer thickness. 

The vertical fluxes leaving layer i are written as: 
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Fig.1 - Electrical analogue of exchange processes within the crop canocy 

We have to point out that the model allows one to take into account the transfers at 
the ground surface, considered as the last layer (denoted by subscript n). For the latent 
heat exchange a surface conductance has to be defined in the same way as for leaves. 
Therefore, the total fluxes at the top of the canopy can be expressed as the algebraic 
sum of the contributions of each layer: 

n n 

Co = Sci and JEo = C SJEi. (12) 
i =  1 i =  1 
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3. Expressions of Fluxes as a Function of Net Radiation and Vapour Pressure 
Deficit 

The net radiation absorbed in each layer 6Rni balances convective fluxes of sensible and 
latent heat: 

6Rni = Sci -k hA.Ei. (13) 

This equation is still valid for layer n (soil surface) if 6Rnn is replaced by 6Rnn - S, S 
being the soil heat flux. By summing Equation (13) from 1 to ìi we get: 

‘4, 

n 

“1 E 6Rni - S = Riz0 - S = Co + LE,. 
i =  1 

(14) 

i 
Linearizing the saturated vapour pressure versus temperature curve between TL, i and 

Ta, i by the slope A of the curve determined at the &-temperature Ta, o at the reference 
height yields : 

A = [es(T’, i )  - es(Ta, i)ll(TL, i - Ta, i )  . 

Du, i = es(Ta, i )  - ea, i * 

6JEi = (PcplY)gev, i(A(TL, i - Tu, i )  + D u ,  i )  . 

(15) 

Introducing the vapour pressure deficit in each layer, 

(16) 

Equation (6) can be rewritten as: 

(17) 

From Equations (5), (13), and (17), it is possible to infer this expression: 

di = l/(gec, i + (A/V)geu, i )  . (19) 

After combining Equation (5) with Equation (18), expression (12) for Co can be rewritten 

rr 
r l  

Taking into account Equation (13) yields: 
“-4 

In these equations, the only unknown variables are the Da, i .  

4. Recurrent Formulae for the Calculation of Da, i 

At each node of the circuit characterized by potentials Tu, i and ea, i elementary horizon- 
tal fluxes Sci and 6AEi emanating from layer i are mixed with main vertical fluxes 
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emanating from lower layers Ci+ and AEi+ 
following conservation equation: 

For each node, it is possible to write the 

es('u,i+~)= (1 -bi)es(Tu,i) +bies(Tu, i - 1 )  + ~c,i(es(TL,i) -es (Tu ,J)  * (30) 

Combining Equations (27), (29), and (30) yields the following recurrent relation for 
saturation deficit: 

Du, i+ = aiDu, i + Wu, i- + ci GRnilpcp 

with 

ai= 1 - b. -  z ' u ,  i + ('//y) ('u, i - cc, ilgeu, idi 7 

ci = A(cC, i - cU, 3di . 

The first term of the recurrent process Du, is the vapour pressure deficit at the top of 
the canopy. The second term Du,2 is written as: 
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For any subscript i, the vapour pressure deficit of layer i can be put in the form 
i- 1 

Da, i = aiDa, 1 + ßiAJOIpcpga1 + ~ i j  6Rnjlpcp 3 (36) 
j= 1 

coefficients a,, ßi ,  and 8; being calculated by means of the following recurrent formulae: 

ai, = aiai + bigi- , 

ß i +  1 = aißi + bißi- 1 

Ej c i -  1 - 
I , l  

r + 1  I I aici- 1 9 

- ai.$ t b,":, , " [ 
1 = 1 = 

Ei+ = C i ,  
" )  
k 

with the first coefficients defined as: 

a, = 1 ,  ßl = O ,  a ,=a , ,  ß 2 = l ,  & ; = C I .  

(37) 

5. Solutions for the Total Flux Densities Co and LEo 

The total flux density of latent heat at the top of the canopy can be written as (Slatyer 
and McIlroy, 1961; Monteith, 1981): 

AEo = ['('no - S> + Pcpgao(Da, 0 - Da, 1>11(A + Y) 7 (39) 

where Da, o is the saturation deficit of the air at a reference height above the canopy and 
gao is the aerodynamic conductance calculated between the top of the canopy and this 
reference height. 

Expressing Da, as a function of Da, o from Equation (39) and taking into account the 
energy balance equation, 

Rno - S = Co + AE, , (40) 

expression (36) of Da, i becomes 
i -  1 

Da, i = aiDa, 0 + (ailgao + ßiIga1)AJoIpcp + ~ i j  6RnjIpcp 
j= 1 

.a 
Substituting relation (41) into relations (20) and (21) and defining, 

we obtain, respectively: 
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the right-hand terms of Equations (44) and (45) can be, respectively, rewritten as: 
n 1 

2 ( y g e ,  idi 6Rni + Age,, idi 6Rni - g e ,  ige,, idi E! 6Rnj) , 
i =  1 j= 1 

'i g e ,  ige,, idi i E/ 6Rnj 
i =  1 j =  1 

Noticing that: 

and defining, 

Equations (44) and (45) become: 

n 

y(1 + A + B )  (Rn, - S) - Ei 6Rni - pc,ga,AD,, o 

n 
A(A + B)  (Rn, - S )  + 2 Ei 6Rni + pcpgaoADa, o 

i =  1 
JE,, = 

Y + ( A  + Y) (A + B )  

Parameters A ,  B, and Ei are functions only of elementary conductances ge,,, gevi, and 
gai. Thus, this set of formulae can be considered as an extension of Penman's original 
formulae to a multi-layer system. 

4 

6. Particular Case of Completely Wet Canopies 

If the canopy is completely wet, stomatal conductances gsi are to be considered as 
infinite. Assuming that boundary-layer conductances for sensible and latent heat are the 
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same allows one to write: 

ge,, = ge,, = ge, = 26LAI,gb,. 

The general formulae given above simplify to: 

in which the total conductance Gu is expressed as: 

1/Ga = l/gao f l/gu, , 

with 

ga, = A" + B'/gu,> Y 

n 

A' = aigei, 
i =  1 

" 
B' = pigei. 

i =  1 

Equations (55) and (56) are identical to Penman's formulae derived for a saturated 
surface (Penman, 1948). But, as is seen in relation (57), the aerodynamic conductance, 
in the case of a multi-layer system, must include conductance gu, which represents the 
supplementary aerodynamic conductance experienced within the crop canopy by 
sensible and latent heat fluxes. 

7. Discussion and Conclusion 

Penman's formulae represent the basic equations derived from the energy balance 
approach for calculating the sensible and latent heat flux densities emanating from 
natural surfaces which can be considered as acting like a single source (or sink) of 
sensible and latent heat (open water, bare soil, short canopies like grass). In this paper, 
it has been shown how these basic equations can be mathematically extended to 

horizontal planes at different heights. This kind of model constitutes a sound analogue 

as a particular case (obtained by putting n = 1) of more general equations (52) and (53), 
provided the bulk boundary-layer conductance (2 LAI gb) is included together with the 
aerodynamic conductance above the canopy guo in the bulk conductance Gu. Therefore, 
Equations (52) and (53) constitute the general expressions for partitioning of available 
radiative energy into sensible and latent heat fluxes. They are valid for both single-layer 
and multi-layer models. The fictitious flux of saturated heat introduced by Chen (1984) 
for establishing a bridge between single-layer and multi-layer approaches is no longer 
necessary. 

multi-layer models in which sensible and latent heat are transferred from a set of 

of energy exchange within tall crops. The classical Penman formulae (1) and (2) appear 

,c 
b 
- A  

). 
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The basic equations of multi-layer models form a closed set of equations which allows 
one to calculate the total convective fluxes at the top of the canopy and the profiles of 
temperature and humidity within the canopy. One of the main practical interests of the 
calculation algorithm presented in this paper is to simplify the mathematical procedure 
to solve this set of equations. In the discrete approach, the basic linear equations are 
solved by means of matrix methods (Waggoner et al., 1969; Furnival et al., 1975), 
whereas in the continuous approach (Goudriaan and Waggoner, 1972; Furnival et al., 
1975; Perrier, 1976), the authors derive differential equations which do not have 
analytical solutions and are solved by numerical methods. Although software for solving 
matrix problems or for integrating differential equations is available, it is more 
straightforward to derive the total fluxes above the canopy directly from Equations (52) 
and (53). 

The assumptions used for deriving these formulae are basically the same as those used 
in the models cited as references. The similarity between the exchange coefficients 
(boundary-layer conductance and eddy diffusivity) for heat and water vapour is a rather 
good approximation which has been extensively discussed (Monteith, 1973). The 
linearization of the saturated vapour pressure curve is performed for each layer over the 
interval defined by the difference between the leaf temperature and the air temperature 
(Equation 15); A is then calculated at the temperature of the air at the reference height 
Ta,o which is the only temperature introduced as input in the model. Chen (1984) 
showed that within a 10” temperature interval, the error caused by the linearization is 
rather small. But certainly the most difficult and problematic point of this kind of model 
is the practical calculation of diffusive conductances based on turbulent diffusivity. As 
a matter of fact, the flux-gradient relationship within the canopy is questionable and 
turbulent diffusivity must be handled with care (Waggoner and Turner, 1972). 

We have also to point out that it is impossible to infer, from Equations (52) and (53), 
bulk conductances which would be combinations of elementary conductances and 
would play the same role in the multi-layer systems as the aerodynamic and surface 
conductances in the familiar Penman formulae. Only in the case of completely wet 
canopies is the form of multi-layer formulae(55) and (56) identical to that of the 
single-layer formulae; bulk conductance Ga defined by Equation (57) is the equivalent 
of the aerodynamic conductance of the familiar Penman formulae. 
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