BTO - PATHOLOGY AND DIAGNOSIS OF CHAGAS DISEASE

CHRONIC, CHAGASIC MYOCARDITIS IS T. CRUZI-ANTIGEN AND CD8+ T CELL-DEPENDENT

Maria de Lourdes Higuchi
Instituto do Coração do Hospital das Clínicas da FMUSP, Av. Dr. Enés Carvalho de Aguiar 44, 05403-000 São Paulo, SP, Brazil

The role of T.cruzi in the pathogenesis of myocarditis in chronic phase of Chagas' disease is still a controversial matter, autoimmune mechanisms frequently being proposed. The main argument favouring this theory is the difficulty to find parasite in histopathological sections of chronic chagasic myocarditis and apparently lack of correlation between its presence and the intensity of inflammatory infiltrate. Many recent reports, mainly using endomyocardial biopsies, have demonstrated that the inflammatory infiltrate has an important role in the development of heart failure in chronic chagasic patients.

In order to clarify the real significance of the parasite in the development of chronic chagasic myocarditis we developed a series of works using polyclonal serum anti-T.cruzi and immunoperoxidase technique.

Initially we mapped 9 different regions from each of 8 necropsy hearts from chronic chagasic patients who died due to heart failure, semi-quantifying intensity of T.cruzi Ags and myocardial inflammation. We found that 7 (87.5%) out of 8 hearts exhibited at least one section positive for T.cruzi Ags and the septum was the region more frequently positive for parasites and myocardial inflammation. We amplified this study analysing only the septum of 24 chronic chagasic hearts and observed positivity in 58% of the cases and a good association between presence of parasites and moderate or severe myocardial inflammation. However, there was no direct correlation between intensity of Ags and intensity of inflammation. Scarce T.cruzi Ags frequently were associated with severe inflammatory infiltrate, suggesting hypersensitivity immune mechanisms involved.

Several works have demonstrated that T.cruzi induces immunologic depression in the host during acute experimental infection. We characterized the phenotype of the inflammatory cells and the cytokines present in chronic chagasic myocarditis, looking for any correlation of them and presence of parasites. We found that T cells correspond to 91% of the lymphocytes with higher proportion of CD8+ cells. The CD4+/ CD8+ ratio was 0.3. The number of CD8+ T cells was higher in the cases positive for T.cruzi Ags. We observed a good correlation between numbers of CD8+ T cells and numbers of Interferon-γ+ cells, in the groups with absent or scarce amount of T.cruzi Ags. The numbers of IL-2+ cells were extremely lower even in such cases reinforcing the concept that there is some immunodepression in chronic chagasic patients, as CD4+ T cells are expected to proliferate in response to parasites. We also searched for any correlation between different cytokines and the number of CD8+ and CD4+ T cells, in the presence of T.cruzi Ags. We observed a good association between numbers of CD8+ T cells and numbers of Interferon-γ+ cells, in the groups with absent or scarce amount of T.cruzi Ags. The association between higher numbers of IL-4 cells in the cases with +++ of T.cruzi Ags suggesting that Th2 response is associated with the dissemination and Th1 response with the control of the parasite.

Summarizing, our studies about the influence of the parasite on development of chronic chagasic myocarditis in hearts derived from chagasic patients (necropsies or receptors of heart transplantation) demonstrated that absence, scarce or many T.cruzi parasite Ags are correlated with different patterns of inflammatory infiltrate regarding number of CD8+ and CD4+ T cells and cytokines. More studies focusing on the cytokines and their relationship with the parasite survival may help to clarify different outcomes in chronic Chagas' disease.


CIRCULATION AND BEHAVIOUR OF TWO MAJOR CLONES OF TRYPANOSOMA CRUZI IN BOLIVIAN CYCLES

Brenière, S.P. / Bossoo M.F. & Nolteau, E.
UMR CNRS/ORSTOM n° 9926, Laboratoire de Génétique Moléculaire des Parasites et des Vecteurs, La Paz, Bolivia
Mission ORSTOM Bolivia, CP 9214, La Paz, Bolivia.
Supported by TDR Chagas WHO, ORSTOM, French Cooperation.

On the basis of isoenzyme studies and population genetic interpretation (Tibayrenc et al., Proc. Nat. Acad. Sci. USA, 83 : 115-119, 1986), we have previously designed a molecular identification tool of two major clones of Trypanosoma cruzi based on both DNA PCR amplification and southern hybridization using clone specific probes (Veas et al., Cell. Mol. Biol. 37 : 73-84, 1991). These tools allow the direct identification of two genetic sub-groups of clones, genetically unrelated in biological
NITRIC OXIDE IS INVOLVED IN THE INTESTINAL DESNERVATION OBSERVED IN THE ACUTE PHASE OF EXPERIMENTAL TRYPANOSOMA CRUZI INFECTION

Garcia, S.B.; Paula, J.S.; Giovannetti, G.S.; Zucoloto, S.; Silva, J.S. Cunha, F.Q.
Departments of Morphology, Pathology, Immunology and Pharmacology of the Faculty of Medicine of Ribeirão Preto.
University of São Paulo. Av. Bandeirantes 3900, Ribeirão Preto, SP, Brazil. CEP 14049900.

Chagas disease is a major public health problem in Latin America, caused by the flagellate protozoan Trypanosoma cruzi. Visceromegalies, mainly megaesophagus and megacolon are common consequences of this disease and are related with the intrinsic denervation of the organs, mainly in its acute phase (Koberle, 1968). Despite of this, the mechanism of this lesion are not fully known. Chagas (1916) and Koberle (1956) suggested that the neuronal lesions could be determined by the action of neurotoxins, which however have never been identified.

Nitric oxide (NO) is involved in a variety of biological functions in different systems (Moncada et al., 1991). It is involved in endothelium-dependent vascular relaxation, platelet aggregation and in central and peripheral neurotransmission. NO is also important anti-microbial effector molecule in macrophage against intracellular pathogens, including T.cruzi and its productions is increased in the murine T. cruzi infection (Gazzinelli et al., 1992; Petraj et al., 1994; Vespa et al., 1994). On the other hand, excessive NO production may cause host pathologic consequences associated with its cytotoxic effect in several cells types, including neurons (Chao et al., 1992). So, the objective of this study was to investigate the possible involvement of NO in intestinal denervation in the acute phase of experimental T. cruzi infection.

Wistar male rats were infected with T. cruzi and were separated in two groups: group Nitro (9 animals) which was daily injected intraperitoneally with 50mg/kg of N^NO-nitro-L-Arginine (NO synthase inhibitor) and group Inf (9 animals) that received daily intraperitoneal injection of saline solution. A control group of 9 animals was not infected and treated (C). After 18 days the animals were sacrificed and colon segments were removed and fixed in bouin for 24 hours and then embedded in paraffin. For each segment ten 7µm circular sections were obtained and stained with H&E and submitted to histopathological analyse. The serum nitrate concentration was also determined. The statistical significance of the differences between data values was determined by Mann-Whitney-U-test (p<0.05).

Table shows that the T.cruzi infection promotes an increase in the serum NO concentration which was reduced by the treatment of the infected animals with N^NO-Nitro-L-Arginine. Also the T.cruzi infection caused decrease in the neuronal number (74%) in the myenteric plexus compared with normal animals. This neuronal lesion was prevented by the treatment of the animals with N^NO-Nitro-L-Arginine. The histopathological analyse of the colon slices showed the presence of inflammatory reaction on the muscular layers and neuronal damage in the infected group. This last find was reduced by the N^NO-Nitro-L-Arginine treatment (data not shown).

<table>
<thead>
<tr>
<th>Experimental Groups</th>
<th>Serum NO3 (µM)</th>
<th>Ganglion cells (number/mm colon length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inf</td>
<td>24.8 ± 5.4*</td>
<td>909.1 ± 95.2*</td>
</tr>
<tr>
<td>Nitro</td>
<td>8.0 ± 0.9*</td>
<td>2741.0 ± 156.6*</td>
</tr>
<tr>
<td>C</td>
<td>4.7 ± 1.6</td>
<td>3486.5 ± 49.9</td>
</tr>
</tbody>
</table>

Ganglion cell counts in colon and serum NO concentrations in T. cruzi infected rats (group Inf) and infected and treated with 50mg/kg of Nitro-L-Arginine (group Nitro) and in normal animals (C).

* p<0.05, compared with the control group
@ p<0.05, compared with the infected group.

These findings suggest that NO is involved in the neuronal destruction of myenteric plexus in acute experimental T. cruzi infection. Furthermore, they may explain the benefit effect of the glucocorticoids treatment in the nervous ganglion cells lesions observed in acute Chagas disease (Andrade & Andrade, 1966), since dexamethasone inhibits the induction of the enzyme responsible for NO production (Moncada e cols, 1991).

References