Country-wide rapid epidemiological mapping of onchocerciasis (REMO) in Cameroon

BY J. M. MACÉ
GEOS, Université Paul Valéry Montpellier III, B.P. 5043, 34032 Montpellier Cedex, France
M. BOUSSINESQ
ORSTOM, CS 5, 213 rue La Fayette, 75480 Paris Cedex 10, France
P. NGOUMOU
Ministry of Public Health, P.O. Box 12892, Yaoundé, Cameroon
J. ENYEGUE OYE
Sight Savers International, Cameroon Office, Coalition of NGDOs, P.O. Box 4794, Yaoundé, Cameroon
A. KOÉRANGA
Délégation Provinciale de la Santé Publique, Garoua, Cameroon
AND C. GODIN*
Organisation pour la Prévention de la Cécité, 9 rue Mathurin Régnier, 75015 Paris, France

Received 22 January 1997, Accepted 4 February 1997

The prevalence of infection in local communities has been used as the basis for the country-wide repartition of onchocerciasis in Cameroon, following the principles for rapid epidemiological mapping of onchocerciasis (REMO) developed by the World Health Organization. The levels of endemicity were evaluated in 349 villages by rapid epidemiological assessment (REA), a method based on the examination of nodules in males aged ≥ 20 years. An onchocerciasis map was then drawn from the epidemiological data which had been collected previously, from clinico-parasitological surveys based on the examination of skin snips, and the results of the REA surveys. The REMO surveys allowed the main onchocerciasis foci in Cameroon to be accurately delineated, and several small endemic areas which had never been reported before to be identified. The total 'at risk' population (i.e. those for which ivermectin treatment should be considered as urgent or highly desirable) was estimated by combining the epidemiological results and the demographical data available from an administrative census. Those at risk were estimated to number 3.5 million, representing about 50% of the total rural population in Cameroon.

Ivermectin (Mectizan®) has proved to be a very effective and safe drug for large-scale treatment of onchocerciasis. In 1987, the manufacturers, Merck and Co. Inc., decided to donate the drug, free of charge and for as long as needed, to any government or non-governmental development organization (NGDO) involved in onchocerciasis control. As a result of this decision, country-wide ivermectin distribution programmes (IDP) are being developed in most of the countries where the disease is endemic, in the hope that onchocercal blindness and severe skin disease can be prevented in the near future. Most of those countries which, though at-risk, are outside of the area of the Onchocerciasis Control Programme in West Africa (OCP), are now covered by the
African Programme for Onchocerciasis Control (APOC). In the APOC area, no large-scale vector-control operations can presently be envisaged and control of onchocerciasis depends almost entirely on ivermectin. Although Mectizan® is available at no cost, governments and NGDO planning IDP still have to pay for the drug’s distribution. There is general agreement that the drug should be distributed first to those communities whose members are at risk of developing the severe and disabling ocular or dermal complications of onchocerciasis (Taylor et al., 1992). In general, this risk is directly related to the intensity of infection in the community (Remme et al., 1989). There are several reviews which present data on the distribution of onchocerciasis outside of the OCP area and give information on the most severely affected regions (Crosskey, 1981; Boussinesq, 1991a; Fain, 1991). However, the epidemiology of onchocerciasis remains unknown in many areas, one of which is Cameroon, and surveys have to be carried out urgently to fill these gaps in our knowledge.

The classical parasitological method for assessing the endemicity of onchocerciasis in a region, based on the examination of skin snips, cannot be used routinely because it is unpopular, time-consuming, costly, and may spread hepatitis B virus and HIV. The World Health Organization has therefore adopted and developed an alternative method, known as rapid epidemiological mapping (REA), which is based on the prevalence of nodules in males aged ≥ 20 years and which was suggested by Taylor et al. (1992). Using this method to assess community endemicity levels, and selecting communities according to the principles described by Ngoumou et al. (1994), it has been possible to accomplish an initial rapid epidemiological mapping of onchocerciasis (REMO) over almost the whole of Cameroon. Now that the main endemic areas have been defined by REMO, further REA within those general areas which are selected for IDP will reveal exactly which communities are above the threshold level of endemicity that calls for mass treatment with ivermectin.

The aims of the present study were: (1) to produce a map of the general distribution of onchocerciasis in Cameroon, by combining the results of a considerable number of clinico-parasitological surveys (CPS), carried out for public health or research purposes before 1993, with the results of the REA surveys during 1993–1995; and (2) to estimate the total number of people exposed to severe onchocerciasis in Cameroon by combining all the epidemiological and demographic data available.

SUBJECTS AND METHODS

At the time of launching the REMO exercise in Cameroon, it was decided that no REA surveys would be performed in five areas because epidemiological data were already available for them from previous, large-scale CPS. These areas were the wide belt which extends across the Sudan-savanna area in the North Province (Anderson et al., 1974; Le Bras et al., 1976; Louboutin-Croc and Madi Kambaba, 1983; Boussinesq, 1991a; M. Boussinesq, unpubl. obs.), the limited focus in the Extreme-North Province (Pabot du Chatelard et al., 1978; Stéveny et al., 1981; Marceau et al., 1986), the region of forest-savanna mosaic located in the Central Province, at the confluence of the Sanaga and Mbam Rivers (Ripert et al., 1977; M. Boussinesq, unpubl. obs.), the forested Mungo and Meme Valleys in the South-West Province (Duke et al., 1972; Anderson et al., 1974; Moyou Somo et al., 1993), and the forested Dja Valley area in the South Province (Kollo, 1993; J. Gardon, unpubl. obs.) (Figs 1 and 2).

REA surveys were planned in the remaining areas, the data for which were very scarce, rough or completely absent. Despite the availability of clinico-parasitological data (Brengues et al., 1975), REA surveys were performed in the Noun Valley (West Province) because more accurate information was considered necessary to plan a rational IDP in this very densely populated area.

Clinico-parasitological Surveys (CPS)
The numbers of communities and patients examined during the large-scale CPS carried...
out before 1993 are summarized in Table 1. All, except those carried out in the Dja Valley, were based on examination of both nodules and skin snips in people of both sexes aged \(\geq 5 \) years. During the CPS carried out by the Institut Français de Recherche Scientifique pour le Développement en Coopération (Boussinesq, 1991b; M. Boussinesq, unpubl. obs.), the prevalences of microfilariae were age- and sex-standardized using the OCP method (Moreau et al., 1978).

REA/REMO Surveys
The REMO survey carried out during 1993–1995 followed the principles described in detail previously (Ngoumou et al., 1994). Briefly, the process was developed in three successive stages. First the country was divided into six major bioclimatic/biogeographic divisions (BGD), which were then further sub-divided, on the basis of the watersheds of the major river-drainage systems, into a total of 21 zones (BGZ), each showing more or less uniform hydrology in relation to potential breeding sites for the Simulium vectors. Each zone was considered to be uniform with respect to the pattern of onchocerciasis transmission and, within it, a sample of communities considered most likely to be highly endemic for onchocerciasis was chosen for survey, using the REA method of Taylor et al. (1992). The detailed logical process used for the zoning, and the map obtained, have already been presented (Ngoumou et al., 1994). During this stage, the areas to be excluded from REA survey were also identified. These included: (1) the regions known as 'empty zones', where the human population density is \(< 1 \) inhabitant/km\(^2\) (i.e. national parks, game reserves, areas of dense forest, and the large savanna area located south of the Adamaua Plateau); and (2) the areas totally unsuitable for the breeding of blackflies (e.g. the densely populated but swampy area in the eastern part of the Sahelian Extreme-North Province, and the summit area of Cameroon Mountain).

The second stage of the REMO consisted of selecting the communities to be surveyed within each BGZ. The main criteria used were the distance between the communities and the rivers, and the location of the communities in first, second, or third line, according to the criteria defined in West Africa (Rolland and Balay, 1969). In addition, the selection was performed so that the maximal distance between one selected village and the next was \(\leq 50 \) km. Using this method, a total of 322 villages was selected for REA.

The third stage consisted in carrying out the REA surveys themselves. The REA team had four members (i.e. supervisor, nurse, driver, and interpreter). The co-ordinates of the villages surveyed were recorded with an accuracy of 1 km using a global positioning system (Pyxis® IPS360, Sony). The REA was based on the examination, in each selected community, of a sample of 30 adult males, aged \(\geq 20 \) years, for the presence of nodules (Taylor et al., 1992). The sample was selected randomly from those residents whose activity was principally rural.

Additional REA Survey in the Northern Part of the North Province
In 1992, the NGDO River Blindness Foundation, in co-operation with the Cameroon Ministry of Public Health, launched a mass IDP in the North Province of Cameroon. Baseline data were available from the CPS quoted above, but the northern limit of the meso- and hyper-endemic area was not well defined. A specific REA survey was therefore carried out to determine this boundary. This was an important issue because it was decided that the hypo-endemic communities of the focus should only receive clinic-based treatment. Owing to the greater degree of accuracy required, the selection of the villages to be surveyed was not done using the REMO procedure described above. Rather, it was performed so that the maximal distance between one selected village and the next was at the most 5 km, and it included 68 villages. Otherwise, the examination was carried out following the protocol described above.

Indices used for Assessing Endemicity Levels
As the cornerstone of the present study was the REA survey, the main index used for
<table>
<thead>
<tr>
<th>Survey area</th>
<th>NCS</th>
<th>NSE</th>
<th>Index*</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandara Mountains, Extreme-North Province</td>
<td>7</td>
<td>1039</td>
<td>PN, PMF</td>
<td>Stéveny et al. (1981)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1000</td>
<td>PN, PMF</td>
<td>Marceau et al. (1986)</td>
</tr>
<tr>
<td>Koza, Extreme-North Province</td>
<td>17</td>
<td>2657</td>
<td>CPI</td>
<td>Pabot du Chatelard et al. (1978)</td>
</tr>
<tr>
<td>Vina-Mbere Basin, North Province</td>
<td>6</td>
<td>1126</td>
<td>PN, CPI</td>
<td>Anderson et al. (1974)</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1801</td>
<td>PN, PMF</td>
<td>Le Bras et al. (1976)</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>11416</td>
<td>CPI</td>
<td>Louboutin-Croc and Madi Kambaba (1983)</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>8828</td>
<td>PN, PMF</td>
<td>Boussinesq (1991b)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>795</td>
<td>PN, CPI</td>
<td>Anderson et al. (1974)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2124</td>
<td>CPI</td>
<td>Louboutin-Croc and Madi Kambaba (1983)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1489</td>
<td>PN, PMF</td>
<td>Boussinesq (1991b)</td>
</tr>
<tr>
<td>Faro-Deo Basin, North Province</td>
<td>48</td>
<td>6980</td>
<td>PN, PMF</td>
<td>Louboutin-Croc and Madi Kambaba (1983)</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1643</td>
<td>PN, PMF</td>
<td>M. Boussinesq (unpubl. obs.)</td>
</tr>
<tr>
<td>Sanaga Valley (left bank), Central Province</td>
<td>5</td>
<td>1132</td>
<td>PN, PMF</td>
<td>Ripert et al. (1977)</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4678</td>
<td>PN, PMF</td>
<td>M. Boussinesq (unpubl. obs.)</td>
</tr>
<tr>
<td>Sanaga Valley (right bank), Central Province</td>
<td>39</td>
<td>7283</td>
<td>PN, PMF</td>
<td>M. Boussinesq (unpubl. obs.)</td>
</tr>
<tr>
<td>Noun Valley, West Province</td>
<td>12</td>
<td>1039</td>
<td>PN, PMF</td>
<td>Brengues et al. (1975)</td>
</tr>
<tr>
<td>Mungo and Meme Valleys, South-West Province</td>
<td>4</td>
<td>702</td>
<td>PN, PMF</td>
<td>Duke et al. (1972)</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1913</td>
<td>PN, CPI</td>
<td>Anderson et al. (1974)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1213</td>
<td>PN, PMF</td>
<td>Mayou Sumo et al. (1993)</td>
</tr>
<tr>
<td>Dja Valley, South Province</td>
<td>12</td>
<td>1567</td>
<td>PMF</td>
<td>J. Garden, unpubl. obs.</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>846†</td>
<td>PN, PMF</td>
<td>Kollo (1993)</td>
</tr>
</tbody>
</table>

*PN, Prevalence of nodules; PMF, prevalence of skin microfilariae; CPI, clinico-parasitological index (percentage of patients with nodules and/or skin microfilariae).
† All males aged 20 years.
Fig. 1. Levels of onchocerciasis endemicity in the villages examined in the rapid epidemiological assessment surveys and earlier clinico-parasitological (CP) surveys. Endemicity, measured as the prevalence of nodules in males aged ≥ 20 years, is shown as ○ (0%), ○ (< 5%), ● (5%–19%), ● (20%–39%) or ● (≥ 40%). Villages where 20–29 subjects (×) or < 20 subjects (+) were examined are indicated. The boundaries of biogeographic divisions (—) and zones (——) are also shown.
Fig. 2. The main towns and rivers of Cameroon, the rural population densities in each administrative division (département) and the boundaries of the provinces --- and départements

Rural population density (inhabitants/km²)

- < 3
- 3 - 9
- 10 - 24
- 25 - 49
- 50 - 99
- 100 - 351

km

0 100 200 300

N

defining the target age was the population aged ≥20 years. When the desirable prevalence of non-endemic malnutrition (PNAM) (z < 5%, respectively) was reached, the target age was regarded as representative.

As in previous Chinese studies, the value could be considered too low. In the females, males had similar results obtained in the hypo- and meso-endemicity. Both the hypo- and meso-endemicity, respectively. The proposed prevalence of malnutrition was urgent and urgent in the districts of the four states (WHO, 1992).

Mapping REMO project.

All the REMO project, the medical records of the patients in the Noun region were used and GIS® System, the software in which the data were plotted on the levels of the villages, the farms were examined. The data were then distinguished
defining the endemicity levels in the villages was the prevalence of nodules in adult males aged ≥ 20 years (PNAM). The WHO had defined that ivermectin treatment was urgent when the PNAM was ≥ 40%, and highly desirable when the PNAM was 20%–39% (WHO, 1991). In the present study, villages were classified as hyper-, meso-, hypo- or non-endemic depending on the value for PNAM (≥ 40%, 20%–39%, 5%–19%, and < 5%, respectively). In some small villages, the target size of sample (30 men) could not be reached. In such places, a sample of 20 men was regarded as giving a satisfactorily representative picture of local endemicity.

As, in most of the villages surveyed in the previous CPS, the population examined included > 20 adult males, a reasonable PNAM value could be calculated from the CPS data. In the few communities where < 20 adult males had been available, the parasitological results obtained from skin snips were considered to give an accurate estimate of the endemicity level when > 100 residents aged ≥ 5 years had been examined. Hyper-, meso-, hypo- and non-endemic communities were then distinguished on the basis of the prevalence of skin microfilariae (PMF) (≥ 60%, 40%–59%, 20%–39% and < 20%, respectively). The values corresponding to hyper- and meso-endemicity correspond to those proposed previously to define communities where ivermectin treatment should be considered as urgent and highly desirable, respectively (WHO, 1991).

Mapping
All the villages examined as part of the REMO project and the additional REA survey in the North Province were plotted on a map, using a geographical information system (Atlas GIS®, Strategic Mapping Inc.). The villages in which > 20 adult males were examined were plotted in the form of pie charts showing the levels of endemicity. Amongst these villages, those in which 20–29 persons were examined were represented differently from those where the sample size was higher, so that the less reliable values could be distinguished easily. The few communities in which < 20 adult males were examined were also plotted on the map, but the corresponding estimates of endemicity were not indicated.

As those villages in the areas examined during the CPS were usually relatively close to one another, they were not plotted on a map in the same way as the REA villages. However, all the data available from the REA surveys and CPS were combined in another map, in which the hyper-, meso- and hypo-endemic areas of each focus were delineated. The limits of the administrative divisions, which are the units used to estimate the number of people exposed to onchocerciasis (see below), were included on this map.

Estimation of the Population Exposed to Onchocerciasis
The population exposed to onchocerciasis was estimated by combining the epidemiological data obtained from the CPS and REA surveys with the demographic data available from the 1987, country-wide, population census. The geographical units used for estimating the exposed population were administrative divisions, for which demographic data were available, and not the bio-geographic divisions used for selecting the villages to be surveyed. For various reasons, the demographic data recorded at the lowest administrative levels (i.e. the village and the ‘canton’) were not available. The administrative unit used to estimate the population exposed to onchocerciasis therefore had to be at the higher level of district (‘arrondissement’). At this level, the 1987 census distinguished urban and rural populations. As the urban population was not thought to be exposed to significant onchocerciasis transmission, the estimates of the population exposed to onchocerciasis were calculated on the basis of the rural population. The population in 1995 was estimated from the 1987 figures by assuming an increase of 2.9% per year.

No attempt was made to delineate the hyper-, meso- or hypo-endemic areas within a given arrondissement. As the population within an arrondissement was often not homogeneously distributed, the proportions of the
TABLE 2
Distribution of the villages surveyed by rapid epidemiological assessment of onchocerciasis, according to the numbers of subjects/village (s/v) and the level of endemicity

<table>
<thead>
<tr>
<th>Endemicity</th>
<th>No. of villages in main survey</th>
<th>No. of villages in survey in North Province</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥30 s/v</td>
<td>20–29 s/v</td>
</tr>
<tr>
<td>Non-endemic</td>
<td>50</td>
<td>13</td>
</tr>
<tr>
<td>Hypo-endemic</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>Meso-endemic</td>
<td>29</td>
<td>4</td>
</tr>
<tr>
<td>Hyper-endemic</td>
<td>126</td>
<td>15</td>
</tr>
<tr>
<td>All</td>
<td>240</td>
<td>47</td>
</tr>
</tbody>
</table>

The population exposed to hyper-, meso- and hypo-endemicity could not be estimated from the proportions of communities found to be hyper-, meso- or hypo-endemic in the CPS or REA surveys. The level of endemicity was thus considered homogeneous within an arrondissement, and this level was defined by the highest level recorded amongst all the villages surveyed in the arrondissement. Following these principles, the 'population exposed to onchocerciasis' or the 'population at risk' was defined as the total rural population living in the arrondissements where at least one meso- or hyper-endemic village was detected by the CPS or REA surveys. Although geographical and information constraints led to this definition, it is probably a very useful definition, in terms of any subsequent organization of ivermectin distribution, because the arrondissements usually correspond geographically to health districts ('districts sanitaires'), at which level the health activities, including ivermectin distribution, are organized.

RESULTS

Results of the REA Surveys
A total of 10,712 males aged ≥ 20 years, living in 322 communities, was examined as part of the main REA/REMO survey. The number of men examined exceeded 30 in 240 of these villages, ranged between 20 and 29 in another 47, and was <20 in the 35 remaining communities. A total of 1,831 males aged ≥ 20 years, living in 68 communities, was examined as part of the additional REA survey carried out in the North Province; the number of men examined exceeded 30 in 59 of the 68 communities and ranged between 20 and 29 in three others.

Combining the results from both REA surveys, Fig. 1 shows the endemicity levels of the 349 communities in which at least 20 males were examined, and Table 2 shows the distribution of the surveyed villages according to their level of endemicity.

Distribution of Onchocerciasis in Cameroon
Figure 3 combines the results of both REA surveys with those of the CPS, and demonstrates that five main hyperendemic foci exist in Cameroon. Four of them have been described by CPS: the two contiguous savanna foci extending across northern Cameroon in the Vina-Mbere and Benoue Basins; the Dja and Lobo forest focus in southern Cameroon; and the focus located along the Sanaga River and the lower part of the Mbam River, before its confluence with the Sanaga. The REA surveys provided additional accurate details on the limits of these previously known foci, such as the southern and northern limits of the two contiguous foci extending across the North Province. However, the main findings concerned the western limits of the Sanaga-Mbam focus, where the REA/REMO surveys demonstrated that the hyperendemic areas extended westwards along the Noun River, which is the main tributary of the Mbam River, and that most of the West Province was hyperendemic. The REA surveys demonstrated that the West Province was hyperendemic because the region is densely populated.

Other important foci that were identified in which the REA surveys showed a high level of endemicity were in the South Province, where the REA surveys showed a focus along the Bwam River, and in the South Province, where the REA surveys showed a focus along the Dja River. The REA surveys also confirmed that the endemicity was usually higher in the West Province, where the REA surveys showed a focus along the Dja River.

Estimation of the Population Exposed to Onchocerciasis in Cameroon
The main finding of this study was that the population exposed to onchocerciasis in Cameroon depends on the size of the arrondissement. The population exposed to onchocerciasis in each arrondissement was estimated to be 3,300 people in a typical arrondissement.

The present study is the first to estimate the population exposed to onchocerciasis in Cameroon using the REA method, which is expected to provide more accurate information than previous studies.
MAPPING OF ONCHOCERCIASIS IN CAMEROON

hyperendemic for onchocerciasis. In addition, the REA surveys gave original data on the hyperendemic areas located in the South-West Province in the Cross River Basin, and demonstrated that there is a continuity between this focus and the Sanaga-Mbam-Noun focus. These results are particularly important because the West and South-West Provinces are densely populated.

Other interesting data concerned the areas in which information was scarce, particularly the South and East Provinces, where the REA survey showed that, apart from the previously known Dja and Lobo focus and a limited focus along the Ntem River, onchocerciasis was usually non-endemic or only hypo-endemic. Similarly, the levels of endemicity were found to be fairly low in the western part of Adamawa Province, which had never been surveyed previously.

Estimation of the Population Exposed to Onchocerciasis
Cameroon is divided into 10 provinces and 58 administrative 'départements'. In 1987 (i.e. the year for which demographic data are available), the 58 départements were divided into 215 arrondissements. In all, 108 arrondissements have been surveyed, either by REA or by clinico-parasitological methods, and hyper-endemic communities have been recorded in 80 of them. Some of the communities in another 11 arrondissements were meso-endemic, although no village in these areas was found to be hyperendemic. Thus 91 arrondissements were classed as meso- or hyperendemic and therefore 'at risk'. In 1995, the whole rural population 'at risk' was estimated to be 3 330 000 people (2 795 000 and 535 000 people in hyper- and meso-endemic arrondissements, respectively).

DISCUSSION

The present results demonstrate the feasibility of country-wide epidemiological mapping of onchocerciasis using the rapid assessment method, which was proposed by Taylor et al. (1992) and further developed by WHO. In Cameroon, the REA surveys were carried out by a team of four people who covered some 33 000 km during 175 days. The survey cost about U.S.$40 000, or U.S.$3.73/person examined. This amount, which includes the per diems of the team, the fuel and the maintenance of one vehicle, might be considered as reasonable, especially as per diems are relatively high in Cameroon.

The only alteration which was made to the REA/REMO protocols of Taylor et al. (1992) and Ngoumou et al. (1994) was in the minimum sample size considered acceptable for an accurate estimate of the level of endemicity. Taylor et al. (1992) and Ngoumou et al. (1994) thought at least 30 adult males ought to be examined to give a representative picture of the community surveyed. Although attempts were made to examine this number in each of the present study communities, samples were sometimes smaller. Rather than ignore all of the data for the smaller samples, endemicity was estimated for communities where only 20–29 adult males could be examined. Figure 1 shows that the results obtained in these villages, usually small ones, are generally similar to the levels of endemicity recorded in the neighbouring communities where >30 persons could be examined. It therefore appears that a sample of 20–29 adult males is acceptable and can give useful data as part of a REMO.

At present, Cameroon and Nigeria are the only two countries where a REMO has been completed, (i.e. where most of the high-risk communities have been located; Anon., 1996). However, several areas have not yet been surveyed in Cameroon because, although not corresponding to 'empty zones', they were sparsely populated (less than two inhabitants/km²) and/or because the endemicity of onchocerciasis in them is assumed to be low. These areas were the swampy coastal area near the boundary with Nigeria (BGZ Vb), the coastal strip between the mouth of the Sanaga and the boundary with Equatorial Guinea (BGZ Va), the Upper-Sanaga (Djerem) and Lom Valleys (BGZ IIIc), and the Kadei Valley (BGZ IVb). The fairly densely populated North-West Province (BGZ VIIb), in which
Fig. 3. Distribution of areas endemic for onchocerciasis in Cameroon. The boundaries of the provinces (....) and départements (white lines) are also shown.
the villages along the tributaries of the Kimbe, Katsina Ala and Donga Rivers are probably highly endemic (Duke, 1967), could also not be surveyed for logistical reasons. Additional REA surveys should thus be performed in these few areas in order to complete the map of onchocerciasis in Cameroon.

Those areas of Cameroon that have not yet been surveyed by any CPS or REA/REMO survey include: (1) the areas (just mentioned) that still need to be surveyed (53 arrondissements); (2) the areas excluded at the first stage of the REMO process (five arrondissements in areas where the population density is less than one inhabitant/km² and 27 arrondissements in areas totally unsuitable for the breeding of blackflies); (3) the 15 urban arrondissements; and (4) the seven arrondissements where the samples in each village were all of <20 adult males. Overall, 107 arrondissements, containing 3 173 000 people, have never been surveyed.

In Cameroon, the REA surveys have served to define the limits of previously reported foci and have provided detailed information on several hyperendemic areas for which the data were fairly scarce. The largest of the latter areas spreads through the West and South-West Provinces, where the population density is very high (exceeding 50 people/km² in most areas). Such high population densities may have epidemiological consequences. In the West African savanna, Prost et al. (1979) found that the prevalence of onchocercal blindness in a given community was partly related to population density. It seems that high population densities do not influence the prevalence of infection but lead to a 'dilution' of the intensity of transmission, and thus to a low mean microfilarial density in the communities. The results of a recent parasitological survey (J. Kamgno, unpubl. obs.) indicate that such a phenomenon may occur in the West Province of Cameroon; although 30 of the 41 villages surveyed were hyperendemic according to the PNAM, only five had a community microfilarial load (Remme et al., 1986) above 20 microfilariae/skin-snip. The clinical consequences of onchocerciasis in this area, which may thus be relatively mild despite high levels of endemicity, should be investigated further.

Besides the identification and delimitation of the most severe onchocerciasis foci, the results of REMO may be very helpful in evaluating the populations at risk, for which IDP are urgent or highly desirable, and in planning the number of Mectizan® tablets to distribute every year in a given country. This is all the more useful in the framework of the launching of APOC, which aims to develop self-sustaining, country-wide, community-directed treatments with ivermectin in 16 endemic African countries outside the OCP (Remme, 1995).

Ideally, the most elementary health divisions should be used to estimate the populations exposed to hyper-, meso- or hypendemicity very accurately. In Cameroon, these elementary divisions are the health areas ("aires de santé"), each of which covers several villages. Unfortunately, as no demographic data exist for the health areas in Cameroon, these divisions could not be used to estimate the total population at risk. The calculation had to be based on the higher level of health district, each of which generally corresponds geographically to an administrative arrondissement. Using this method, the population at risk, as defined above, was estimated to be about 3 330 000. Adding estimates of the 'at-risk' populations in the few areas where surveys are still needed to complete the map, especially the North-West Province, the total population at risk becomes roughly 3.5 million, or about 50% of the total rural Cameroonian population. These values confirm that onchocerciasis is an important public-health problem in Cameroon. Moreover, although they represent the number of people exposed to infection and not the population actually infected, these values suggest that the estimate of the number of infected people in Cameroon (1.3 million), made before the launching of the REMO (WHO, 1995), was too low.

ACKNOWLEDGEMENTS. The REA/REMO surveys whose results are given in this paper...
were carried out with financial support from the River Blindness Foundation (RBF) and the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR). The CPS carried out by ORSTOM received financial support from TDR, RBF, and ORSTOM. This work would have not been possible without the support of Dr B. O. L. Duke, who initiated the REMO project in Cameroon and who was generous with his advice and encouragement throughout the study. We are also greatly indebted to the Cameroon Minister of Public Health and to Dr. R. Owona Essomba, Director of Community Health, for their help at the launching of the REMO, and to all the health authorities for their assistance during the execution of the surveys in the field. We wish to acknowledge especially Drs Djibrilla and Abdoulaye in the North Province. We are grateful to Drs J. Gardon, J. Kamango and B. Kollo for having kindly provided unpublished data, and to B. Bouchité, Dr J. P. Chippaux, A. Demanga-Ngangu, T. Nyiama and Dr J. Froud’hon for their assistance. We also wish to thank the technical staff of the RBF in Garoua and the Centre Pasteur in Yaoundé.

REFERENCES

