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NUMERICAL MODEL OF 3-DIMENSIONAL ANISOTROPIC 
DEFORMATION AND I-DIMENSIONAL WATER FLOW 7 SWELLING SOILS 
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Current models of water flow in deforming soils generally involve a 
transformation from spatial to material coordinates. Existing forms ofthis 
coordinate transformation either assume that soil deformation is one-di- 
mensional, or that it is isotropic. In the present article, we propose a new 
expression of the transformation gradient tensor, that allows different ex- 
tents of deformation in the vertical and horizontal directions. The result- 
ing generalized water flow equation is calibrated with experimental data 
obtained for one-dimensional vertical infiltration in a bentonite sample. 
The hydraulic characteristics obtained from this calibration are then used 
to analyze, via simulations, the sensitivity of water flow to anisotropy in 
soil deformation. The results indicate that the extent of the lateral defor- 
mation strongly influences not only the height of the soil surface, as ex- 
pected, but also the distribution of water and the total volume ofwater in 
a swelling/shrinking soil undergoing infiltration or drainage. Conse- 
quently, this lateral deformation should be taken into account explicitly 
in modeling efforts or in the determination of the hydraulic characteris- 
tics of soils that deform anisotropically. 

ANYsoils, notjust fine texturedones, exper- M ience volume changes when they absorb 
water or when they dry. These volume changes 
are often associated with very steep water content 
gradients and, in some cases, with the develop- 
ment ofnetworks of cracks. 

It has long been recognized that the physical 
behavior of swellin,-or deforming-soils dif- 
fers significantly from that ofnonswelling soils, in 
particular with respect to the transport of water. 
Fortunately, the work ofRaats and IUute (1969), 
and Smiles and Rosenthal (1968) showed at an 
early stage in the research of this process that 
the traditional equation ofwater flow in non- 
deforming soils, the Richards (1931) equation, is 
still formally applicable in deforming soils, pro- 
vided one introduces a suitable coordinate trans- 
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formation. With this transformation, the general- 
ized water flow equation is expressed with respect 
to a coordin<ite frame that is fixed relative to the 
soil phase. This generalized equation n ~ a y  be 
solved by using the same analytical or numerical 
techniques that are availdble for the classicd 
Richards (1931) equation. To compare the out- 
conies of these solutions to actual measurements, 
typically carried out in a spaced-fixed or spatial 
coordinate frame, all that is needed is a transfor- 
mation back from the referential or material co- 
ordinates associated with the soil solid phase, to 
the spatial coordinates. 

Over the years, various altemative definitions 
ofthis coordinate transformation have evolved and 
have been tested experimentally (e.g., Smiles and 
Rosenthal1968; Raats andau te  1969; Philip and 
Smiles 1969; Smiles 1974; Sposito and Giráldez 
1976; Douglas et al. 1980; Giráldez et al. 1983; 
Baveyeetd. 1989;Baveye 1992).Thisresearchhas 
been based on the assumption that soil deformation 
occurs predominately in the vertical direction and 
that lateral deformations are negligible. This per- 
spective maybe appropriate in awide range offield 
conditions, but there may be cases where lateral de- 
formations cannot be slighted. For example, the 
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cracks that occur in some defonllingsoils (e.g., ver- 
tisols) are manifestations of significant lateral 
shrinking. On the other hand, in laboratory exper- 
iments with small samples ofswelling soils, special 
precautions usually have to be taken to prevent lat- 
eral air gaps or curved saniple surfaces that result 
from lateral shrinking or swelling, respectively. 

To  describe such situations adequately, one 
needs a coordinate transformation that accounts 
for lateral deformations. For most practical pur- 
poses, it seems reasonable to assume that lateral de- 
formations are isotropic, following Rijniersce 
(1983) and Bronswijk (1990). The latter authors 
introduced a geometry factor, rs that allows tl?e cal- 
culation of vertical and horizontal components o€ 
volumetric deformation. Even though none 
seems to havebeen developed to date, a n  extended 
coordinate transfomiation could be derived on the 
basis ofsuch a geometry factor. Elaborating such a 
transfoniiation was the first objective of the re- 
search reported in the present article. 

A second objective ofour research was to an- 
alyze in detail, via computer simulation, the ex- 
tent to which the value of the geometry factor rs 
influences solutions of the generalized water flow 
equation resultiiigfroni adoption ofthe extended 
coordinate transformation. Part of the effect of rs 
is straightforward to predict. Indeed, any lateral 
deformation will tend to decrease changes in soil 
height. However, in general, a sensitivity analysis 
is needed to deterniine the nature and extent of 
the effect of rs on water content profiles, total 
aniount of water in the soil, or value of the hy- 
draulic conductivity at  various stages of infiltra- 
tion or evaporation events. 

THEORY 

Fuiidaniental Water Flow Eqriatiorz 
in Defortiiirg Poroirs Media 

The Richards equation is commonly used to 
describe water flow in partially saturated soils. 
The three-dimensional form of this equation is 
given by: 

Where p,,, (kg ~ m - ~ )  is water densitt, O,,, ( ~ m ~ c m - ~ )  
is the volumetric water content, IC,,, (cm h-l) is the 
hydraulic conductivity tensor, and $ (cm) is the to- 
tal water potential. Eq. (1) describes the movement 
of water in a coordinate frame, termed spatial or 
Eulerian, that is fured with respect to the experi- 
menter. Even though Eq. (1) is, in principle, applic- 
able to any soil, including deforming ones, its use in 

this latter context is particularly complex. This is 
due, in part, to the need to account continuously for 
the effect ofthe deformation on the spatial and tem- 
poral dependency of K,,, and +, as well as of the 
boundary conditions under Eq. (1) is solved (e.g. 
Sposito and Giradez 1976; Vauclin 1988). 

For these reasons, it is preferable to describe 
the transport ofwater in swelling soils in a coor- 
dinate frame (termed referential, material, or La- 
grangian), that is associated with the solid phase. 
Under these conditions, the fundamental water 
flow equation is given by (e.g., Raats  and Klute 
1968 a and b, 1969; Sposito and Girildez 1976; 
Angdo Jar ,989): . ,  

%here pd (kg c ~ i i - ~ )  is the dry bulk density, 
K,,,Jcni li-l) is the hydraulic conductivity tensor 
relative to the solid phase, and the subscript s in 
the operator Vs indicates that the spatial deriva- 
tives are with respect to Lagrangian coordinates. 
Eq. (2) differs from Eq. (1) by the presence of F,, 
the transformation gradient tensor. Its compo- 
nents are given by (Truesdell and Toupin 1960; 
Baveye 1992): 

(3) 

where x, and X, are a spatial coordinate and a ma- 
terial coordinate, respectively. The Jacobian de- 
terminant of the transformation gradient tensor is 
given by (Euler 1762): 1 

(4) 

where p,(kg cm-3) is the soil density in a reference 
state r. The last equality is not a constitutive as- 
sumption, but results directly from. the micro- 
scopic mass balance equation (e.g., Baveye 1992). 

A further difference between Eqs. (1) and (2) 
is the inclusion in the latter of an additional com- 
ponent Cn (cm) in the expression of the total wa- 
ter potential +, representing the overburden po- 
tential. With this added term, the total water 
potential is given by (e.g., Philip 1969; Sposito 
and Girildez 1976): 

(5) 

where h (cm) is the matric potential and z is the 
gravitational potential (positive downward). The 

+ = 12 - 2 + R 

! 
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overburden R is expressed in material coordi- 
nates by: 

where v i s  the slope ofthe deformation curve, Po 
(cm) accounts for any external load, y is the ap- 
parent wet specific density of overlying soil (7 = 

0, i- -), and Zis  theverticalmaterial coordinate. 

In spite of the presence of F, and fl in Eq. (2), 
this equationisstillformallysimilartoEq. (1). Con- 
sequently, the numerous computational methods 
and general deductions that have been developed 
for the Richards equation may be applied when US- 
ing Eq, (2) to describe the transport of water 
through deforming soils. 

For convenience in applications, Eq. (2) is of- 
ten recast in a form that involves as independent 
variables the moisture ratio 6 (volume of wa- 
ter/volume of solid) and the ratio e (volume of 
void / volume of solid). These variables present 
the advantage that they are expressed relative to 
the volume of solid, which remains constant in 
swelling soils. They are related to the specific den- 
sity ofsoil solids (pJ, the dry bulk density (pd), and 
volumetric water content (e,.,) via the following 
relations: 

p d  

P," 

L o  O P,/P~ J 
where p,, as in Eq. (4), is the soil density in a ref- 
erence state r. Smiles and Rosenthal(l968) con- 
sider a hypothetical state with zero porosity of a 
soil, in which case p, = p,. Raats andKlute (1969), 
on the other hand, refer to an initial state of soil 
porosity, p, = pdo is the initial dry bulk density. 

In practical applications, this second approach 
presents the advantage that it does not require the 
evaluation of p,, since the reference state corre- 
sponds to an actual configuration of the system, 
for which measured data are available (e.g., Spos- 
ito et al. 1976; Baveye et al. 1989). Nevertheless, 
when the water flow equation is written in terms 
of 6 and e, Smiles and Rosenthal's (1968) refer- 
ence state has the appealing feature that it leads to 
a very concise formulation for the water flow 
equation because ofsimplifications resulting from 
Eq. (7b). Indeed, taking p, = p, and substituting 
Eq. (9) in the one-dimensional version ofEq. (8). 
one obtains the following equation (Philip 1969): 

where K,, is the principal value of the conduc- 
(7a) tivity tensor. 

Three-Dittiensiotial Case 

(7b) e =  -i. - 1 

Introducing these variables in Eq. (2) and assum- 
ing the water-to be incompressible (with p,., = 1 
g / ~ m - ~ ) ,  one obtains the following form of the 
water flow equation in a Lagrangian coordinate 
frame: 

The deformation gradient tensor FI in Eq. (9) 
is restricted to one-dimensional situations. The 
new form ofthe tensor FI, introduced in the pres- 

P 
P d  

dV dv 

e*-- -- -- -- .7~ 
i a 6  - - _  

l + e  
dr 

Except fora cosmetic change in the notations, Eq. 7 
(8) is equivalent to Eq. (2). +dX+ 

Reference state Spalial configuration 
One-Dimensional Case 

tensor F, presented in the soil physics literature 
movement Ofthe 

Soil solid panicles (Raats 2nd Klute 1969; Smiles 
and Rosenthal 1968; Baveye 1992). They are 
given by the general form: 

Expressions for the transformation gradient X 

to Fig. 1. Schematic illustration of the three-dimensional 
deformation of a soil volume, when the reference state 
is taken as the initial configuration of the soil, at the on- 
set of shrinkage, 
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ent paper to deal with anisotropic deformation, is 
predicated by the assumption that soil deforma- 
tion is isotropic in directions perpendicular to the 
z axis (“hypothesis 1”). In a sense, one might ar- 
gue that this situation corresponds to axially sym- 
metric two-dimensional deformation, but we F, = 
shall continue to refer to the deformation as three- 
dimensional deformation. 

Let us consider an elementary soil volume 
dV(dV = dXdYdZ) that undergoes a deforma- 
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1 + e +(I-¡/,,) 

-[ïJ O O 

O [i+,] O (14) 

O O [ 

1 + e +(I-¡/r,) 

Tlir.ce-Diriieiisioiia1 D~$oriiiafiuii arid Om- 
Diiiiciisiorial Water Fluiu where e, and c are the void ratios of the elemen- 

tary soil volumes dVand du, respectively. 

may be related to changes in either one of the 
soil vo~unle dv 

along x, y, by Bronsw.ik’s (1 990) diliien- 
sionless geonletry hctor, rs, defined in the z di- 
rection by: 

In many situations of practical interest (e.g., 
~1~~ volume described by (1 1) evaporation, infiltration in field soils as longas no 

cracks are present), water flow in deforming soils 
is predominantly one-dimensional in the direc- 
tion ofthe gravitational force. This will also be the 
case in the experiments described in the next sec- 
tion. Therefore, we introduce a further hypothe- 

points within a given horizontal plane, at an ele- 
vation z, have identical soil water potentials (hy- 
pothesis 2). 

With this hypothesis, the introduction of FS 
(Eq. (14)) in Eq. (8) provides a new form of the 
general equation ofwater flow. Using Eq. (5) for 
@ and Eq. (6) for Ci and assuming no external load 
(Po = O), the water flow equation becomes: 

principal dillleIlsiolls 

r - . I -  sis in the theory developed earlier, namely that 

When the deformation occurs only in the vertical 
(2) direction, r, = 1. In the case of isotropic de- 
formation, r, = 3. If vertical defomiation is pre- 
dominant then 1 < r, < 3; otherwise r, > 3. 

Eq. ( l l) ,Eq. (12), and hypothesis 1 lead to the 
following constitutive relations for the changes in 
the spatial coordinates x, y, z. 

I 1 4 e 111, 

= ”“II.] I 
where X, Y, Z represent the material coordinates. 
These relations are derived here for the first time. 
It provides a new coordinate transformation that 
allows one to take three-dimensional deformation. 

The relations ofEq. (13) imply that each co- 
ordinate x ,  y, and z, depends only on x, Y, and 
Z, respectively. Therefore, the non-diagonal 
terms of F, are identically equal to zero, and the 
transformation gradient tensor F, becomes: 

I- -l 

act a act 
- at = 1(1 + e ) E I T I E  - T2j (15) 

where: 

When the reference state is taken as the con- 
figuration ofthe soil before shrinkage occurs, Eq. 
(15) corresponds to the water flow equation de- 
rived by Kim et al. (1992). The numerical solu- 
tion ofEq. (15) may be carried out byusinga clas- 
sical finite-difference discretization scheme. We 
adopted an implicit discretization scheme with an 
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explicit linearization of coefficients. Because of 
the depth-dependent lateral deformation of the 
soil, however, the discretization has to account 
explicitly for the cross-sectional area of each spa- 
tial element so as to preserve mass balance (see Ap- 
pendix for the discretization). 

MATERIALS AND METHODS 

Model Calibration with 1-D Data 
Experimental Setup 

The data ofAngulo Jaramillo (1989) were ob- 
tained for a series oflaboratory vertical infiltration 
experiments on a compacted mixture ofloam and 
bentonite (20% by mass). The sample was placed 
in a cylinder 6 cm in diameter and 6 cm in height. 
A mobile piston connected to a porous plate was 
placed on top of the sample. This setup allowed 
the sample to swell freely. A hydraulic head was 
applied at the upper surface of the sample, and a 
microtensiometer cup measured the pressure 
head at 1.5 cm from the bottom of the sample. 
The spatial and temporal evolution ofvolumetric 
moisture content and bulk density within the soil 
sample were measured at 0.5-cm intervals with 
two radioactive sources (241 Am and I3'Cs) emit- 
ting colinear gamma rays. A comparator was used 
to measure changes in sample light. 

Given the design ofAngulo Jaramillo's (1989) 
experiment's, soil deformation was allowed to 
take place only in the vertical direction, and con- 
sequently the geometry factor rs was set equal to 
unity. 

Experiinerital Hydraulic Clinrocteristics of the Soil 

The measured profiles of volumetric water 

parent wet specific density (y) of the overlying 
soil and the swelling curve slope (V). Angulo 
Jaramillo (1989) deduced the matric potential (h) 
from tensiometric lecture and calculated over- 
burden potential at 1.5 cmfrom the bottom ofthe 
sample. The volumetric water content (0,") and 
the bulk density (pd) measured at the same level as 
the tensiometric measurement provided the rela- 
tion between moisture ratio (6) (with Eq. (74) 
and matric potential (h). 

Argullo Jaramillo (1989) showed that Euler- 
ian and Langrangian approaches provided very 
similar hydraulic conductivity curves. In the La- 
grangian approach, the hydraulic conductivity 
was calculated from the material diffusivity (O,,, = 
DJ(1 i- e) ) by Philip (1969) and Angulo 
Jaramillo (1989): 

Y",$ = D,,,(aew/a~1)e;v - (e,,,4)(4/deJl (17) 

This relation gives from the swelling curve 
expressed in terms of 0, and 8 ,  the retention 
curve, and the material diffusity, which can 
be calculated with the Boltzman variable (en,) by 
(Yong and Warkentin 1975): 

Bolrndary Corzditiorls 

The following boundary conditions were 
used f%r the calibration of the numerical model 
with Angulo Jaramillo's (1989) data. The gaseous 
phase was assumed to be at atmospheric pressure 
throughout the column. The top boundary con- 
dition, of the Cauchy type, was given by the fol- 
lowing expression: 

t and bulk density, and the pressure he 
rent times, allowed the calculation o? 

soil hydraulic characteristics, i.e., the moisture re- 
; tention curve, the hydraulic conductivity, and the 

swelling curve (Angulo Jaramillo 1989; Kim et al. 
1995). 

The gammaraysystemprovidedarelationbe- 
tween volumetric moisture content (0,") and dry 
bulk density (pd). Because we used the variables 
moisture ratio (6) andvoidratio (e), asinEq. (15), 
we operated the transformations of Eq. (74 and 
(7b). We considered the swelling curve ofthe sur- 
face layer because it reached the highest values of 
water content. 

where qSud (cm h-l) is the water flux through the 
soil surface, K, (cm h-l) is the saturated hydraulic 
conductivity of the porous plate, d (cm) is the 
thickness of the porous plate (KJd = 1.4 lo-$ 
h-I), ho (cm) is the constant hydraulic head rela- 
tive to the initial soil surface (ho = 11.846 cm), 6z 
(cm) is the displacement of the soil surface and ksp 
(cm) is the hydraulic head between the soil and the 
porous plate. At the lower end of the soil sample, 
a Neuman condition with zero flux was imposed. 

Models f o r  H y d r a d i c  Characteristics 

The water flow model, whose general equa- 
tion is given by Eq. (15), requires knowledge of 

In swelling soil, tensiometric measurement is 
the sum of matric potential (h) and overburden 
potential (a) (Talsma 1974). The overburdenpo- 
tential was calculated with Eq. (6) &om the ap- 
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the soil hydraulic characteristics. To this end, the 
experimental data obtained during the infiltration 
experiment were fitted with various niathemati- 
cal expressions. 

For the swelling curve, we selected the model 
ofBraudeau (1988 a and b) because this model ap- 
pears to be the most versatile of all available mod- 
els. Braudeau’s model takes into account the three 
types of deformation generally identified in 
swelling soils. In the direction of increasing water 
ratio, these are, successively, the residual, principal, 
and structural deformation regimes (Fig. 2) 
Braudeau’s (1988) model is based on the assump- 
tion that the soil consists ofclayey microaggregates 
separated from eách other aiid from the other’ 
soil constituents by a network of macropores. 
Braudeau (1988) and Braudeau and Tounia (1995) 
identify four points on the swelling curve: shrink- 
age limit (SL), “air entry” in  the microaggregates 
(AE), the limit ofcontiibution ofmacroporosity to 
shrinkage (LM), and the maximuni swelling of the 
microaggregates (MS). These authors propose a 
niathematical expression (Table 1) that involves 
the coordinates ofthese four points along with the 
slope (KJ of the linear part of the principal defor- 
mation and the slope (KJ of the linear part of the 
structural deformation. We  fitted this experimen- 
tal swelling curve with Braudeau’s (1988) model 
(Fig. 34. The fitted values ofparameters are given 
in Table 2. 

For the water characteristic curve, we selected 
Van Genuchten’s (1980) equation withBurdine’s 
(1953) condition, and for the hydraulic conduc- 
tivity, we chose Brooks and Corey’s (1964) para- 
metric equation, because of the documented ap- 
plicability of these expressions to a wide range of 
soils (Fuentes et al. 1992). In ternis of the mois- 
ture ratio 6, Van Genuchten’s (1980) equation is 
given by: 

Moisture Ratio 9 (cm’ cm-’) 

Fig. 2. Experimental shrinkage curve and its transition 
points (adapted from Braudeau (1 988a)). 

r 1 

Sc(h) = ~ - - 1 + (ah)” -I” (20) 
4, - 9, L 1 

where Se is the efiëctive saturation, 6, ( c ~ i i ~ c m - ~ )  
and as ( ~ m ~ c i i i - ~ )  are the residual and saturated 
moisture ratios, respectively, aiid cì (cm-I), n, and 
mare empirical parameters. TheBurdine’s (1953) 
condition states that (ni = 1 - 2/17). Brooks and 
Corey’s (1964) equation for the hydraulic con- 
ductivity is expressed as: 

where K, (cni h-’) is the saturated hydraulic con- 
ductivity aiid Bis a n  empirical parameter. We fir- 
ted the experimental retention curve (Fig. 3b) and 
hydraulic conductivity curve (Fig. 3c) with Van 
Genuchten’s (1980) model and Brooks and 
Corey’s (1964) model, respectively. The fitted 
values ofparameters are provided in Table 2. 

Serzsitivify Aizalysis $3-D Model 
We used the previously parametrized hy- 

draulic characteristics to evaluate the sensitivity of 
our water flow model to the geometry factor rs. 
We  simulated infiltration and drainage experi- 
ments with the sanie deformation curve but with 
different assumptions regarding the anisotropy of 
the soil. These assumptions resulted in the siniu- 
lation ofvertical deformation only (rs = l ) ,  verti- 
cal deformation that was twice of that occurring 
in each horizontaldirection (rs = 2), isotropic de- 
formation (rs = 3), vertical deformation that was 
halfof that in each horizontal direction (rs = 5), 
and a situation involving horizontal deformation 
(rs = 100) almost exclusively. 

For the simulated infiltration experiment, the 
initial and boundary conditions and the initial di- 
mension of the sample were the same as those in 
Angulo Jaramillo’s experiment. However, rs > 1, 
so that the sample was allowed to deformlaterally. 
For the simulated drainage experiment, a Neu- 
man condition with zero flux was imposed at the 
top, and a Dirichlet condition with -350 cm of 
water pressure head at the bottom. The sample 
had the same initial dimension as found previ- 
ously and a uniform initial water content profile 
near saturation. 

RESULTS AND DISCUSSIONS 

Model Calibration with 1-D Data 
Experimental and simulated results were 

compared in order to determine whether the nu- 
merical model could be calibrated reasonably eas- 
ily using Angulo Jaramillo’s (1989) data. A com- 
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TABLE 1 
Parametric equations associated with the different deformation regimes in Braudeau's (1988) model. 

Deformation 
regimes 

Equations of the Braudeau model 

Region SL e = esL 

Region SL-AE (exp V, - 1 - V,) 
exp(1) - 1 

4 - 4 S L  

4, - %L 
with V, = - 

Region AE-LM 

4 - %ìS with V,,, = 
'LM - 'MS 

Beyond MS e = KO(* - aMJ + eMS 

parison between experimental and simulatedpro- 
files of volumetric water content and dry bulk 
density is presented after 133.3 and 533.3 ofinfil- 
tration (Fig. 4). Experimental data are reported 
with their maximum theoretical error (0.06 
~ m ~ c m - ~ )  ($analysis in Angulo Jaramillo 1989). 

The first simulated profile, after 133.3 falls 
within the experimental error intervals for both the 
volumetric water content and the dry bulk density. 
At this stage the surface rise is also simulated rea- 
sonably well. The second simulated profiles, after 
533.3, underestimated the volumetric water con- 
tent in the lower halfofthe soil sample and overes- 
timated the dry bulk density. However, the exper- 
imental and simulated curves have similar 
.sigmoidal shapes. The simulated surface-rise (1.75 
cm) was a bit higher than the experimentally ob- 
served one (1.35 cm). There are several reasons for 
this discrepancy between measured and computed 
results. One is that the large experimental error as- 
sociated with the experimental data may include 
errors in the determination of the hydraulic prop- 
erties. This error accumulation may have reper- 
cussions on the simulated results. Moreover, the 
approximations caused by the use of models (Van 
Genuchten 1980; Brooks and Corey 1964; 
Braudeau 1988) explainsome ofthe differences be- 
tween simulated and measured results. Another 
reason for the differences is that the actual hydraulic 
characteristics may be heterogeneous as a result of 
the overburden pressure that may not be identical 
in each layer within the soil sample. 

, 

Scatterplots were constructed from the com- 
puted and observed profile data for the volumet- 
ric water content and the dry bulk density (Fig. 5). 
These diagrams reflect the general tendency ofthe 
numerical model to overestimate the volumetric 
water content and to underestimate the dry bulk 
density, as already evidenced in Fig. 4. Neverthe- 
less, the coefficients of determination were equal 
to 0.9 for the volumetric water content and 0.77 
for the dry bulk density. Thus, inspite ofslight de- 

TABLE 2 
Values of selected model parameters estimated on the 

basis of the experimental data of Angulo Jaramillo (1989). 

Mathematical expressions parameter values 
SvMihg c 

(model of Braudeau 1988) 
asL; esL(cm3/cm3) 0.45; 0.71 
6,; efi(cm3/cm3) 0.98; 0.91 
4,; e,(cm-l/cm3) 4.58; 4.06 

Kr 0.88 
Moisture retention characteristic 
(model of Van Genuchten 1980) 

4,(cm.'/cm3) 4.07 
ar(cm-'/cm3) 0.706 

n 3.036 
a(cm-l) -0.0563 

Hydraulic conductivity 
(model ofBrook and Corey 1964) 

*,(cm3/cm3) 4.07 . 
6r(cm3/cm3) O 

Ks(cm/h) 0.00035 
B 2.772 
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A 

Measured 

- Fitted 

O 1 2 3 4 5 

Moisture Ratio 3 (cm3/cm3) 

300 

O 1 2 3 4 5 

Moishrre Ratio 3 (cm3/cm3) 

(SE-M 
C 

O 0.5 1 1.5 2 2.5 3 

Moisture Ratio 9 (m'/cm') 

Fig. 3. Comparison of measured and fitted curvesforthe 
shrinkage curve (A), the retention curve (B) and the hy- 
draulic conductivity curve (CIb 

viations, the numerical results appear to be in rea- 
sonably good agreement with the measured data. 

Sensitivity Analysis $3-D Model 
We tested the sensitivity ofthe solutions ofthe 

water flow equation (Eq. 15) to variation in rs fac- 
tor by simulating infiltration (Eq. (6a) and (6b)) 
and drainage (Eq. (6c) and (6d)) experiments. 

Figure 6a shows that, at the end of the infil- 
tration (533.3 for each profile), an increase in rs 
!eads not only to a decrease in the final sample 

height but also to a shift in the volumetric water 
content profile in the direction of higher water 
contents. Figure 6b shows that the infiltrated wa- 
ter volume increases with rs, in all likelihood be- 
cause of a larger top cross-sectional area through 
which water infiltrates. 

The volumetric water content profiles at the 
end of the drainage (533.3 h for each profile) for 
different values ofrs are presented in Fig. 6c. The 
increase in rs causes a smaller decrease in sample 
height at the final time of observation, and a shift 
in profiles in the direction of higher water con- 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

vo~umetric Water content BW (cm3/cm3) 

1-I +- 
*U 

0 1  
0.4 0.6 0.8 1 1.2 1.4 1.6 

Dry Bulk Density pd (g/cm3) 

- s i i t e d  results 
experimental results : 

m e o h r  
A e133.3 hr 

e533.3 hr 
H x"merror 

Fig. 4. Comparison of experimental and simulated pro- 
files of the volumetric water content (A) and the dry 
bulkdensity (8) forthe infiltration experiment ofAngulo 
Jaramillo (1 989). 
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,'+ ,+ * 
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Observed 8, 
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Fig. 5. Scatterplots of experimental and simulated data 
of the volumetric water content (A) and dry bulk den- 
sity(B) forthe infiltration experiment of Angulo Jaramillo 
(1 989) 

tents, as in the infiltration case. This shift in pro- 
files to higher water stems from a decrease of the 
cumulative outflow water volume (Fig. 6d) as a 

. ; lcesult pf the smaller lower slirf¿~ce ogthe soil sani- 
ple. 

Interestingly, in all cases in Fig. 6, the largest 
difference between curves associated with differ- 
ent rs values occur when rs goes from 1 to 2, i.e. 
for relatively small departures from strictly verti- 
cal deformation. 

The results presented above show that simu- 
lations carried out with different values of rs can 
lead to significant differences in terms of water 
distribution, height, and totalwater content ofthe 
sample. The results obtained from 1-D simulation 
(rs = 1) and from 3-D simulation (rs > 1) are qual- 
itatively different. We conclude that taking into 
account the anisotropy of the deformation in the 
water flow model is a necessity in this type of 
swelling soils when the deformation is not strictly 

vertical. Moreover, an inaccurate estimation of rs 
(in the range 2 < rs < 5) may lead to a poor sim- 
ulation of water flow and deformation. There- 
fore, it is important not only to measure the 
geometry factor with accuracy but to do so under 
conditions as close as possible to those of the sim- 
ulated experiment. 

Water flow models may be used not only as 
predictive tools but also to evaluate the hydraulic 
conductivity ofsoils. Most ofthe methods used in 
this case require one to solve the water flow equa- 
tion numerically. In inverse methods, compari- 
son between measured and simulated values of 
several selected variables allows the determina- 
tion ofthe optimal parameter values. From the re- 
sults obtained above, it appears that introducing 
an erroneous value of the geometry factor rs into 
the model may lead to very different simulations 
ofwater distribution, surface height, and total wa- 
ter volume of the sample and, therefore, to unre- 
liable estimates ofthe hydraulic properties. Asim- 
ilar conclusion pertains to the more direct 
methods, in which nunierical resolution of the 
water flow equation, subject to specified bound- 
ary conditions, leads to an evaluation of the hy- 
draulic parameters. 

CONCLUSION 

The key contributions of the present article 
are to be found in Eq. (13) and in the results ofthe 
sensitivity analysis illustrated by Fig. 6. Equation 
(13) provides a new coordinate transformation 
that allows one to take three-dimensional defor- 
mation into account in the description of water 
flow through swelling/shrinking soils. The soil 
deformation is assumed to be horizontally 
isotropic, but anisotropic otherwise. The coordi- 
natetransformatiori inGolvesa geometric factor rs, 
which takes values in the range 1 < rs < w. 

To estimate the impact of the geometric fac- 
tor on the flow ofwater in deforming soils, a nu- 
merical finite-difference code based on a gener- 
alized water flow equation was first calibrated 
with a set of one-dimensional infiltration data 
obtained by Angulo Jaramillo (1989). The cali- 
brated parameter values were then used in a sen- 
sitivity analysis of the three-dimensional model. 
As expected, this analysis shows that the height of 
the soil surface is controlled by the value of the 
geometry factor rs (cf. Fig. 6). At the same time, 
rs also has a significant effect on the distribution 
ofwater and on the total volume ofwater in the 
soil samples. Hence, it is important to take the 
geometric factor rs explicitly into account when 

c 
f .- 
i 

Fig. 
filtr 
dra 

. .pre 
ing 
soil 

1 Ans 

I- 
Bav, 

C 

t ,  
i S' 1 Bavt 
i o 
I S 



E 

r, 
1- 

*- 

~e 
er 
1- 

.IS 

IC  

I17 

I -  

l- 

)f 
I- 
s- 

,Y 3 

C l  

IS 

I -  

1- 

1- 

't 
e 
- 
- 

e 
e 
l l  

'1 

I. 

1 
I 

I 
I 

c 

VOL. 162 - NO. 6 DEFORMATION AND WATER FLOW IN SWELLING SOILS 419 

03 05 07 0.9 O 200 400 600 800 

Volumetric Water Content (cm3/cm3) Time (hr) 

Fig. 6. Analysis of the sensitivity toward the geometryfactor (r,) of the predicted water content profile (A) and in- 
filtrated water volume (B) in simulated infiltration experiments, and of the predicted water content profile (C) and 
drained water volume (D) in simulated outflow experiments. 

predicting water flow in anisotropically deform- 
ing soils or estimating the hydraulic properties of 
soils. 
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APPENDIX 
DISCRETIZATION OF THE 1-DIMENSIONAL WATER FLOW EQUATION 

DURING 3-DIMENSIONAL DEFORMATION OF SOIL 

e Eq. 15 i?: 
I ,  

where i refers to  the depth increment and k refers to  the time increment. 
The cross-sectional area of the spatial element i, St, is calculated by: 

where (Y):)gis the solid particul volume of the element i. 

1 c 
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