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Processes governing patterns of richness of riverine fish species at 
the global level can be modelled using artificial neural network 
(ANN) procedures. These ANNs are the most recent development 
in computer-aided idenacation and are very different from 
conventional techniques1J. Here we use the potential of ANNs 
to deal with some of the persistent fuzzy and nonlinear problems 
that confound classical statistical methods for species diversity 
prediction. We show that riverine fish diversity patterns on a 
global scale can be successfully predicted by geographical patterns 
in local river conditions. Nonlinear relationships, fitted by ANN 
methods, adequately describe the data, with up to 93 per cent of 
the total variation in species richness being explained by our 
results. These findings highlight the dominant effect of energy 
wailability and habitat heterogeneity on patterns of global fish 
diversity. Our results reinforce the species-energy theoryl and 
contrast with those from a recent study on North American 
mammal species4, but, more interestingly, they demonstrate the 
xpplicability of ANN methods in ecology. 
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A central issue in niacroecology is to determine the forces that 
shape large-scale patterns of species Three niain hypoth- 
eses have been proposed to explain the spatial variability ìn species 
diversity. The first, the species-area hypothesis7, implies that species 
richness increases as a power function of surface area; the second, 
the species-energy hypothesis3s8, predicts that species variation is 
correlated with energy availability in the system; the third, the 
historical hypothesis', explains species richness gradients in terms of 
patterns of recolonization and maturation of ecosystems after 
glaciation. However, so far none of the three theories has been 
supported to the exclusion of the other, and many causative factors 
have been cited even though total available energy has gained 
currency as a major influencing parameter of species diversity. 
Here we model processes governing patterns of riverine fish species 
richness. We use A"s ,  known for their capacity to process non- 
linear relationships between variables's'. The data we present are best 
explained by the hypothesis that both distribution of available 
energy and habitat heterogeneity limit fish species richness in 
rivers on a worldwide scale. 

Global-scale patterns of fish species richness in rivers have 
previously been investigated using linear statistical models". Results 
suggest that factors related to components of river size (surface area 
and flow regime) and energy availability (net primary productivity) 
are most important in predicting fish diversity, whereas the role of 
other possible factors (such as contemporary climate andlor his- 
tory) are of only marginal importance. The effect of contemporary 
available energy has been demonstrated on different groups of 

although some other factors (historical influence, 
for example) may predict patterns of richne~s~*'~.  We have reinves- 
tigated previous work" employing ANN methods, which do not 
require a linear relationship between variables and so may be better 
suited to model nonlinear phenomena (Fig. 1). A " s  are different 
from multiple limear regressions in that the relationships between 
independent parameters and fish species richness (SR) are estimated 
by an iterative trial-and-error procedure. Each influencing parameter 

Figure 1 Three-layer feed-foward artificial neural network (ANN) structure used 
n this work. There are three input neuroks (i) for surface of the drainage area 
SDA), mean annual flow regime (FR), and net primary productivity (NPP), and 
mly one output neuron (o) which corresponds to fish species richness (SR) in 
.¡vers. Thé hidden layer (hp has five neurons, determined as the optimal 
:onfiguration that gives lower error during training with minimal computing 
me. There are two additional bias nodes labelled with a constant input value of 
.O. Initially, the' ne$Ó% was fTaihed with" a sët öf-"183- iivërs' "ltqeir 
orresponding ?arameters for 1,000 iterations. We then examined the capablity 
If the trained network to predict SR with a 'leave-one-out' procedure (see Fil. 4 

J 

Figure 2 Prediction of fish species richness (SR] using the 3-5-1 artificial neural 
network [ANN) model shown in Fig. 1. Scatterplots compare predicted and 
observed SR values. This relationship is highly significant (n = 183, f = 0.958, 
P < 0.0001). The diagonal line illustrates points at which the predicted value 
equals the observed value. Top inset, relationship between the residual values 
obtained from the ANN model and the predicted values. The horizontal line 
represents points for which residuals equal zero. The relationship shows no 
obvious sign of dependence of residuals (n = 183, r = 0.018, P = 0.805), which 
indicates that the ANN model fits the data well. Lower inset, frequency histogram 
of residuals with most values centred near zero (n = 183, mean = - 2.00, s.d., 

nd statistical analysis). - -- -- Fonds Documentaire nRqTnM / f28.82). 
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is assigned with different weights and the combined weighted values 
are added to predict SR. We tested two aspects ofA" performance. 
First, we evaluated the ability of the independent parameters (sur- 
face of the drainage area (SDA), flow regime (FR), and net primary 
productivity (NPP)) to predict SR of new samples, and thus for 
modelling fish species diversity processes on the global scale. 
Second, we analysed the contribution profile of each predictor as 
a measure of sensitivity to match data. For this, we used a three-layer 
feed-forward (3-5- 1) neural network that is, three input neurons 
corresponding to the three independent parameters, five hidden 
neurons determined as the optimal configuration (best compromise 
between bias and variance) and one output neuron for SR, which 
was trained using the backpropagation algorithm' (Fig. 1). In the 
past decade, ANN models have been widely applied in different 
research fields's2 (physics, chemistry, behavioural sciences) but very 
few studies have focused on the use of ANNs in theoretical ecology 
and evolution2, We now explore this possibility in the context of 
conservation ecology. 

The 3-5-1 ANN model (Fig. 1) accurately predicted the pattern of 
observed SR on a global scale (Fig. 2) .  The contribution profiles of 
the three predictors for explaining SR estimates are illustrated in 
Fig. 3. The predictive performance of the ANN model gave sig- 
nificant results with 92.9 per cent of rivers achieving a perfect data fit 
(Fig. 4), thereby increasing the significance of predictions. 

Examination of Fig. 3 shows that for FR and NPP parameters, 
there is a strong positive effect on richness patterns, with a sigmoidal 
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contribution between the ability of these two variables to matcl 
data and SR values. In contrast, the contribution of the SDAvariabb 
(that is, river size) contributes little to variation in global fis1 
diversity, with a contribution profile better fitting a gaussia1 
function where the maximum of sensitivity is achieved fo 
median fish richness values and average river sizes (Fig. 3). Thi 
conflicts with previous studies showing the importance of drainagc 
surface area on fish species The small contribution o 
surface area as a predictor variable indicates the extent to whid 
previous investigations were strongly influenced by log-lineal 
transformations. SDA and FR could be causally linked and thesc 
processes are probably acting together, confounding their effects 
However, discharge may be a more direct measure of availablt 
habitat diversity because it may implicitly integrate a third dimen. 
sion in river size, the volume of available water for fisk 
c~mmunities'~"~. 

Interestingly, FR and NPP predictors strongly influence pattern: 
of global-scale SR (Fig. 3). As rivers with high flow regimes ma) 
generally contain a greater array of habitat configurationsI8, a part o1 
island biogeographic theory', local habitat heterogeneity ma) 
induce this increase in global SR. Additionally, the influence o1 
net primary productivity, a measure of epergy availability, demon- 
strates the importance of energy input on riverine fish richnes 
patterns on a worldwide scale. This fish species richness-primary 
productivity function resembles the logistic model obtained for the 
three species richness-evapotranspiration relati~nship'~. Climatic 

Figure 3 Contribution of the three independent variables (SDA, FR and NPP) used 
in the 3-5-1 ANN model. Sensitivity profiles explain SR (see Fig. 1 for 
abbreviations). Contribution of each independent variable to SR estimates is 
assessed by visual examination of nonlinear profiles: NPP and FR variables have 
a sigmoid function, with the NPP curve showing a higher range of variation than 
the FR function; SDA variable better fits a gaussian function. Both NPP (which 
explained 43% of the total variance) and FR (310/0) show a predominant positive 
effect on SR, whereas SDA (26%) has a weaker effect on SR value. The relative 
importance of influencing parameters on SR was calculated according to refs 29 
and 30. Inset, residual values generated by the ANN model plotted against the 8 
categories of climatic zones ( I  to VIII). Bars represent 95% confidence intervals 
(CI), and N values (for each categorical climatic zone) indicate the number of 
rivers analysed. Compared to the zero residual value for which the ANN model 
perfectly fits the data, we obtained a significant t-test vaice for climatic zones IV 
(oceanic areas, overestimated mean value: t-test = - 6.29, P < 0.001) and VI 
(continental areas, underestimated mean value: t-test = 2.1 1, P < 0.041) only. 
Thus, the additional contribution of climatic topography to global richness 
patterns appears to be negligible (r = 0.97, P < 0.0001) in comparison with the 
total effect of NPP, FR and SDA variables (r = 0.93, P <: 0.0001). 

Figure 4 'Leave-one-out' cross-validation test for the 183 rivers analysed in this 
study. The relationship between predicted and observed SR values is shown; the 
correlation is highly significant (n = 183, f = 0.929, P < 0.0001) and most points 
perfectly fit the straight line for which predicted values equal observed ones 
(many points are superimposed on the figure). Top inset, the relationship shows 
some dependencies of residuals (n = 183,r = 0.259,P i 0.001) essentiallydue to 
some unfitted values in the model. Lower inset, frequency histogram of residuals 
with most values centred near zero (n = 183, mean = 1.40, s.d., t40.82). Both 
insets illustrate conventional standard controls on statistics as for insets in Fig. 2. 
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topography (that is, the presence of a given river in one of the eight 
conventional climatic zones; see description of data) did not 
significantly contribute to the explanation of patterns of global- 
scale fish species richness (Fig. 3, inset), confirming that global fish 
species variability is not related to topography and latitudinal 
gradients, as was suggested by the historical hypothesis'. Our 
findings contradict a recent study in which North American 
mammal species richness was best predicted by a hierarchical 
sequence of limiting factors: that is, local energy availability was 
important in comparatively cold regions of high latitudes (Alaska 
and most of Canada), and topographic heterogeneity best explained 
species diversity for highly productive regions of the southern part 
of the continent (Southern Canada and United  state^)^. The main 
discrepancy lj'etween this previous work and our study on fish 
diversity lies in the different scales of the two analyses and in their 
geographical scope. Thus, we believe that large-scale fish-richness 
patterns are best explained by both energy availability and habitat 
diversity: the more energy available, the more fish, species the 
aquatic environment can support; additionally, for regions with 
identical energy inputs, habitat heterogeneity may favour coexis- 
tence of more fish species. 

The advantage of A " s  over conventional models stems from 
their ability directly to take into account nonlinear relationships, a 
common stumbling block when dealing with ecological  system^'^-^^, 
and so provide a more precise idea of the relationship between any 
influencing parameter and its dependent factor. Therefore, they are 
powerful models for forecasting purposes. A previous study using 
logarithmic transformation of variables succeeded in explaining up 
to 78% of the total variation in richness", whereas the ANN method 
achieved a much higher level (-93%) with only three environ- 
mental parameters. Here, we show that large-scale species richness 
in riverine fish varies among regions as a nonlinear function of 
contemporary available energy in the system and local habitat 
heterogeneity in rivers. Characteristics of the ANN model param- 
eters are practical for predicting and assessing global trends in 
biodiversity loss and habitat fragmentation. Important pervasive 
forms of environmental degradation due to human activities 
usually include source pollution, altered hydrological regimes (by 
dams, diversions and withdrawals) and habitat destruction22a23. 
Consequences of such degradation are that many aquatic species 
are now threatened with extinctionz4. To protect and maintain 
aquatic (and terrestrial) biodiversity, an understanding of the 
relationships between species and ecological processes that shape 
the entire ecosystem is The development of artificial 
neural network models is a task of major importance in view of 
projections of global environmental change and the need for water- 
resource management. U 

Methods 
Description of data. Data employed in this study"' are based on a subsample of 
183 plots (from a total of 292 rivers) for which all parameter values were 
available. We omitted the Amazon River basin, for which the richness value of 
-2000 known fish species is subject to considerable erro< and which, because 
of its extremely highvalue, may considerablybias the tfpe of statistics used. We 
selected the most recent rejerences and adjusted species number to account for 
extinction and introduction wherever possible. Only riverine fish species were 
included in the analyses and secondary or migratory euryhaline fishes were 
systematically withdrawn. Values for spLcies richness (SR) refer to the total 
number of riverine fish species collected from the entire drainage basin, which 
corresponds to the current community richness per river. Three independent 
parameters were used as the best predictors of SR. There were: total surface of 
the drainage area (SDA) (generally taken from the literature, in km'); mean 
annual flow regime (FR) at the river mouth (also taken from the literature, in 
m3 s-', data were not available for all rivers, so we used only 183 rivers from the 
entire data set of 292); and net terrestrial primary productivity (NPP), which 
refers to the rate of energy flow through the plants of the region where a given 
river is located. We then tested the influence of contemporary climate 
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topography on SR values by analysing residual variations of richness obtainec 
from the ANN model across the 8 conventional climatic zones (I to VIII). Thi 
rivers fall into the following zones: I, equatorial zone with very high annua 
precipitation; II, tropical summer-rainfall zone, with heavy rains in thc 
summer and extreme drought during the cooler season; III, subtropical dry 
zone of deserts, with very low rainfall; IV, Mediterranean transition zone Witt 
winter rainfall; V, warm-temperate climate zone with high humidity ir 
summer; VI, temperate climate zone, with moderate humidity; VII, aric 
temperate climate zone of continental regions, with low rainfall; VIII, cold- 
temperate or boreal climate zone, with high precipitation. 
Statistical analysis. ANN models are known for their capacity to procesr 
nonlinear relationships. We used one of the principles of ANNs, (thc 
backpropagation algorithm"), and a 'leave-one-out' cross-validation tes 
(where each river sample is left out of the model formulation in turn anc 
predicted once) to determine its performance (Fig. 4). This procedure i: 
appropriate when the data set is quite small and/or when each sample i: 
likely to have 'unique information' that is relevant to the regression m0de1~'~~~. 
as is frequently found in ecology. We used a typical three-layer feed-forward (3- 
5-1) ANN (Fig. 1). To determine the relative importance of the three inpul 
parameters, we used the procedure for pjìrtitioning the connection weights o1 
the ANN m ~ d e P ' * ~ ~ , ~ ~ .  
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