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ABSTRACT 
Scaling properties of both field-mapped and threshold-delineated channel networks were 

studied by applying the box-counting method to three drainage basins in the western United 
States. This method involves (1) examination of power-law relations between the box size, E, and 
the number of boxes, N, that intersect channel segments across a range of box sizes appropriate 
for the method and then (2) examining the standardized residuals for the least squares linear re- 
gressions of log N vs. log E used to calculate a fractal dimension (O). For each channel network, the 
slope of the log N vs. log E relation varies from 1 at small length scales to 2 at large length scales, a 
range that defines the limits to the applicability of the box-counting method. At length scales below 
which this slope equalS 1, the plots simply record the linear aspect of streams; the length scale 
defining an upper limit to the application of the box-counting method corresponds to a box size 
large enough to intersect a channel in each box. Although a fractal$imension may be meaning- 
fully defined only between these upper and lower length scales, neither the field-mapped nor the 
artificially delineated networks that we examined exhibit discrete fractal dimensions within this 
range. Instead, the slope of the log-log plot systematically varied with box size. The consistent lack 
of log-linear plots for the networks that we examined violates a fundamental requirement for 
fractal geomietry and contrasts with general assertions about the fractal nature of river networks. 
A strong corkelation between mean source-area size and the length scale above which the slope of 
plots impliesD = 2 indicates that, although channel networksa 
are space 6lling at length scales greater than twice the me& so 

INTRODUCTION 
Fractal geometry provides an appealing way to 

describe the branching pattern of channel net- 
works (Mandelbrot, 1983), and network scaling 
properties have been used to argue both for a scale 
independence to landscape dissection and that 
drainage networks are space filling with a fractal 
dimension ( D )  of 2 (Tarboton et al., 1988; La 
Barbera and Rosso, 1989; Beer and Borgas, 1993; 
Nikora and Sapozhnikov, 1993). Yet field obser- 
vations demonstrate that channels dissect soil- 
mantled landscapes over a finite range of scales 
limited by a threshold of channel initiation, indi- 
cating a scale dependence to land form (Horton, 
1945; Montgomery and Dietrich, 1992; Dietrich 
and Dunne, 1993). At first glance, this apparent 
contradiction can be reconciled by arguing that 
the scale of channel initiation provides a lower 
bound to the range of scales over which channel 
networks exhibit fractal geometry. But for chan- 
nel networks to be statistically self-similar, a 
single fractal dimensian should describe them 
across the range of scales for which a fractal 
dimension is physically meaningful. Here we 
review previous studies and reexamine the ques- 
tion of whether channel networks are statistically 
self-similar through the use of the box-counting 
method over the range of scales for which the 
method can meaningfully estimate a fr%tal- 
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dimension. We also address the influence of 
source-basin size on network scaling properties. 

BOX COUNTING 
The box-counting method (Lovejoy et al., 

1987) can be used to estimate fractal dimensions 
of channel networks generated from topographic 
maps or digital elevation models.(Tarboton et al.,‘ 
1988; La Barbera and Rosso, 1989; Klinkenberg 
and Goodchild, 1992; Helmlinger et al., 1993). 
This method involves superimposing a square 
mesh onto a drainage basin. The channel network 
exhibits scaling properties if there is a power-law 
relationship between the box size, E, and the 
number of boxes, N, that intersect channel seg- 
ments, such that 

NE b E - ~ ,  (1) 

where b is a proportionality constant and D is the 
fractal dimension (Bergé et al., 1984; Falconer, 
1990). 

Analyzing channel networks extracted from 
U.S. Geological Survey 30 m digital elevation 
models, Tarboton et al. (1988) showed that D = 1 
when E is small, reflecting the linear aspect of 
stream channels, and D = 2 when E is large, 
implying that channel networks are space filling. 
& recognized 6y Tarbõton ët al. (1988); these 
results arise because small box sizes that approach 
the resolution of the map increasingly sample the _- 
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hillslopes lying between channel segments, 
thereby intersecting only short linear channels, 
whereas larger boxes cannot fit within the inter- 
vening hillslopes. Note, however, that at E length 
scales above which every box intersects at least 
one channel segment, the box-counting method 
simply plots E versus 1k2 due to the use of square 
grids; D must equal 2 at a large enough E, inde- 
pendent of any fractal properties of the network 
being measured. Evaluation of whether a natural 
object exhibits statistical self-similarity requires 
demonstrating a single power-law exponent based 
on iterative measurements across at least one 
order of magnitude (Mandelbrot, 1983) for length 
scales between those where D = 1 and D = 2 
(Fig. 1) (Bergé et al., 1984; Falconer, 1990). AI- 
though previous applications of the box-counting 
method to channel networks revealed that net- 
works are space filling at sufficiently large box 
sizes, such studies have yet to demonstrate that 
channel networks actually exhibit statistical self- 
similarity across the scale range over which the 
method can assess a meaningful fractal dimension 
(i.e., 1 < D < 2). 

HORTON’S LAWS 
Perhkps the most common method of deter- 

mining the fractal dimension of channel net- 
-w rks relies on the Horton laws, which hold that 
the bifurcation and length ratios, RB and R,, do Y 

vary with stream order p (see Horton, 1945, 
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Figure 1. Ideal plot of log Nversus log E for a 
fractal channel network using the box-counting 
method to estimate D between lower and upper 
cut-Offs defined by and E,,,= (i.e., i c Dc 2); 
N is the number of boxes intersecting chan- 
nels, E is the box size, and D is the fractal di- 
mension derived from equation 1. 

fof definitions of these ratios). Tarboton et al. 
(1988) estimated the total length of streams in a 
network (L) by 

where in this case E is the mean length of first- 
order streams. The length of a fractal curve is also 
given by 

L G E' -", (3) 

where L is the curve length measured using a ruler 
of variable length 8, and D is the fractal dimension 
of the curve (Mandelbrot, 1983). Hence, Tarboton 
et al. (1988) noted that for R, > RLthe fractal 
dimension of a channel network is given by 

D = log R , h g  RL, (4) 

for R, > R,. An extensive literature reports that 
RB > RL for natural channel networks (see Kirchner 
[1993] for a review), and many workers have 
used equation 4 to estimate D for channel net- 
works (e.g., Tarboton et al., 1988; LaBarbera and 
Rosso, 1989; Beer andBorgas, 1993; Helmlinger 
et al., 1993). As the Hortonian approach implic- 
itly assumes that channel networks are fractal, 
results obtained from equation 4 cannot address 
whether channel networks actually are fractal; 
one could calculate D for any network, whether 
fractal or not. Although the observation that R, 
and RL generally equal 4 and 2 (Kirchner, 1993) 
is widely considered to imply that D = 2 (Man- 
delbrot, 1983; Tarboton et al., 1988), Phillips 
(1993) showed that the fractal dimension of 
many channel networks defined by equation 4 
exceeds 2, the Euclidean dimension of a plane 
and the embedding dimension of the channel net- 
work. Given that equation 4 predicts impossible 
fractal dimensions for some channel networks, 
Hortonian laws appear inaccurate at best for esti- 

mating the fractal dimension of channel net- 
works. In all, it appears that neither of these 
approaches for estimating the fractal dimension 
of channel networks has actually demonstrated 
the statistical self-similarity of channel networks. 

STUDY AREAS, DATA SOURCES, AND 
METHODS 

We analyzed the scaling properties of channel 
networks in three watersheds: Finney Creek in the 
Cascade Range of Washington, Mettman Ridge in 
the Oregon Coast Range, and Tennessee Valley in 
the central California Coast Range. The Finney 
Creek watershed occupies 142 h2 and is under- 
lain by Tertiary volcanic and highly deformed 
Mesozoic metasedimentary rocks. The watershed 
as a whole has a mean slope of Bo, and 40" slopes 
are common in some tributary valleys. Portions of 
the watershed were glaciated during the Pleisto- 
cene, and recent timber harvesting cleared the 
original forest. Detailed descriptions of the Ten- 
nessee Valley and Mettman Ridge watersheds are 
presented elsewhere (Montgomery and Dietrich, 
1989; Montgomery et al., 1997). 

There are a variety of ways to delineate channel 
networks from maps (Smart, 1972; La Barbera 
and Rosso. 1989) or digital elevation models 
(Band, 1986; Tarboton et al., 1991; Chorowicz et 
al., 1992; HelIlllinger et al., 1993; Montgomery 
and Foufoula-Georgiou, 1993; Ichoku et al., 
1996). We used standard US. Geological Survey 
digital elevation models of 30 m resolution for 
Finney Creek and 4 m resolution generated by 
previous studies of the Mettman Ridge and Ten- 
nessee Valley watersheds (Dietrich et al., 1993; 
Zhang and Montgomery, 1994). For each study 
area, we delineated a series of artificial channel 
networks from digital elevation models using dif- 
ferent channel initiation thresholds based on the 
product of contributing area and the square of 
local slope (AS2) (see Montgomery and Foufoula- 
Georgiou [1993] for further discussion of this 
channel initiation index). We also analyzed field- 
mapped channel networks for the Mettmag Ridge 
and Temessee Valley study areas. The total con- 
tributing area at each channel head was computed 
for the network defined by each AS2 threshold 
value. The mean source area (u,) for each channel 
network was calculated by dividing the total area 
contributing to channel heads by the number of 
network sources. The mean source-basin length 
(I,) was then estimated based on the empirical 
relation 1, = (3 u, )O reported by Montgomery and 
Dietrich (1992). 

We investigated the scaling properties of chan- 
nel networks by applying the box-counting 
method and using least squares linear regression 
of the log-transformed data to determine D over 
the range of scales where 1 5 D 4 2. The box size 
yielding D = 1 (i.e., E,,,) does not necessarily 
correspond to the digital elevation model grid- 
size; similarly is the box size above which 
the probability for a box grid to be channelized 

j , . Fìx': 
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Figure 2. Logarithmic plot of pversus E used to 
determine emin and emax and thereby define the 
scaling range appropriate for application of the 
box-counting method. R is the grid size resolu- 
tion of the digital elevation model, and pis the 
probability that a box intersects a channel. 

equals 1 (i.e., D = 2) (Fig. 2). Examination of the 
linear regressions for each of the basins consis- 
tently revealed distinct curvature in the plots of 
log N vs. log E between and E ~ ~ ~ ,  a result that 
shows that a single Ll inadequately describes the 
channel networks. Consequently, we analyzed 
the residual struchue for the least squares linear 
regression of log N versus log E to more formally 
assess whether the channel networks exhibit 
systematic deviation from strict self-similarity 
(Andrle, 1992; Klinkenberg and Goodchild, 
1992; Beauvais and Montgomery, 1996). 

The precision of the box counting method 
depends on both digital elevation model resolu- 
tion and the &-length intervals between sub- 
sequent measurements. Following Dubuc et al. 
(1989) and Liebovitch and Toth (1 989), we used a 
large number of box sizes to estimate fractal 
dimensions, and we determined the minimum 
number of boxes containing channels for nine ras- 
terizations generated by shifting the grid origin by 
one-third of the box size. For each channel net- 
work, we employed measurement intervals of 2 m 
over the &-length range from 4 to 30 m; 5 m from 
30 to 100 m; 10 m from 100 to 200 m; 50 m from 
200 to 500 m; and 100 m from 500 to 2000 m, 
which resulted in 52,44, and 47 realizations for 
each network in Finney Creek, Mettman Ridge, 
and Tennessee Valley, respectively. 

k 
I 

RESULTS 
Application of the box-counting method to 

each of the field-mapped and synthetic channel 
networks allows examination of the variability of 
their scaling properties over a wide range of 
potential drainage densities for a given water- 
shed. With greater values of the AS2 threshold, 
channel networks delineated in each watershed 
exhibit increasing mean source-area size (a,), re- 
duced drainage density, and different €,,, and 
E,, (Table 1). The scale range appropriate for the 
box-counting method, as defined by E,," and E,,, 
shifts toward larger length scales for greater 
AS2. For the networks derived in Finney Creek, 
E,, rabges from 30 m to 95 m, and E,, ranges 
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TABLE 1. APPROPRIATE SCALING RANGE FOR FRACTAL ANALYSIS USING THE BOX- 

COUNTING ~ T H O D ,  AND CHANNEL NETWORK CHARACT~RIZATION 

ACN Finney Creek Mettman Ridge Tennessee Valley 

250 5 70 395 29.41 20 120 1202 16.67 
500 5 85 658 22.73 30 150 2333 11.90 
1000 30 250 4803 8.33 14 110 1114 17.24 45 200 4875 8.26 
2000 30 350 8374 6.33 30 140 2429 11.76 45 250 10088 5.75 
4000 85 5QO 15576 4.63 
8000 95 700 33647 3.14 
16000 95 900 77728 2.07 

FMCN 40 140 3180 10.20 40 200 11685 5.35 

Note: ACN = artificial channel networks; AS2= contributing area X square of local slope; E,;,, = lower 
limit of box-counting method resolution; E,,, = upper limit of box-counting method resolution; a, = mean 
source-basin area: Dd = drainage densitv: FMCN = field-mapped channel network. 

from 250 m to 900 m. For Mettman Ridge, E,, 
ranges from 5 to 40 m, and E,, ranges from 70 m 
to 140 m. Derived networks from Tennessee 
Valley exhibit E,,, ranging from 20 m to 45 m, 
and E,, ranges from 120 m to 250 m. In the case 
of Finney Creek, E,, is equal to the digital eleva- 
tion model grid-size (i.e., 30 m) for AS2 = 1000 
and 2000 m2; it is always larger than the 4 m 
digital elevation model grid-size used for both 
Mettman Ridge and Tennessee Valley (Table 1). 

Restricting our analysis to the scaling range 
limited by E,,, and E,, reveals that a single D 
does not exist for the channel networks that we 
analyzed. Rather, plots of log N versus log E for all 
artificial networks and both of the field-papped 
channel networks exhibit a continuous curvature 
confirmed by highly structured regression resid- 
uals (Fig. 3). The fractal dimension implied by 
equation 4 varies systematically between E- and 
E,, and a second-order polynomial equation bet- 
ter fits the data than a single log-linear equation. 
The curved residuals for the log-linear regressions 
indicate that the slope of the log-log plots is scale 
dependent, the implied D continuously increasing 
from 1 at E,,, to 2 at E~,. 

The lower and upper bounds to the applica- 
bility of the box-counting method also correlate 
with the mean source-basin length. The lower 
bound ( E ~ , )  increases with larger source-basin 
length (1,) (Fig. 4A), and least squares linear 
regression yields E,,, = S + 0.22 I,, indicating 
that E,, is approximately equal to one-quater 
of the mean source-basin length. The upper 
bound (E,,) also increases with larger source- 
basin length (Fig. 4B), and least squares linear 
regression indicates that E,,, is equal to ap- 
proximately twice the mean source-basin length 
(E" =-14.3 + 1.98 ZJ. 

DISCUSSION 
All natural objects possess length scales 

beyond which a fractal dimension cannot describe 
their geometry (Mandelbrot, 1983). The length 
scales where D = 1 and D = 2 for channel net- 

works differ from such natural bounds imposed 
by the physical size of an object, in which case a 
well-defined D over some range of scales would 
fall apart at smaller or larger scales. In contrast, 
our results document the contrary case for chan- 
nel networks wherein a unique fractal dimension 
describes their geometry only over length scales 
that yield results inherent to the method. Our 
results parallel those of Andrle (1996), who found 
a similar lack of a single D for the classic problem 

5.0 I - 
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log E (m) 
2 2  
M I  a I 

B 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 

log E (m) 
Figure 3. Analysis of channel networks for 
Finney Creek (black squares), Mettman Ridge 
(white circles), and Tennessee Valley (black 
circles) all delineated by AS* = 2000 m2 where 
A is the contributing area and S is the local 
slope. A: Plot of log N versus log E. Straight 
lines represent least squares linear regression 
for E,;" <E e E". B: Plot of standardized resid- 
ual structure for plot of log N versus log E. 
Curved lines represent least squares linear 
regression for E,¡,, e E < E,,,. 

of the length of the coast of Great Britain. 
Two of the primary tests upon which conclu- 

sions regarding the fractal nature of channel net- 
works have been based are (1) the ability to calcu- 
late fractal dimensions from Horton's laws, and 
(2) the slope of plots of log Nvs. log E. The former 
approach can determine D under the assumption 
that channel networks are statistically self-similar, 
but provides no test of this proposition. In regard 
to the second approach, application of the box- 
counting method beyond the scale range defined 
by E,~, S E S E,,, necessarily yields D = 1 or 
LI = 2, results inconsistent with the possible 
dimensions of a fractal object embedded in a two- 
dimensional space (Mandelbrot, 1983). Our 
analyses demonstrate that log-log plots for 
channel networks do not indicate statistical self- 
similarity over scale ranges appropriate for the 
box-counting method. Although we do not address 
other methods for determining fractal dimensions 
for channel networks, we worry that belief in the 
fractal nature of channel networks might reflect 
faith as much as it does established fact. 

If networks are nor statistically self-similar, 
then what are they? Our results indicate that 
channel networks are space filling for length 
scales larger than roughly twice the mean source- 
basin length: Networks fully penetrate the land- 
scape to an extent determined by the controls on 
where stream channels begin. At intermediate 
length scales from approximately one-quarter to 
twice the mean source-basin length, a continu- 

O 100 200 300 400 500 
A, mean source-basin length (m> 

1000 , I 

800 - 

u 

O 100 200 ?O0 400 500 
B mean source-basin length (m) 

Figure 4. Relations of scaling bounds to mean 
source-basin length. A: Plot of the lower 
bound E,¡,, versus mean source-basin length. 
B: Plot of the upper bound E,,, ver$us the 
mean source-basin length. See Figure 3 for 
labels; straight lines represent linear regres- 
sions for combined data of three watersheds, 
equations for which are reported in fea. 
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ously variable slope to the plots indicates that 
channel networks are not statistically self-similar. 
Previous reports of the space-filling nature of 
channel networks (Tarboton et al., 1988; Marani 
et al.. 1991) apparently employed box-counting 
approaches beyond the range of applicability for 
the technique, which undermines the generality 
of conclusions regarding the fractal nature of 
channel networks. The range of scales over 
which the box-counting method yields 1 < D < 2 
is quite narrow and depends on the threshold value 
used to delineate network sources (Helmlinger et 
al., 1993). Decreasing the box size results in 
progressively greater proportions of empty 
boxes that do not intersect the channel network, 
and hence the slope of the log N vs. log E plot 
approaches the dimension of the line segments 
used to portray the finest channels (i.e., D = 1). 
Once the box size exceeds that necessary for 
every box to intersect a channel, then the log-log 
plot simply becomes a plot of the length of a box 
side versus the inverse of box area, and the slope 
must equal 2 whether or not the network is 
fractal. The scale at which networks are space 
filling effectively equals twice the mean 
source-basin length, which approximates the 
mean distance between adjacent channel heads 
(Montgomery, 1991). Hence, channel networks 
fill space in a manner that supports the concept of 
a threshold-based limit to landscape dissection 
(Horton, 1945: Montgomery and Dietrich, 1992). 

CONCLUSIONS 
Our results show that channel networks are not 

statistically self-similar when carefully analyzed 
using the box-counting method, a result that con- 
trasts with the widespread belief in the fractal 
nature of river networks. The systematic devia- 
tion from simple power-law scaling revealed by 
the box-counting method, when restricted to the 
range of scales appropriate for the method, 
demonstrates that channel network planfoks are 
not statistically self-similar, in spite of their 
seductive branching architecture. Our analysis 
further reveals that channel networks are space 
filling at scales larger than twice the mean 
source-basin length, a result that supports the 
concept that landscapes are thoroughly dissected 
to a scale limited by an incisional threshold. 
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