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ABSTRACT

Scaling properties of both field-mapped and threshold-delineated channel networks were
studied by applying the box-counting method to three drainage basins in the western United
States. This method involves (1) examination of power-law relations between the box size, €, and
the number of boxes, N, that intersect channel segments across a range of box sizes appropriate
for theé method and then (2) examining the standardized residuals for the least squares linear re-
gressions of Iog N vs. log £ used to calculate a fractal dimension (D). For each channel network, the
slope of the log NV vs. log € relation varies from 1 at small length scales to 2 at large length scales, a
range that defines the limits to the applicability of the box-counting method. Atlength scales below
which tliis slope equals 1, the plots simply record the linear aspect of streams; the length scale
defining an upper limit to the appllcatlon of the box-counting method corresponds to a box size
large enough to intersect a channel in each box. Although a fractal dimension may be meaning-
fully defined only between these upper and lower length scales, neither the field-mapped nor the
artificially delineated networks that we examined exhibit discrete fractal dimensions within this
range. Instead, the slopé of the log-log plot systematically varied with box size. The consistent lack
of log-lmear plots for the networks that we examined violates a fundamental requirement for
fractal geomietry and contrasts with general assertions about the fractal nature of river networks.
A strong cortelation between mean source-area size and the length scale-above which the slope of
plots implies D =2indicates that, althongh channel networks are not statlstlca]ly self-sumlar, they .

are space filling at length scales greater than twice the mean source-basin 1ength Sl

INTRODUCTION

Fractal geometry provides an appealing way to
describe the branching pattern of channel net-
works (Mandelbrot, 1983), and network scalinig
properties have been used to argue both for a scale
independence to landscape dissection and that
drainage networks are space filling with a fractal
dimension (D) of 2 (Tarboton et al., 1988 La
Barbera and Rosso, 1989; Beer and Borgas, 1993;
Nikora and Sapozhnikov, 1993). Yet field obser-
vations deinonstrate that channels dissect soil-
mantled landscapes over a finite range of scales
limited by a threshold of channel initiation, indi-
cating a scale dependence to land form (Horton,
1945; Montgomery and Diétrich, 1992; Dietrich
and Dunne, 1993). At first glance this apparent
coniradiction can be recoriciled by argulng that
the scale of channel initiation provides a lowet
bound to the range of scales over which channel
networks exhibit fractal geometry. But for chan-
nel networks to be statistically self-similar, a
single fractal dimension should describe them
across the range of scales for which a fractal
dimension is physically meaningful. Here we
review previous studies and reexamine the ques-
tion of whether channel networks are statistically
self-similar through the use of the box-counting
method over the range of scales for which the

method can meaningfully estimate a fractal
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dimerision. We also address thé influence of
sotrce-basin size on network scaling properties.

BOX COUNTING

The box-counting method (LoveJ oy et al.,
1987) can be used to estimate fractal dimensions
of channel netwotks generated from topographic

maps or digital elevation models (Tarboton gt al.; ;

1988; La Barbera and Rosso, 1989; Klmkenberg
and Goodchild, 1992; Helmlinger et al. ,1993).

This method involves superimpdsing a square
mesh onto a draindge basin. The channel network
exhibits scaling properties if there is a power-law

relationship between the box size, €, and the’

number of boxes, N, that intersect channel seg-
ménts, such that

Nz=be?D, )

where bis a proporﬁona]jty constant and D is the
fractal dimension (Bergé ét-al., 1984; Falconer,
1990).

Analyzing channel networks extracted from
U.S. Geological Survey 30 m digital elevation
models, Tarboton et al. (1988) showed that D = 1
when ¢ is small, reﬂccting the linear aspect of
stream channels, and D = 2 when ¢ is large,

implying that charinel networks are space filling.

hillslopes lying between channél segments,
thereby intersécting only short linear channels,
whereas larger boxes cannot fit within the inter-
véning hillslopes. Note, however, that at € length
scales above which every box intersects at least
one channel segment, the box-counting method
simply plots € versus 1/£2 due to the use of square
grids; D must equal 2 at a large eriough €, inde-
pendent of any fractal properties of the network

.-being measured. Evaluation of whether a natural

object exhibits statistical self-similarity requires
demonstrating a single power-law exporient based
on iterative measurements across at least one
order of magnitude (Mandelbrot, 1983) for length
scalés between those where D=1 and D =2
(Fig. 1) (Bergé et al., 1984; Falconer, 1990). Al-

* though previous applications of the box-counting

method to channel networks revealed that net-
works are space filling 4t siifficiently large box
sizes, such studies have yet to demonstrate that
channel networks actually exhibit statistical self-
similarity across the scale range over which the
method can assess a meaningful fractal dimerision
(e.,1<D<2).

HORTON’S LAWS .
Perhaps the most common method of deter-
mining the fractal dimension of channel net-

As tecognized by Tarboton &t al. (1988); these *ﬁw?rks relies on the Horton laws, which hold that

results arise because small box sizes that approach
the resolution of the map mcreasmgly sample the

.

I
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the bifurcation and length ratios, Ry and R, do

n ’t vary with stream order p (see Horton 1945,
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Figure 1. Ideal plot of log N versus log ¢ for a
fractal channel network using the box-counting
method to estimate D between lower and upper
cut-offs defined by &y and gyia (i€, 1 < D<2);
N is the number of boxes lntersectlng chan-
nels, € is the box size, dnd D is the fractal di-
mension derived from equatibn 1.

for definitions of these ratios). Tarboton et al.
(1988) estimated the totdl length of streams in a
network (L) by
L=gl~(logRg/log Ry ) @)
where in this case € is the mean length of first-
order streams. The length of a fractal curve is also
given by
Lz=gl-b, ©)]
where L is the curve length measured using a ruler
of variable length €, and D is the fractal dimension
of the curye (Mandelbrot, 1983). Hence, Tarboton
et al. (1988) noted that for Ry > R, the fractal
dimension of a charinel network is given by
D=logRy/log R, @)
for Ry > R; . An extensive literature reports that
Ry > R; for natural channel networks (see Kirchner
[1993] for a review), and many workers have
used equation 4 to estimate D for channel net-
works (e.g:, Tarboton et al., 1988; La Barbera and
Rosso, 1989; Beer and Borgas, 1993; Helmlinger
et al., 1993). As the Hortonian approach implic-
itly assumés that channel networks are fractal,
results obtained from equation 4 cannot address
whether channel networks actually are fractal;
one could calculate D for any network, whether
fractal or not. Although the observation that Ry
and R, generally equal 4 and 2 (Kirchner, 1993)
is widely considered to imply that D =2 (Man-
delbrot, 1983; Tarboton et al., 1988), Phillips
(1993) showed that the fractal dimension of
many channel networks defined by equation 4
exceeds 2, the Euclidean dimension of a plane
and the embédding dimension of the chanbel net-
work. Givei that equation 4 predicts impossible
fractal dimensions for some channel networks,
Hortonian laws appear inaccurate at best for esti-
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mating the fractal dimengsion of channel net-
works. In all, it appears that neither of these
approaches for estimating the fractal dimension
of channel networks has actually demonstrated
the statistical self-similarity of channel networks.

STUDY AREAS, DATA SOURCES, AND
METHODS '

We analyzed the scaling propetties of channel
networks in three watersheds: Finney Creek in the
Cascade Range of Washington, Mettman Ridge in
the Oregon Coast Range, and Tennessee Valley in
the central California Coast Range. The Finney
Creek watershed occupies 142 kmn? and is under-
lain by Tertiary volcanic and highly deformed
Mesozoic metasedimentary rocks. The watershed
as a whole has a meari slope of 23°, and 40° slopes
are common in some tributary valleys. Portions of
the watershed were glaciated during the Pleisto-
cene, and recent timber harvesting cleared the
original forest. Detailed descriptions of the Ten-
nessee Valley and Metiman Ridge watersheds are
presented elsewhere (Montgomery and Dietrich,
1989; Montgomery et al., 1997).

There are a variety of ways to delineate channel
networks from maps (Smart, 1972; La Barbera
and Rosso, 1989) or digital elevation models
(Band, 1986; Tdrboton et al., 1991: Chorowicz et
al., 1992; Helmlinger et al., 1993; Montgomeéry
and Foufoula-Georgiou, 1993; Ichoku et al,,
1996). We used standard U.S. Geological Survey
digital elevation models of 30 m resolution for
Finhey Creek and 4 m resolution generated by
previous studies of the Mettman Ridge and Ten-
nessee Valley watersheds (Dietrich et al., 1993;
Zhang and Montgomery, 1994). For each study
area, we delineated a series of artificial channel
networks from digital elevatioit models using dif-
ferent chanriel initiation thresholds based on the
product of contributing area and the square of
local slope (AS?) (se& Montgomery and Foufoula-
Georgiou [1993] for further discussion of this

mapped channel networks for the Mettmap Ridge
and Tennessee Valley study areas: The total con-
tributing area at eéach channel head was computed
for the network defined by each AS? threshold
value. The mean source area (a, ) for each channel
network was calculated by dividing the total area
contributing to channel heads by the number of
network sources. The mean source-basin length
(I,) was then estimated based on the empirical
relation J, = (3 a, )°3 reported by Montgomery and
Dietrich (1992)

We investigated the scaling properties of chan-
nel networks by applying the box-counting
method and usirig least squares linear regression
of the log-transformed data to determine D over
the range of scales where 1 £ D < 2. The box size
yielding D =1 (i.e., g ) does not necessarily
correspond to the digital elevation model grid-
size; similarly € is the box size above which
the probability for a box grid to be channelized

N
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Figure 2. Logarithimic plot of p versus ¢ usedto
determine ey, and e, and thereby define the
scaling range appropriate for application of the
box-counting method. R is the grid size resolu-
tion of the digital elevation model, and p is the
probability that a box intersects a channel,

equals 1Ge.,D=2) (Flg 2). Examination of the
linear regressiotis for each of the basins consis-
tently revealed distinct curvature in the plots of
log N'vs.logebetweene ; ande ., aresult that
shows that a single D inadequately describes the
channel networks. Consequently, we analyzed
the residual structure for the least squares linear
regression of log N versus log € to more formally
assess whether the channel networks exhibit
systematic deviation from strict self-similarity
(Andrle, 1992; Klinkenberg and Gooddchild,
1992; Beauvais and Montgomery, 1996).

The precision of the box counting method
depends on bothi digital elevation model resolu-
tion and the e-length intervals between sub-
sequent measurements. Following Dubuc et al.
(1989) and Liebovitch and Toth (1989), we used a
large numbet of box sizes to estimate fractal
dimensions; and we determined the minimum
number of boxes containing channels for nine ras-
terizdtions generated by shifting the grid origin by
one-third of the box size. For each channel net-

work, we employed measurement intervals of 2m -

over the e-length range from 4 to 30 m; 5 m from
30to 100 m; 10 m from 100 to 200 m; 50 m from
200 to 500 mi; and 100 m from 500 to 2000 m,
which resulted in 52, 44, and 47 realizations for
each rietwork in Finney Creek, Mettman Ridge,
and Tennessee Valley, respectively.

RESULTS
Application of the box-counting method to
each of the field-mapped and synthetic channel
networks allows examination of the variability of
their scaling properties over a wide range of
potential drainage densities for a given water=
shed. With greater values of the.AS? threshold,
channel networks delineated in each watershed
exhibit increasing mean source-area size (, ), re:
duced drainage density, and different € @nd
€ax (Table 1). The scale range appropnate for the
bok-counting method, as definedby g ; ande .,
shifts toward larger length scales for greater
AS?2. For the networks dérived in Finney Creek,

3 .
€ TaNges from 30 m to 95 m, and £, ranges
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TABLE 1. APPROPRIATE SCALING RANGE FOR FRACTAL ANALYSIS USING THE BOX-
COUNTING METHOD, AND CHANNEL NETWORK CHARACTERIZATION

ACN Finney Creek Mettman Ridge Tennessee Valley

ASZ €min Emax a, Dd 8min En;ax ag Dd ' 8min 8max ag Dd
(m?) (m) (m) (m) (km?) (m) (m) (m®) (km™) (m) (m) (m?) (km)
250 , 5 395 2941 20 120 1202 1667
500 5 658 2273 30 150 2333 11.90
1000 30 250 4803 833 14 110 1114 1724 45 200 4875 826
2000 30 350 8374 633 30 140 2429 1176 45 250 10088  5.75
4000 85 500 15576 4.63

8000 95 700 33647 3.14

16000 95 900 77728 2.07

FMCN 40 140 3180 1020 40 200 11685 535

Note: ACN = artificial channel networks; AS*= contributing area X square of local slope; g, = lower
limit of box-counting method resolution; €, = upper limit of box-counting method resolution; a, = mean

source-basin area; Dd = drainage density; FMCN = field-mapped channel network.

from 250 m to 900 m. For Mettman Ridge, & ;.
ranges from 5 to 40 m, and g, ranges from 70 m
to 140 m. Derived networks from Tennessée
Valley exhibit £,  ranging from 20 m to 45 m,
and g ranges from 120 m to 250 m. In the case
of Finney Creek, €_, is equal to the digital eleva-
tion model grid-size (ie., 30 m) for AS 2=1000
and 2000 m?; it is always larger than the 4 m
digital elevation model grid-size used for both
Mettman Ridge and Tennessee Vailey (Table 1).

Restricting our analysis to the scaling range
limited by g ; and g_, reveals that a single D
does not exist for the channel networks that we
analyzed. Rather, plots of log N versus log € for all
artificial networks and hoth of the field-mapped
charinel networks exhibit a continuous curvature
confirmed by highly structured regression résid-
uals (Fig. 3). The fractal dimension implied by
equation 4 varies systematically betweene  and
€, . and a second-order polynomial equation bet-
ter fits the data than a single log-linear equation.
The curved residuals for the log-linear regressions
indicate that the slope of the log-log plots is scale
dependent, the irnp]iéd D continuously increasing
fromlatg ; to2ate . '

The lower and upper bounds to the applica-
bility of the box—couﬁtipg method also correlate
with the mean source-basin length. The lower
bound (g ;) increases with larger source-basin
length (/) (Fig. 4A), and least squares linear
regression yields g . = 8 + 0.22 [, indicating
that &_; is approximately equal to one-quarter
of the mean source-basin length. The upper
bound (g, also increases with larger source-
basin length (Fig. 4B), and least squares linear
regression indicates that & is equal to ap-
proximately twice the mean source-basin length
(€ax =—14.3 + 1.981). )

DISCUSSION

All natural objects possess length scales
beyond which a fractal dimension cannot describe
their geometry (Mandelbrot, 1983). The length
scales where D =1 and D = 2 for channel net-
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works differ from such natural bounds imposed
by the physical size of an object; in which case a
well-defined D over some range of scales would
fall apart at smaller or larger scales. In contrast,
our results document the contrary case for chan-
nel networks wherein a unique fractal dimension
describes their geometry only over length scales
that yield results inherent to the method. Our
results parallel those of Andrle (1996), who found
a similar lack of a single D for the classic problem

5.0
451
4.0 ;

A 12 14 16 18 20 22 24 26 28
log € (M)

1]

]
W
L

-4- T T T
1214 18

T T T

1.8 2.0 22 2|.4
log £ (m)

26 2.8

W standardized residuals in log N

Figure 3. Analysis of channel networks for
Finney Creek (black squares), Mettman Ridge
(white circles), and Tennessee Valley (black
circles) all delineated by AS? = 2000 m? where
A is the contributing area and S is the local
slope. A: Plot of log N versus log . Straight
lines represent least squares linear regression
for e < € < €max- Bt Plot of standardized resid-
ual structure for plot of log N versus log .
Curved lines represent least squares linear
regression for €y, < € < €pax-

of the length of the coast of Great Britain.

Two of the primary tests upon which conclu-
sions regarding the fractal nature of channel net-
works have beeri based are (1) the ability to calcu-
late fractal dimensions from Horton’s laws, and
(2) the slope of plots of log N vs. log €. The former
approach can determine D under the assumption
that channel networks are statistically self-similar,
but provides no test of this proposition. In regard
to the second approach, application of the box-
counting method beyond the scale range defined
by e .. £e<£¢e,  necessarily yields D =1 or
D =2, results inconsistent with the possible
dimensions of a fractal object embedded in a two-
dimensional space (Mandelbrot, 1983). Our
analyses demonstrate that log-log plots for
channel networks do not indicate statistical self-
similarity over scale ranges appropriate for the
box-counting method. Although we do not address
other methods for determining fractal dimensions
for channel networks, we worry that belief in the
fractal nature of channel networks might reflect
faith as much as it does established fact.

If nétworks are not statistically self-similar,
then what are they? Our results indicate that
channel networks are space filling for length
scales larger than roughly twice the mear source-
basin length: Networks fully penetrate the land-
scape to an extent determined by the controls on
where stream channels ‘begin. At intermediate
length scales from approximately one-quarter to
twice the mean source-basin length, a continu-

v T T T T
0 - 100 200 300 400 500

A mean source-basin length (m)

400

300
B mean source-basin length (m)-

0 100 200 500
Figure 4. Relations of scaling bounds to mean
saurce-basin length. A: Plot of the lower
bound e, versus mean source-basin length.
B: Plot of the upper bound g, versus the
mean source-basin length. See Figure 3 for
labels; straight lines represent linear regres-
sions for combined data of three watersheds,
equations for which are reported in fext.
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ously variable slope to the plots indicates that
channel networks are not statistically self-similar.
Previous reports of the space-filling nature of
channel networks (Tarboton et al., 1988; Marani
et al,, 1991) apparently employed box-counting
approaches beyond the range of applicability for
the technique, which undermines the generality
of conclusions regarding the fractal nature of
channel networks. The range of scales over
which the box-counting method yields 1 <D <2
is quite narrow and depends on the threshold value
used to delingate network sources (Helmlinger et
al., 1993). Decreasing the box size results in
progressively greater proportions of empty
boxes that do not intersect the channel network,
and hence the slope of the log N vs. log € plot
approaches the dimension of the line segments
used to portray the finest channels (i.e., D =1),
Once the box size exceeds that necessary for
every box to intersect a channel, then the log-log
plot simply becomes a plot of the length of a box
side versus the inverse of box area, and the slope
must equal 2 whether or not the network is
fractal. The scale at which networks are space
filling (g_,,) effectively equals twice the mean
source-basin length, which approximates the
mean distance between adjacent channel heads
(Montgomery, 1991). Hence, channel networks
fill space in a manner that supports the concept of
a threshold-based limit to landscape dissection
(Horton, 1945; Montgomery and Dietrich, 1992).

CONCLUSIONS

Qur results show that channel networks are not
statistically self-similar when carefully analyzed
using the box-counting method, a result that con-
trasts with the widespread belief in the fractal
nature of river networks. The systematic devia-
tion from simple power-law scaling revealed by
the box-counting method, when restricted to the
range of scales appropriate for the method
demonstrates that channel network planforms are
not statistically self-similar, in spite of their
seductive branching architecture. Our analysis
further reveals that channel networks are space
filling at scales larger than twice the mean
source-basin length, a result that supports the
concept that landscapes are thoroughly dissected
t0 a scale limited by an incisional threshold.

ACKNOWLEDGMENTS

Beauvais was supported by the Institut Francais de
Recherche Scientifique pour le Développement en
Coopération UR12-TOA (ORSTOM, Paris, France)
during one and a half years of scholarship visiting
the University of Washington. We thank Harvey
Greenberg for analytical support, Mariza Costa-Cabral,
Kelin Whipple, Andrea Rinaldo, Robert Andrle, and

1066

two anonymous reviewers for their critiques. Jim
Kirchner also provided an insightful critique of an
earlier manuscript and suggested problems in identify-
ing a unique fractal dimension from smoothly curvi-
linear log-log plots.

REFERENCES CITED

Andrle, R., 1992, Estimating fractal dimensions with
the divider method in geomorphology: Geo-
morphology, v. 5, p. 131-141.

Andrle, R., 1996, The West Coast of Britain: Statistical
self similarity vs. characteristic scales in the land-
scape: Earth Surface Processes and Landforms,
v. 21, p. 955-962.

Band, L. E., 1986, Topographic partition of watersheds
with digital elevation models: Water Resources
Research, v. 22, p. 15-24.

Beauvais, A., and Montgomery, D. R., 1996, Influence

© of valley type on the scaling properties of river
planforms: Water Resources Research, v. 32,
p- 1441-1448.

Beer, T., and Borgas, M., 1993, Horton’s laws and the
fractal nature of streams: Water Resources Re-
search, v. 29, p. 1475-1487.

Bergé, P., Pomeau, Y., and Vidal, C., 1984, Order within
chaos, towards a deterministic approach to turbu-
lence: Paris, Herman, 329 p.

Chorowicz, J., Ichoku, C., Riazanoff, S., Kim, Y. ]., and
Cervelle, B., 1992, A combined algorithm for
automated drainage network extraction: Water
Resources Research, v. 28, p. 12931302

Dietrich, W. E., and Dunne, T., 1993, The channel head,
in Beven, K., and Kirkby, M. J., eds., Channel
network hydrology: Chichester, United King-
dom, John Wiley & Sons, p. 175-220.

Dietrich, W. E., Wilson, C. J., Montgomery, D. R., and
McKean, J., 1993, Analysis of erosion thresholds,
channel networks and landscape morphology
using a digital elevation model:- Journal of
Geology, v. 101, p. 259-278.

Dubuc, B., Quiniou, J. E, Roques-Carmes, C., Tricot,
C., and Zucker, S. W., 1989, Evaluating the
fractal dimension of profiles: Physu:al Review A,
v. 39, p. 1500-1512.

Falconer, K., 1990, Fractal geometry, mathenjlaticaln

foundations and applications: Chichester, United
Kingdom, John Wiley & Sons, 288 p.

Helmlinger, K. R., Kumar, P., and Foufoula-Georgiou,
E., 1993, On the use of digital elevation model
data for Hortonian and fractal analyses of channel
networks: Water Resources Research, v. 29,
p- 2599-2613.

Horton, R. E., 1945, Erosional development of streams
and their drainage basins: Hydrophysical ap-
proach to quantitative morphology: Geological
Society of America Bulletin, v. 56, p. 275-370.

Ichoku, C., Karnieli, A., and Verchovsky, L, 1996,
Application of fractal techniques to the compara-
tive evaluation of two methods of extracting
channel networks from digital elevation models:
Water Resources Research, v. 32, p. 389-399.

Kirchner, J. W., 1993, Statistical inevitability of Horton’s
laws and the apparent randomness of stream chan-
nel networks: Geology, v. 21, p. 591-594.

Klinkenberg, B., and Goodchild, M. E,, 1992, The
fractal properties of topography: A comparison of

Printed in U.S.A.

methods: Earth Surface Processes and Landr

forms, v. 17, p. 217-234.

La Barbera, P., and Rosso, R., 1989, On the fractal -
dimension of river networks: Water Resources
Research, v. 25, p. 735-741.

Liebovitch, L. S., and Toth, T., 1989, A fast algorithm
to determine fractal dimensions by box-counting:
Physics Letters A, v. 141, p. 386-390.

Lovejoy, S., Schertzer, D., and Tsonis, A. A., 1987,
Functional box counting and multiple alliptical di-
mensions in rain: Science, v. 235, p. 1036-1038.

Mandelbrot, B. B., 1983, The fractal geometry of
nature: New York, Freeman, 468 p.

Marani, A., Rigon, R., and Rinaldo, A., 1991, A note on
fractal channel networks: Water Resources
Research, v. 27, p. 3041-3049.

Montgomery, D. R., 1991, Channel initiation and land-
scape evolution [Ph.D. dissert.]: Berkeley, Uni-
versity of California, 421 p. '

Montgomery, D. R., and Dietrich, W. E., 1989, Source
areas, drainage density, and channel initiation:
Water Resources Research, v. 25, p. 1907-1918.

Montgomery, D. R., and Dietrich, W. E., 1992, Channel
initiation and the problem of landscape scale:
Science, v. 255, p. 826-830.

Montgomery, D. R., and Foufoula-Georgiou, E., 1993,
Channel network representation using digital ele-
vation models: Water Resources Research, v. 29,
p. 1177-1191.

Montgomery, D. R., Dietrich, W. E., Torres, R., Ander-
son, S. P, Heffner, J. T., and Loague, K., 1997,
Hydrologic response of a steep unchanneled
valley to natural and applied rainfall: Water
Resources Research, v. 33, p. 91-110.

Nikora, V. I., and Sapozhnikov, V. B., 1993, River
network fractal geometry and its eomputer
simulation: Water Resources Research, v. 29,
p- 3569-3575.

Phillips, J. D., 1993, Interpreting the fractal dimension
of river networks, in Lam, N. S., and De Cola, L.,
eds., Fractals in geography: Englewood Cliffs,
New Jersey, Prentice Hall, p. 142-157.

Smart, J. S., 1972, Quantitative characterization of
channel network structure: Water Resources
Research, v. 8, p. 1487-1496.

Tarboton, D. G., Bras, R. L., and Rodriguez-Iturbe, I.,
1988, The fractal nature of river networks: Water
Resources Research, v. 24, p. 1317-1322.

Tarboton, D. G., Bias, R. L., and Rodrignez-Iturbe, L,
1991, On the extraction of channel networks from
digital elevation data: Hydrological Processes,
v. 5, p. 81-100.

Zhang, W., and Montgomery, D. R., 1994, Digital eleva-
tion model grid size, landscape representation,
and hydrologic simulations: Water Resources
Research, v. 30, p. 1019-1028.

Manuscript received February 10, 1997
Revised manuscript received September 2, 1997
Manuscript accepted September 17, 1997

GEOLOGY, December 1997




