Combating onchocerciasis in Africa after 2002:
the place of vector control

Since the launching of the African Programme for Onchocerciasis Control (APOCH) at the end of 1995, all 30 African countries affected by endemic onchocerciasis have been involved in a merciless fight against the disease. Already, onchocerciasis is no longer a public-health problem or an obstacle to socio-economic development in the 11 countries monitored by the Onchocerciasis Control Programme in West Africa (OCP; Molyneux, 1995). This should soon be the case in the 19 APOCH countries (Dadzie, 1997), as an efficient and self-sustainable system of community-directed treatment with Mectizan® (ivermectin, MSD) is established.

In West Africa and most of the APOCH countries, Simulium damnosum s.l. is the only species responsible for transmission of Onchocerca volvulus. In some foci in East Africa, however, this filarial parasite can be transmitted by species of the S. neavei group as well as those of the S. damnosum complex. Whichever the Simulium species involved, their elimination depends on spraying insecticide on the rivers where the pre-imaginal, rheophilic stages develop (Walsh, 1985). The periodicity of such treatment varies with the life-span of the larvae targeted: generally every week for S. damnosum s.l. and every 2–4 weeks for S. neavei s.l.

Between 1974 and 1989, such vector control, carried out in seven West African countries, was the only means of combating onchocerciasis. It successfully freed many regions of the disease, by minimising transmission for a period longer than the longevity of the adult worm in man (about 14 years). Today, vector control still remains a favoured control method in the OCP extension areas (Hougard et al., 1993), but it is now combined with treatment of communities with Mectizan, the distribution of which became widespread as early as the beginning of 1990. For the remaining OCP countries and for the A countries, chemotherapy with Mectizan now the main tool used against onchocerciasis. It is used both to treat and prevent the clinical manifestations of the disease, particularly onchocercal blindness and skin lesions (Chippaux et al., 1995).

If all goes to plan, 31 December 2002 will be a landmark date in the history of blinding control in Africa. This is the day set for phasing out all OCP activities. In fact, current, combined strategy of chemotherapy and vector control should help to clear all the basins treated by the OCP before deadline. In addition, most of the vector elimination projects necessary in APOCH countries have already been identified. They should start before the end of this century and most of them are likely to be completed by 2002. Few campaigns against the vector O. volvulus are therefore likely to be conducted in Africa beyond 2002. Feasibility studies for new vector-elimination projects in A countries, which may be implemented in 2002, have yielded convincing results (AF funding by the donor community should continue until 2007). However, sustainable elimination of the vector (the APOCH strategy) will only be possible in those rare hydrological basins where blackfly immigration is possible or likely. Interruption of the transmission of the parasite by vector control many years (the OCP strategy) is now considered to be a too heavy financial investment both by the donors and the countries concerned the estimated cost of treating the 000 km of rivers in the framework of OCP's operations in 1996 amounted to U.S. 650 000, just for insecticides and flight-hour. The development of the APOCH, a program essentially based on sustainable, community-based distribution of Mectizan, is a clear demonstration that affected countries...
longer wish to become involved in long-term, vertical programmes of the OCP type, no matter how successful such programmes might be.

The only vector-control operations likely to survive after 2002 will be those needed for ‘mopping up’ in areas previously covered by OCP or/and APOC operations. In some basins in the OCP area, such as the Dienkao basin in Burkina Faso, control of transmission was delayed (Hougard et al., 1997) and insecticide spraying may have to be continued for some months or even 2–3 years after 2002, until epidemiological results are totally satisfactory. This should not be a major problem in Dienkao, as the aim there will be to continue the low-cost, land-based treatment which is already managed by local health services. It may be more of a problem in the tributaries of the Oti river in northern Togo, as all the human, material and financial resources needed would have to be found, larviciding could not be carried out from the ground, and the amounts of insecticides to be sprayed would have to be fairly large because of the hydrological pattern of the local rivers.

To conclude, whatever the number and significance of the larviciding operations conducted after 2002, they will play a significant role in onchocerciasis control, in addition to chemotherapy. Mecterolide may be the main control agent but microfilaricidal drugs, or even a macrofilaricidal drug, may be in routine use by the OCP to control onchocerciasis. As larviciding by the OCP is likely to be maintained, there will be a surge in the number of blackfly bites and in the number of bites in communities which become unaccustomed to a nuisance.

J.-M. Hougard* A. Sékétéli
World Health Organization/Onchoce Control Programme in West Africa, P.O. Box 549, Ouagadougou, Burkin

Received 15 September 1997, Accepted 17 September 1997

* E-mail: hougard@ocp.oms.bf; fax: +226 30

REFERENCES
ANNALS OF TROPICAL MEDICINE & PARASITOLOGY

April 1998

Volume 92, Supplement 1

Mectizan and Onchocerciasis: a Decade of Accomplishment and Prospects for the Future: the Evolution of a Drug into a Development Concept

DEDICATION—ROBERT L. KAISER

PREFACE

FOEGE, W. H. 10 years of Mectizan

ORIGINAL ARTICLES

ARIJOSE, A. Onchocercal eye disease and the impact of Mectizan treatment


BENTON, B. Economic impact of onchocerciasis control through the African Programme for Onchocerciasis Control: an overview

BOATIN, B. A., TOE, I., ALLEY, E. S., DEMBELE, N., WEIS, N. and DADZIE, K. Y.: Diagnostics in onchocerciasis: future challenges


DADZIE, K. Y.: Control of onchocerciasis: challenges for the future

DUHL, H. B. and MEREDITH, S. P. O. The Mectizan Donation Programme: 10-year report

ETYA'ALE, D. E.: Mectizan as a stimulus for development of novel partnerships: the international organization’s perspective


HAGAN, M.: Onchocercal dermatitis: clinical impact

HOPKINS, A. D.: Mectizan delivery systems and cost recovery in the Central African Republic

KAIO, O.: Onchocerciasis: the burden of disease

MARTIN-TELLEG, N., RAMIREZ-HERNÁNDEZ, H. and SANTOS PRECIADO, J. J.: and

MENDOZA-GALVÁN, J.: Onchocerciasis: changes in transmission in Mexico

MINT, E.: The perspectives of managing an onchocerciasis control programme: a case study from Plateau State, Nigeria


NDROMUGENYI, R.: The burden of onchocerciasis in Uganda

OGBIAGU, K. F. and ENEANYA, C. I.: A multi-centre study of the effect of Mectizan treatment on onchocercal skin disease: clinical findings

(persued on inside back cover)
SHORT COMMUNICATIONS

BOISSINESQ, M. and GARDON, J. Challenges for the future: loiasis

COLATRELLA, B. D. Corporate donations

CROSS, C. Partnerships between non-governmental development organizations

ESPINEL, M. Onchocerciasis: a Latin American perspective

FETTIG, C. T. The donation of Mectizan

GODIN, C. Cameroon and Chad: cost recovery

HOUGARD, J.-M. and SÉKETÉLI, A. Combating onchocerciasis in Africa after 2002: the place of vector control

JIYA, J. J. Problems and perspective in programme management: the case of the National Onchocerciasis Control Programme in Nigeria

NYIAMA, T. Community perspective on Mectizan's role as a catalyst for the formation of novel partnerships

OKWERO, P. The challenge of establishing community-directed treatment with Mectizan in Uganda