Comparison of in vivo and in vitro tests of resistance in patients treated with chloroquine in Yaoundé, Cameroon

P. Ringwald 1 & L.K. Basco 2

The usefulness of an isotopic in vitro assay in the field was evaluated by comparing its results with the therapeutic response determined by the simplified WHO in vivo test in symptomatic Cameroonian patients treated with chloroquine. Of the 117 enrolled patients, 102 (87%) completed the 14-day follow-up, and 95 isolates obtained from these patients (46 children, 49 adults) yielded an interpretable in vitro test. A total of 57 of 95 patients (60%; 28 children and 29 adults) had an adequate clinical response with negative smears (n = 46) or with an asymptomatic parasitaemia (n = 11) on day 7 and/or day 14. The geometric mean 50% inhibitory concentration of the isolates obtained from these patients was 63.3 nmol/l. Late and early treatment failure was observed in 29 (30.5%) and 9 (9.5%) patients, respectively. The geometric mean 50% inhibitory concentrations of the corresponding isolates were 173 nmol/l and 302 nmol/l. Among the patients responding with late and early treatment failure, five isolates and one isolate, respectively, yielded a discordant result (in vivo resistance and in vitro sensitivity). The sensitivity, specificity, and predictive value of the in vitro test to detect chloroquine-sensitive cases was 67%, 84% and 86%, respectively. There was moderate concordance between the in vitro and in vivo tests (kappa value = 0.48). The in vitro assay agrees relatively well with the therapeutic response and excludes several host factors that influence the results of the in vivo test. However, in view of some discordant results, the in vitro test cannot substitute for in vivo data on therapeutic efficacy. The only reliable definition of “resistance” in malaria parasites is based on clinical and parasitological response in symptomatic patients, and the in vivo test provides the standard method to determine drug sensitivity or resistance as well as to guide national drug policies.

Voir page 41 le résumé en français. En la página 41 figura un resumen en español.

Introduction

Chloroquine-resistant Plasmodium falciparum has been reported in all sub-Saharan African countries (1). The extent of such resistance is still limited in many areas of Africa, and most reported cases of resistance are at the RI level (2-4). These findings, together with economic considerations and a generally high level of acquired immunity, justify the recommendation to use chloroquine for the first-line treatment of acute uncomplicated falciparum malaria infections in indigenous patients in most sub-Saharan Africa where acceptable clinical cure rates can be obtained (5). However, the possibility of an increasingly ineffective chloroquine therapy, as confirmed in other endemic areas, necessitates regular assessment of the therapeutic efficacy of chloroquine to guide drug policies in Africa.

There are two general methods to assess drug efficacy in the field: in vivo and in vitro tests (6). In the past, both WHO standard tests were largely applied in the field but accumulated experience has shown that neither of these tests has been adopted widely for making decisions on drug policies (7). Clinical evaluation of therapeutic efficacy is based on the determination of the proportion of treatment failure in a patient population at a particular study site. The aim of in vivo tests is to detect drug resistance, defined as “the ability of a parasite strain to survive and/or multiply despite the administration and absorption of a drug in doses equal to or higher than those usually recommended but within the limits of tolerance of the subject” (8). The standard in vivo tests described in 1973 allowed enrolment of either symptomatic patients or asymptomatic parasite carriers and required either a daily 7-day (“7-day test”) or a 28-day follow-up (daily for the first 7 days, weekly thereafter; “extended test”) in a malaria-free zone (8). Such a test is hardly practical in Africa, especially from the social and economic viewpoint if a 1-month hospitalization period is required. In addition, drug efficacy determined for symptomatic patients cannot be extrapolated from studies conducted on asymptomatic parasite carriers. A considerable improvement was introduced recently with the development of a more practical and simplified 14-day in vivo test that is performed on symptomatic patients with acute uncomplicated falciparum malaria (7). The simplified in vivo test is performed by a regular measurement of body temperature and

1 Researcher, Institut Français de Recherche Scientifique pour le Développement en Cooperation (ORSTOM) and Laboratoire de Recherches sur le Paludisme, Laboratoire Associé Francophone 302, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon.

Requests for reprints should be sent to Dr Ringwald at the following address: OCEAC/ORSTOM, B.P. 288, Yaoundé, Cameroon. e-mail: oceac@camnet.cm

2 Researcher, ORSTOM/OCEAC, Yaoundé, Cameroon.

© World Health Organization 1999
microscopic examination of blood films. The standard or simplified in vivo test is the reference method to detect drug resistance.

In vitro assays are based on culturing *Plasmodium falciparum* isolates in the presence of a range of concentrations of an antimalarial drug for one life cycle or part of a life cycle. Drug efficacy is assessed by counting the number of parasites developing into schizonts (WHO in vitro test) or by measuring the quantity of radiolabelled hypoxanthine, a DNA precursor, incorporated into the parasites (isotopic microtest) (6, 9-13). Chloroquine resistance is deduced when the parasite growth is not inhibited below a threshold concentration.

It has been argued that the results of in vitro tests of resistance do not always coincide with those of in vivo tests and may thus be irrelevant for clinical studies (7). Part of the problem is associated with the type of in vitro assay as well as insufficient data on in vitro assays performed in parallel with in vivo tests in individual patients. A comparison of in vivo and in vitro tests of resistance has not been extensively investigated for chloroquine because this drug had lost its efficacy in many endemic areas before schizonts (WHO is no longer recommended to treat actually measure standard regimen of chloroquine. The aim and may be complementary to the type of resistance and to assess to what extent in vitro studies were developed and its use is no longer recommended to treat *P. falciparum* infections in these areas.

In the present retrospective analysis, we compared the results of isotopic in vitro assays and clinical response (measured using the simplified WHO in vivo test) of Cameroon patients treated with a standard regimen of chloroquine. The aim was to evaluate whether in vitro assays from a given patient actually measure in vivo chloroquine sensitivity or resistance and to assess to what extent in vitro assays may be complementary to the in vivo test.

Patients and methods

Patients

A total of 117 Cameroonian adults and children aged >5 years (range: 5–50 years) residing in Yaoundé, Cameroon, between 1994 and 1996, with their free and informed consent. The following inclusion criteria were used: having been previously received antimalarial drugs (14). Pregnant women, patients with signs and symptoms of severe and complicated malaria, as defined by WHO (15), and patients with severe anaemia (haemoglobin <6 g/dl) were excluded. The study was approved by the Cameroon National Ethics Committee.

In vivo test

Chloroquine (total dose, 25 mg/kg body weight in three divided doses: 10 mg/kg on days 0 and 1; 5 mg/kg on day 2) was administered under supervision. The patients were followed on an outpatient basis on days 1, 2, 3, 4, 7 and 14. The clinical condition, body temperature, and parasite density were assessed at each visit. Parasite density was determined by counting the number of infected red blood cells against 20 000 red blood cells in Giemsa-stained thin blood films (on day 0) or the number of asexual parasites against 1000 white blood cells in Giemsa-stained thick blood films (from day 1 onwards) and expressed as the number of asexual parasites per ml of blood.

In the revised 1996 WHO classification of in vivo response to antimalarial treatment, patients are followed on days 3, 7 and 14, and both clinical and parasitological responses are monitored (7). The clinical and parasitological responses are classified as early treatment failure (ETF), late treatment failure (LTF), or adequate clinical response (ACR). ETF is defined by one of the following four criteria: positive smear and signs and symptoms of severe malaria on days 1, 2 or 3; positive smear (parasite density > day 0 density) and fever on day 2; positive smear and fever on day 3; and positive smear on day 3 (parasite density ≥ 25% of pre-treatment density). LTF is defined as positive smear and signs and symptoms of severe malaria between day 4 and day 14; or positive smear and fever between day 4 and day 14. ACR refers to patients who have completed the 14-day follow-up and have a negative smear on day 14, with or without fever; or positive or negative smear and apyrexia during the follow-up, without previously meeting the criteria of ETF or LTF. Patients who responded with either ETF or LTF were treated with oral halofantrine (total dose = 1500 mg for adults or 24 mg base/kg body weight for children in three divided doses at 6-hour intervals) or oral quinine (25 mg base per kg body weight per day for 3 days).

The parasitological response was also interpreted using the classical S–RI–RII–RTI classification system (8). The interpretation of the parasitological response using the WHO standard tests requires daily monitoring of the parasite density between day 0 and day 7 for the "7-day test", followed by a weekly blood film examination until day 28 for the "extended test". Since the 1996 simplified in vivo test does not require daily monitoring of blood films and is terminated at day 14, some parasitological responses cannot be clearly distinguished. For this reason, the definitions of parasitological responses were modified as described below.

- **Sensitive (S)/late resistant grade I (RI) response.** Asexual parasite clearance on or before day 6 and negative smears on day 7 and day 14. As in the "7-day test", an S response and a late RI response cannot be distinguished since the difference between the two responses depends on the presence (late RI) or absence (S) of recrudescence between day 15 and day 28.
- **Early resistant grade I (RI) response.** Asexual parasite clearance on or before day 6, followed by recrudescence between day 7 and day 14, inclusive.
Therapeutic response (adequate clinical response, late or early treatment failure) was modified from the 1973 WHO classification defined according to the 1996 revised WHO classification parasitological responses (SIIlate R, early RI, early RII/RII and RIII) was adapted and modified from the 1973 WHO classification (8, 9). See text for the definitions.

- Early RI/resistant grade II (RII) response. Marked reduction of asexual parasitaemia (<25% of the pre-treatment parasite density) within 48 h of initiation of treatment, and persistent asexual parasitaemia until day 7 (and on day 14 if left untreated between day 7 and day 13). Some cases that do not fulfil the criteria of "early RI" response or "RII" are classified under "early RI/RII response" because asexual parasite clearance was not observed between days 4 and 6 due to the absence of follow-up smears. Furthermore, seven cases of "early treatment failure" that were unclassifiable because of the absence of follow-up blood smears beyond day 3 (and had <25% of the pre-treatment parasitaemia on day 2) after an alternative treatment were added to the early RI/RII group.

- Resistant grade III (RIII). Slight reduction (>25% of the pre-treatment parasite density), no change, or increase of asexual parasitaemia during the first 48 h of treatment, and no subsequent clearance of parasitaemia (until day 7). Patients whose parasite density was >25% of the pre-treatment density on day 2 and who required alternative treatment due to deteriorating clinical conditions before day 7 were also classified as RIII response (16).

In vitro assay

Samples of venous blood (5–10 ml) were obtained before treatment for *in vitro* assay. Clinical isolates were tested for *in vitro* sensitivity on day 0 without prior culture adaptation. The procedures for the isotope *in vitro* assay have been described previously (17). Briefly, blood samples were washed three times in the culture medium RPMI 1640. The infected red blood cells (1.5% haematocrit, 0.1–1.0% parasitaemia) were suspended in RPMI 1640 supplemented with 10% human serum and buffered with 25 mmol/l sodium bicarbonate solution and 25 mmol/l HEPES. The mixture was then distributed (700 μl per well) in 24-well test plates that had been pre-coated with chloroquine (final concentration range: 12.5–1600 nmol/l in triplicate), except for three drug-free control wells. Culture plates were incubated for a total of 42 h at 37 °C in 5% CO₂. Tritium-labelled hypoxanthine (40 μCi/ml) was added 18 h after the initial incubation period. At the end of the incubation period, the plates were frozen at −20 °C and thawed to lyse the cells. After collection on glass-fibre filter-paper using a cell harvester, incorporation of [3H]hypoxanthine was quantified using a liquid scintillation counter. The results of the *in vitro* assay were expressed as 50% inhibitory concentration (IC₅₀), defined as the concentration at which 50% of the incorporation of [3H]hypoxanthine was inhibited, as compared with the result for the drug-free control wells. Based on our previous *in vitro* studies, *in vitro* chloroquine resistance was defined as IC₅₀ > 100 nmol/l (17). Some of the *in vitro* and *in vivo* results have been described previously (17–19).

Table 1. Clinical and parasitological outcome of the simplified *in vivo* test in Cameroonian patients treated with 25 mg/kg body weight of chloroquine

<table>
<thead>
<tr>
<th>Response</th>
<th>Children (n = 46)</th>
<th>Adults (n = 49)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate clinical response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S' late RI</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Early RI</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Early R/RII</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RIII</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Late treatment failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S'/late RI</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Early RI</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Early R/RII</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>RIII</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Early treatment failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S'/late RI</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Early RI</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Early R/RII</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>RIII</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Therapeutic response (adequate clinical response, late or early treatment failure) was defined according to the 1996 revised WHO classification (7). The grading system of parasitological responses (SIIlate R, early RI, early RII/RII and RIII) was adapted and modified from the 1973 WHO classification (8). See text for the definitions.

Statistical analysis

The clinical, haematological and biochemical parameters were compared between patients with an adequate clinical response and patients with either early or late treatment failure, using the Mann–Whitney U test. The level of significance (p) was fixed at 0.05. Since the *in vivo* test is the reference method for determining chloroquine resistance, the validity of the *in vitro* assay was gauged against the therapeutic response by calculating the sensitivity, specificity and predictive value. The therapeutic response of each patient was compared separately with the IC₅₀ values for chloroquine obtained from the corresponding *Plasmodium falciparum* isolate. The results of the *in vivo* and *in vitro* tests of resistance were also compared using kappa statistics to calculate the index of agreement (20, 21). A kappa value represents the degree of agreement between two methods (or observers) beyond chance, 1 denoting perfect agreement. Kappa coefficients in the range 0–1 are arbitrarily interpreted as follows: 0–0.20, slight agreement; 0.21–0.40, fair agreement; 0.41–0.60, moderate agreement; 0.61–0.80, good agreement; and >0.81, very good agreement.

Results

A total of 117 patients (65 adults and 52 children) were enrolled in the study. Of these patients, 102 (87%; 55 adults and 47 children) completed the 14-day follow-up. Of the 15 patients lost to follow-up,
three did not complete the 3-day chloroquine treatment (lost to follow-up before day 2), while two, five, and three patients were lost to follow-up on day 3, day 7 and day 14, respectively. Two patients were excluded because of concomitant self-medication with oral quinine. Clinical isolates obtained from 107 of 117 patients (91%) were successfully cultured to determine the IC50 value for chloroquine. Of the 15 isolates obtained from patients lost to follow-up, four were chloroquine-sensitive in vitro, eight were chloroquine-resistant in vitro, and three results were not interpretable. Seven isolates from patients who completed the 14-day follow-up (5 ACR and 2 ETF) did not yield interpretable in vitro results. Patients who did not complete the 14-day follow-up (n = 15) and/or whose clinical isolates failed to grow or were lost due to bacterial contamination (n = 10) were excluded from further analysis.

Of the 95 patients who completed the 14-day follow-up and whose isolates were successfully cultured for in vitro drug assay, 46 were children under the age of 15 years and 49 were adults (Table 1). Of these patients, 57 (60%; 28 children, 29 adults) had an ACR (Table 1); 46 of these were afebrile on or before day 3 and remained afebrile until day 14 and had either a negative thick blood smear or a positive smear (density < 25% of day 0 density) on day 3 and negative smears on days 7 and 14 (S/late RI); 8 had a negative smear on day 3 and a positive smear on days 7 (n = 2) and/or 14 but remained afebrile between days 3 and 14 (early RI); and 3 had a positive smear on day 3 (density > 25% of day 0 density), a negative smear on day 7, and a positive smear on day 14 but were afebrile between days 3 and 14 (early RI). Thus, there were a total of 11 patients in the ACR group with an asymptomatic recrudescence parasitaemia on day 7 and/or day 14 (early RI).

Treatment failure with chloroquine was observed in a total of 38 patients (40%). Late treatment failure was exhibited by 29 (30.5%) patients and several subgroups can be distinguished. A total of 20 of these did not clear their parasitaemia during the 14-day follow-up and presented fever between day 7 and day 14 (early RI/RII or RIII); 6 patients cleared their parasitaemia on day 2 and/or day 3 but returned between day 7 and day 14 with fever and positive smear (early RI); and 3 patients had positive smears until day 3, a negative smear on day 7, and a positive smear with fever on day 14 (early RI). Early treatment failure was observed for 9 patients (9.5%); fever and a positive smear on day 3 were presented by 6 of these patients; and clinical deterioration in the presence of parasitaemia was observed in 3 of them on day 2 or day 3. The clinical and laboratory parameters of patients are summarized in Table 2. Although the initial parasitaemia tended to be slightly higher in patients who failed to respond to chloroquine (76 400 vs. 90 800 asexual parasites per µl blood; P > 0.05), both groups of patients had similar clinical parameters and haematological and biochemical values (P > 0.05) before chloroquine treatment.

The in vitro geometric mean IC50 for chloroquine for isolates obtained from 57 patients with an ACR was 63.3 nmol/l (range, 8.9-486 nmol/l) (Fig. 1). A total of 38 of these isolates (35 from S/late RI cases and 3 from early RI cases) were sensitive in vitro to chloroquine, while 19 of them (11 from S/late RI cases and 8 from early RI cases) were resistant in vitro to chloroquine. Among the isolates obtained from patients with ETF, the geometric mean IC50 was 173 nmol/l (range, 23-690 nmol/l; n = 29). A total of 5 of 29 isolates (3 early RI and 2 early RI/RII) were chloroquine-sensitive in vitro, while 24 of 29 isolates (6 early RI, 16 early RI/RII, and 2 RIII) were chloroquine-resistant in vitro. Among the 9 isolates originating from patients with ETF, the geometric mean IC50 was 302 nmol/l (range, 53-641 nmol/l). Only one isolate (early RI/RII) was sensitive in vitro to chloroquine in this group.

Table 2. Pre-treatment clinical and laboratory parameters of patients who cleared or failed to clear malaria infections with chloroquine therapy

<table>
<thead>
<tr>
<th>Parametera</th>
<th>Therapeutic responseb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACR</td>
</tr>
<tr>
<td>No. of patients</td>
<td>57</td>
</tr>
<tr>
<td>No. of children (aged 5–15 years)</td>
<td>28</td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>17.7 ± 9.8 (5–47)c</td>
</tr>
<tr>
<td>Mean weight (kg)</td>
<td>50.7 ± 21.8 (20–99)</td>
</tr>
<tr>
<td>Sex ratio (male:female)</td>
<td>28:29</td>
</tr>
<tr>
<td>Symptoms before treatment (mean days)</td>
<td>5.7 ± 6.2 (1–30)</td>
</tr>
<tr>
<td>Geometric mean parasitaemia (asexual parasites/µl)</td>
<td>76 400 (9 420–508 700)</td>
</tr>
<tr>
<td>Mean temperature (°C)</td>
<td>37.9 ± 1.3</td>
</tr>
<tr>
<td>Mean haemoglobin level (g/dl)</td>
<td>11.4 ± 2.6 (6.9–17)</td>
</tr>
<tr>
<td>Mean white blood cell count (x 106/µl)</td>
<td>5 640 ± 1 820 (2 900–11 000)</td>
</tr>
<tr>
<td>Mean platelet count (x109/µl)</td>
<td>145 ± 68 (22–295)</td>
</tr>
<tr>
<td>Mean serum ASAT (IU/l)</td>
<td>31.0 ± 27.3 (10–180)</td>
</tr>
<tr>
<td>Mean serum ALAT (IU/l)</td>
<td>19.7 ± 20.1 (2–84)</td>
</tr>
<tr>
<td>Mean creatinine (µmol/l)</td>
<td>68.2 ± 25.0 (30–138)</td>
</tr>
</tbody>
</table>

aThe mean values of ACR and treatment failure groups do not differ significantly (P > 0.05; Mann–Whitney U test). ASAT = aspartate aminotransferase; ALAT = alanine aminotransferase.

bTherapeutic responses as defined in the 1996 revised WHO classification (7). ACR = adequate clinical response; "treatment failure" group includes both late treatment failure (LTF) and early treatment failure (ETF).

cFigures in parentheses are the range.
The validity of the *in vitro* results, determined using the threshold IC₅₀ value for chloroquine resistance of 100 nmol/l, as compared with the therapeutic response, is shown in Table 3. The sensitivity, specificity, and predictive or diagnostic value of the *in vitro* test for distinguishing between chloroquine-sensitive and chloroquine-resistant cases were 67%, 84% and 86%, respectively. The *in vitro* and *in vivo* results were further compared using the kappa statistics; the kappa coefficient between the two tests of resistance was 0.48 (moderate agreement).

Table 3. Validity of isotopic *in vitro* test of chloroquine resistance to detect *in vivo* drug efficacy based on therapeutic response

<table>
<thead>
<tr>
<th>In vitro test result</th>
<th>Treatment failure</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC₅₀ < 100 nmol/l</td>
<td>ACR</td>
<td>LTF/ETF</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>6(5/1)</td>
</tr>
<tr>
<td>IC₅₀ ≥100 nmol/l</td>
<td>19</td>
<td>32 (24/8)</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>38 (29/9)</td>
</tr>
</tbody>
</table>

| Figures in parentheses are number of subjects with LTF/ETF.

Discussion

Several previous studies have been conducted to assess the correspondence between *in vivo* and *in vitro* responses to antifolate drugs (22-24). The results of these studies are not comparable because of differences in the *in vitro* techniques used and in the interpretation of results and are not significant due to the small sample size of field isolates. In addition, antifolate drugs are administered in combination *in vivo*, and the *in vitro* activity of the two drugs in fixed concentrations may not accurately reflect the *in vivo* conditions. Most other previous studies have performed *in vivo* and *in vitro* evaluation of drug efficacy separately (25-27). The real implications of these studies, especially those that were based exclusively on *in vitro* assays or *in vivo* tests on asymptomatic patients, are not clear clinically or epidemiologically.

The present study is the first to compare simultaneously the *in vitro* and *in vivo* responses to chloroquine of a large number of individual *Plasmodium falciparum* field isolates that were obtained from symptomatic patients. Comparison of pre-treatment clinical and laboratory parameters between patients with ACR and those responding with treatment failure showed that there were no significant risk factors for therapeutic failure. Compared with the simplified *in vivo* test for chloroquine resistance, the predictive value of the isotopic *in vitro* assay suggests that 86% of the patients for whom the *in vitro* test indicated the presence of chloroquine-sensitive isolates actually responded adequately to chloroquine therapy. Thus, *in vitro* assay seems to reflect relatively well the *in vivo* response of chloroquine-treated patients evaluated by clinical and parasitological examination.

All patients with ACR cleared their fever on or before day 3, with no recurrent fever until day 14, and either negative or positive (<25% of initial parasite density) smears on day 3. Among patients with an ACR, three subgroups can be distinguished on the basis of parasitological responses on day 7 and/or day 14: type 1 or S/late RI (n = 46) refers to those patients with negative smears on day 7 and day 14; type 2 or early RI (n = 8) refers to patients with a negative smear on day 3 but with an asymptomatic parasitaemia on days 7 and/or 14; and type 3 or early RI (n = 3) refers to patients with a positive smear on day 3, negative smear on day 7, and an asymptomatic parasitaemia on day 14. The importance of this subclassification of the ACR group lies in the improvement of the sensitivity of the *in vitro* test to determine the presence of chloroquine-sensitive isolates in aparasitaemic ACR patients. Thus, if asymptomatic, persistent or recurrent parasitaemia on day 7 and/or day 14 is considered to be a criterion of treatment failure (instead of ACR, according to the 1996 WHO classification), the *in vitro* test would have a higher sensitivity (67% vs. 76%) and slightly lower specificity (84% vs. 82%) and predictive value (86% vs. 80%) relative to the *in vivo* results.
ACR responses should be chloroquine-resistant, as determined by the in vitro assay (chloroquine IC₅₀ > 100 nmol/l; 137, 272, and 348 nmol/l). Five type 2 (early RI) ACR patients were infected with chloroquine-resistant isolates (IC₅₀ = 114, 158, 258, 278, and 368 nmol/l), while three type 2 patients harboured chloroquine-sensitive isolates (IC₅₀ = 46, 51 and 81 nmol/l). Of the 46 type 1 (S/late RI) ACR-patients, 35 chloroquine-sensitive isolates and 11 chloroquine-resistant isolates were obtained.

If we suppose that types 2 and 3 (early RI) ACR responses should be chloroquine-resistant, discordant results between the therapeutic response and in vitro response are observed in three type 2 ACR-patients and 11 type 1 ACR-patients. Of the type 2 patients, two were children and one was adult. One child had a chloroquine-sensitive isolate with diminished in vitro sensitivity (81 nmol/l). In the other patients, there seem to be no obvious reasons for the failure to clear parasitaemia other than possible individual variations in the chloroquine pharmacokinetics, unreported vomiting, and, more importantly, reappearance of sexual parasites due to reinfection.

Type 1 patients were clinically and parasitologically cured on day 14. A total of 35 patients with chloroquine-sensitive isolates were cured, as expected, while 11 patients were cured despite the presence of chloroquine-resistant parasites. The discordance in type 1 ACR-patients may also be related to age. Of the 11 patients with discordant results (range, 125–486 nmol/l), one was aged 6 years, four were aged 11–14 years, and six were adults. Although we have no biological proof, we hypothesize that discordance may be related to a high level of acquired immunity that enhances the clearance of parasites, independently of drug sensitivity.

In contrast, with the ACR group, which consisted of several subgroups, fewer discordant cases between the therapeutic response and in vitro response were observed in the treatment failure groups. A total of 24 LTF patients had chloroquine-resistant isolates, while five discordant cases of LTF patients (3 children and 2 adults; 3 early RI and 2 early RI/RII) were infected with chloroquine-sensitive isolates. The situation for three of five LTF patients may be analogous to that of three type 2 (early RI) ACR patients who responded with asymptomatic parasitaemia on day 7 and/or day 14, despite the presence of chloroquine-sensitive isolates. Two of five discordant LTF patients (a 5-year-old and a 7-year-old) had persistent parasitaemia during the 14-day follow-up period despite the presence of chloroquine-sensitive isolates.

Patients responding with ETF were not easily classifiable on the basis of the definitions of RI, RII and RI/RII. A positive ETF smear occurred on or before day 3. Although only a small number of ETF cases were observed in our study, the subjective criterion of ETF (aggravated clinical condition) does seem to be supported by parasitological criteria in the majority of cases and potentially represents most severe cases of drug failure.

In vivo testing is an accurate and valid measure of therapeutic efficacy and is the most reliable means for detecting drug resistance. Compared with in vitro assays, the in vivo test of resistance may be conducted in remote areas by qualified personnel with minimal training. It also permits working directly with malaria-infected patients, deriving clinical data, monitoring clinical response over a short time frame, and modifying treatment in case of a therapeutic failure. However, the test is not entirely free of potential problems of bias and precision. When therapeutic failure is observed using an in vivo test, the kappa coefficient between the two tests would also increase from 0.48 to 0.58. All three type 3 early RI ACR patients had chloroquine-resistant isolates, as determined by the in vitro assay (chloroquine IC₅₀ > 100 nmol/l; 137, 272, and 348 nmol/l). Five type 2 (early RI) ACR patients were infected with chloroquine-resistant isolates (IC₅₀ = 114, 158, 258, 278, and 368 nmol/l), while three type 2 patients harboured chloroquine-sensitive isolates (IC₅₀ = 46, 51 and 81 nmol/l). Of the 46 type 1 (S/late RI) ACR-patients, 35 chloroquine-sensitive isolates and 11 chloroquine-resistant isolates were obtained.

If we suppose that types 2 and 3 (early RI) ACR responses should be chloroquine-resistant, discordant results between the therapeutic response and in vitro response are observed in three type 2 ACR-patients and 11 type 1 ACR-patients. Of the type 2 patients, two were children and one was adult. One child had a chloroquine-sensitive isolate with diminished in vitro sensitivity (81 nmol/l). In the other patients, there seem to be no obvious reasons for the failure to clear parasitaemia other than possible individual variations in the chloroquine pharmacokinetics, unreported vomiting, and, more importantly, reappearance of sexual parasites due to reinfection.

Type 1 patients were clinically and parasitologically cured on day 14. A total of 35 patients with chloroquine-sensitive isolates were cured, as expected, while 11 patients were cured despite the presence of chloroquine-resistant parasites. The discordance in type 1 ACR-patients may also be related to age. Of the 11 patients with discordant results (range, 125–486 nmol/l), one was aged 6 years, four were aged 11–14 years, and six were adults. Although we have no biological proof, we hypothesize that discordance may be related to a high level of acquired immunity that enhances the clearance of parasites, independently of drug sensitivity.

In contrast, with the ACR group, which consisted of several subgroups, fewer discordant cases between the therapeutic response and in vitro response were observed in the treatment failure groups. A total of 24 LTF patients had chloroquine-resistant isolates, while five discordant cases of LTF patients (3 children and 2 adults; 3 early RI and 2 early RI/RII) were infected with chloroquine-sensitive isolates. The situation for three of five LTF patients may be analogous to that of three type 2 (early RI) ACR patients who responded with asymptomatic parasitaemia on day 7 and/or day 14, despite the presence of chloroquine-sensitive isolates. Two of five discordant LTF patients (a 5-year-old and a 7-year-old) had persistent parasitaemia during the 14-day follow-up period despite the presence of chloroquine-sensitive isolates.

Patients responding with ETF were not easily classifiable on the basis of the definitions of RI, RII and RI/RII. A positive ETF smear occurred on or before day 3. Although only a small number of ETF cases were observed in our study, the subjective criterion of ETF (aggravated clinical condition) does seem to be supported by parasitological criteria in the majority of cases and potentially represents most severe cases of drug failure.

In vivo testing is an accurate and valid measure of therapeutic efficacy and is the most reliable means for detecting drug resistance. Compared with in vitro assays, the in vivo test of resistance may be conducted in remote areas by qualified personnel with minimal training. It also permits working directly with malaria-infected patients, deriving clinical data, monitoring clinical response over a short time frame, and modifying treatment in case of a therapeutic failure. However, the test is not entirely free of potential problems of bias and precision. When therapeutic failure is observed using an in vivo
test, establishment of a causal relationship between treatment failure and in vivo drug resistance requires further investigations since various parasite and host factors contribute to a therapeutic failure. For example, factors related to the characteristics and dynamics of parasite transmission include the presence of intraerythrocytic parasites with a drug-resistant phenotype on day 0 of the treatment, late emergence of secondary or tertiary "broods" of parasites from the liver after a subtherapeutic level of the drug is attained in the host, and reinfection of the host with new populations of parasites after drug treatment. Host factors that play an important role in therapeutic failure include variability in pharmacodynamics and pharmacokinetics and the level of acquired immunity. There may be other factors that contribute to or delay parasite and fever clearance, such as intrinsic virulence of parasite strains, host genetic factors unrelated to immunity, concomitant diseases that were undiagnosed at the time of patient enrollment, and social behavior of the host. For example, concomitant self-medication with other classical antimalarial drugs or traditional herbal medicine.

These considerations show that, unless such factors are excluded, a case of therapeutic failure cannot be attributed to in vivo drug resistance with certainty. These limitations may diminish the precision of the in vivo test and need to be taken into consideration in assessing our findings since they lead to decreased measures of validity of the in vivo test. Furthermore, unless some of the above factors can account for in vivo/in vitro discordant cases, the in vivo threshold for chloroquine resistance can not be redefined on the basis of our in vivo data.

In addition to the difficulties in establishing a causal relationship between therapeutic failure and in vivo drug resistance, the revised WHO criteria themselves may not be appropriate in all cases. One of the criteria for treatment failure (aggravation of clinical conditions requiring an alternative treatment) is based on a subjective clinical evaluation that may introduce a bias towards an increased proportion of "resistant" cases. In our experience, the criteria for persistent or recurrent fever on day 3 sometimes leads to a wrong classification of patients. When left untreated, some patients with fever and positive thick film on day 3 ("treatment failure" according to the WHO classification) cleared the parasites and became afebrile on day 4 and remained so and apyretic until day 14 (ACR). These cases illustrate the limits of the in vivo test of resistance. Despite these potential shortcomings, the in vivo test ("7-day test", "28-day extended test", or simplified test) must be considered to be the only currently available, valid measure of drug resistance that may be used to guide national antimalarial drug policy.

In vitro assays may be a more objective method to detect drug resistance since in vitro tests eliminate several host factors that interfere with the clear interpretation of results, including reinfections, immunity, pharmacodynamics, and pharmacokinetics. In vitro assays are complementary to in vivo tests, and their results are theoretically more directly associated with drug resistance (28). However, most specialized laboratories that conduct in vitro assays as a routine procedure are located far from clinical study sites and require a high level of training and technical capability, transport of blood samples from the field and sophisticated equipment to perform isostopic assays. As a result, in vitro assays have been used to describe the epidemiology of drug resistance independently of clinical studies and to screen new compounds (10, 25-29). Although these two applications of in vitro assays have provided important information, the results of the present study suggest the usefulness of in vitro assays as a complementary diagnostic tool for drug resistance but do not suggest that the in vitro test can replace the in vivo test in the field.

Another major problem with the in vitro test is the selection of threshold values to classify results in terms of sensitivity or resistance. Use of the therapeutic plasma level as the threshold value is theoretically plausible but disregards the technical constraints of the in vitro culture method (30). The optimal conditions for in vitro culture are markedly different from those for in vivo conditions, and include the composition of culture medium, haematocrit (1-2.5% for in vivo, 35-45% for in vitro tests) and proportion of serum (10% for in vitro culture, 55-65% for in vivo). Thus therapeutic plasma levels may not be appropriate for in vitro parasite growth conditions. Comparison of different clones or laboratory-adapted strains of parasites and determination of the limiting drug concentration that produces a response in these reference strains has also been used to estimate the threshold value. Even if the drug response of the original isolate from which a clone or strain was derived is known, adaptation of parasites to in vitro conditions alters the original phenotype and may not reflect the characteristics of the original isolate (31). In addition, threshold values determined using this method may not be clear-cut for some isolates obtained in the field because of the presence of mixed populations of parasites with different phenotypes. Thus, although a clone or strain of P. falciparum with well-defined phenotype and genotype may be useful in laboratory experiments, various in vivo factors preclude direct comparison between in vitro and in vivo conditions; consequently, any threshold value for differentiating sensitive and resistant isolates may largely remain arbitrary unless large-scale trials are conducted under various epidemiological conditions to define simultaneously in vitro drug sensitivity pattern, genotype, pharmacokinetic parameters and immune response.

At present, chloroquine is still the rational choice for the first-line treatment of the majority of cases of acute, uncomplicated malaria in indigenous patients in Africa because it is cheap, safe, well-tolerated, widely available, and highly effective against P. vivax, P. ovale, P. malariae, and sensitive strains of P. falciparum. In some endemic areas, however, con-
In vivo and in vitro tests of chloroquine resistance

cern is increasing about in vivo chloroquine-resistant cases. The extent of chloroquine resistance therefore needs to be monitored to guide the rational use of antimalarial drugs in Africa. Both in vitro and in vivo tests of resistance have their limitations and in any case do not measure the same biological phenomena. Our results show that the in vitro test of resistance is a complementary tool that is moderately concordant with the simplified in vivo test. The use of in vitro tests should be limited to research purposes to provide baseline data on drug response and monitor cross-resistance patterns. The in vitro test cannot replace the in vivo test for therapeutic efficacy and should not play any role in guiding antimalarial drug policy. Although it may be difficult to define exactly the criteria for in vivo chloroquine resistance and to fulfil them, especially in the field, a standardized in vivo test based on all available clinical and epidemiological information is still the best available means for defining drug resistance within a given epidemiological context. ■

Acknowledgements
We thank Sister Solange and her nursing and laboratory staff at the Nlongkak Catholic mission ary dispensary for their valuable aid. This study was financed by AUPELF-UEEP Leonardo Basco received a grant from the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases.

Résumé
Comparaison des tests in vivo et in vitro de résistance chez des malades traités à la chloroquine à Yaoundé (Caméroun)

La résistance de Plasmodium falciparum à la chloroquine a été décrite dans tous les pays de l’Afrique subsaharienne. Néanmoins, la chloroquine reste le médicament de première intention pour le traitement de l’accès palustre simple dans la plupart des pays africains. L’extension de la résistance à la chloroquine nécessite une surveillance permanente soit par des tests in vivo, soit par des tests in vitro. Afin de rechercher une concordance entre ces deux types de test, nous avons comparé les résultats du nouveau test d’efficacité thérapeutique introduit par l’OMS en 1996 à ceux du semi-microtest isotopique. Ce nouveau test in vivo est basé sur l’évolution, après un traitement standard par la chloroquine à 25 mg/kg sur 3 jours, de l’état clinique et de la parasitémie chez des malades atteints d’un accès palustre simple à P. falciparum. Les résultats sont exprimés en réponse clinique adéquate ou en échec thérapeutique précoce ou tardif en fonction de la disparition, de l’aggravation, de la persistance ou de la réapparition des signes cliniques, en particulier la fièvre, et en fonction de l’évolution de la parasitémie. Le semi-microtest consiste à étudier la croissance in vitro des parasites en présence de concentrations croissantes de chloroquine (25 à 1600 nmol/l). La croissance est mesurée par l’inclusion de hypoxanthine tritiée. Les résultats sont exprimés en concentration inhibitrice 50% (C50) correspondant à la concentration inhibant la croissance de 50% des parasites par rapport à un témoin. Le seuil de résistance pour la chloroquine est fixé à 100 nmol/l. Parmi les 117 malades inclus, 102 (87%) ont été suivis pendant 14 jours, et 95 tests in vitro réalisés avec les isolats des malades (46 enfants et 49 adultes) ont pu être interprétés. Cinquante-sept (60%; 28 enfants et 29 adultes) malades ont présenté une réponse clinique adéquate après le traitement à la chloroquine avec une goutte épaisse négative à J14 (n = 46) ou avec une parasitémie asymptomatique à J17 et/ou à J14 (n = 11). La moyenne géométrique des C50 des isolats correspondants était de 63,3 nmol/l. Les échecs thérapeutiques tardifs et précoces ont été observés chez 29 (30,5%) et 9 (9,5%) patients, respectivement. La moyenne géométrique des C50 des isolats correspondants était de 173 nmol/l pour les échecs thérapeutiques tardifs et de 302 nmol/l pour les échecs thérapeutiques précoces. En considérant le test in vivo comme test de référence, la sensibilité, la spécificité et la valeur prédictive positive du test in vitro étaient de 67%, 84% et 86%, respectivement. Le coefficient de kappa mesurant la concordance entre les deux tests était de 0,48, indiquant un degré de concordance modéré. Contrairement au test in vitro, le test in vivo est plus le reflet de l’efficacité thérapeutique de la chloroquine qu’un test mesurant la résistance des parasites. En effet, l’efficacité thérapeutique est fonction de nombreux facteurs liés à l’hôte et aux parasites. Ces différents facteurs peuvent expliquer les 20% de discordance observés entre les tests in vivo et in vitro. Néanmoins, nos résultats montrent que le test in vitro et le test in vivo sont des méthodes d’analyse de la résistance concordantes et complémentaires, mais seul le test in vivo pratiqué chez des malades permet de juger de l’efficacité d’un médicament antipaludique et d’orienter les traitements antipaludiques dans le cadre de la politique nationale de lutte.

Resumen
Comparación de pruebas de resistencia in vivo e in vitro en pacientes tratados con cloroquina en Yaundé (Camerún)

La resistencia de Plasmodium falciparum a la cloroquina se ha observado en todos los países del África subsahariana. Sin embargo, la cloroquina sigue siendo el medicamento más socorrido para el tratamiento de la infección palúdica no complicada en la mayor parte de los países africanos. Se requiere una vigilancia per-
Research

manente de la magnitud de la resistencia a la cloroquina por medio de pruebas in vivo o in vitro. Con objeto de establecer una concordancia entre estos dos tipos de análisis, hemos comparado los resultados del nuevo método de valoración de la eficacia terapéutica adoptado por la OMS en 1996 con el semimicroanálisis isotópico. Esta nueva prueba in vivo se basa en la evolución del estado clínico y la parasitemia de los enfermos afectados por un acceso de paludismo simple causado por *Plasmodium falciparum*, al cabo de un tratamiento estándar con cloroquina a razón de 25 mg/kg durante tres días. Los resultados se expresan como respuesta clínica adecuada o fracaso terapéutico precoz o tardío en función de la desaparición, la agravación, la persistencia o la reaparición de las manifestaciones clínicas, en particular la fiebre, y en función de la evolución de la parasitemia. El análisis consiste en estudiar el crecimiento in vitro de los parásitos en presencia de concentraciones crecientes de cloroquina (25 a 1600 nmol/l). El crecimiento se mide por la incorporación de hipoxantina tritada. Los resultados se expresan en concentración inhibitoria 50% (Cl50), correspondiente a la concentración que inhibe el crecimiento del 50% de los parásitos en relación con un testigo. EI umbral de resistencia resistencias crecientes de cloroquina (25 a 1600 nmol/l). EI crecimiento se mide por la incorporación de hipoxantina tritada. Los resultados se expresan en concentración inhibitoria 50% (Cl50), correspondiente a la concentración que inhibe el crecimiento del 50% de los parásitos en relación con un testigo. El umbral de resistencia respecto de la cloroquina está fijado en 100 nmol/l. De los 117 enfermos participantes, 102 (87,7%) fueron objeto de seguimiento durante 14 días y se pudieron interpretar 95 pruebas in vitro realizadas con los aislados de los enfermos (46 niños y 49 adultos). Cincuenta y siete enfermedades (60%; 28 niños y 29 adultos) presentaron una respuesta clínica adecuada después del tratamiento con cloroquina, con gota gruesa negativa el día 14 (n = 46) o con una parasitemia asintomática los días 7 y/o 14 (n = 11). La media geométrica de las Cl50 de los aislados correspondientes fue de 63,3 nmol/l. Se observaron fracasos terapéuticos tardíos y precoces en 29 (30,5%) y 9 (9,5%) pacientes, respectivamente. La media geométrica de las Cl50 de los aislados correspondientes fue de 173 nmol/l para los fracasos terapéuticos tardíos y de 302 nmol/l para los precoces. Considerando la prueba in vivo como valoración de referencia, la sensibilidad, la especificidad y el valor predictivo positivo de la prueba in vitro fueron del 67%, el 84% y el 86%, respectivamente. El coeficiente kappa, que mide la concordancia entre las dos pruebas, fue de 0,48, lo que indica un grado de concordancia moderado. Contrariamente a la prueba in vitro, la prueba in vivo es más el reflejo de la eficacia terapéutica de la cloroquina que un análisis que permita medir la resistencia de los parásitos. En efecto, la eficacia terapéutica depende de muchos factores vinculados al huésped y a los parásitos. Esos diferentes factores pueden explicar el 20% de discordancia observado entre las pruebas in vivo e in vitro. No obstante, nuestros resultados muestran que la prueba in vitro y la prueba in vivo son métodos de análisis de la resistencia concordantes y complementarios, aunque sólo la prueba in vivo realizada en enfermos permite juzgar la eficacia de un medicamento antipalúdico y orientar los tratamientos en el marco de la política nacional antipalúdica.

References

Editorials
Making a difference
Gro Harlem Brundtland

A new role for the Bulletin
Richard G.A. Feachem

Research
Mumps and mumps vaccine: a global review
A.M. Galacha, S.E. Robertson, & A. Kraigher

Diagnosing anaemia using the Haemoglobin Colour Scale
N.R. van den Broek et al.

Unrecognized sexually transmitted infections in rural South African women
D. Wilkinson et al.

Use of an autodestruct syringe compared with a disposable syringe
C.M. Nelson, A. Sutanto, & I.G.P. Sunadana

In vivo and in vitro tests of chloroquine resistance
P. Ringwald & L.K. Bace

Policy and Practice
Towards evidence-based health care reform
M. Eenonen, D. Jankauskiene & A. Vask

Prizes for weight loss
L. Englberger

Round Table
Animal-to-human organ transplants
A.S. Daar

Discussion
J.S. Allan; A.F.R. Alwaihane; F.H. Batch; A.Caplan; L.Chapman; B.M. Dickens; J.A. Fishman; C.G. Groth & M.E. Breimer; A.Monache; P.J. Morris; E. Van Rongen

Public Health Classics
Measuring the health hazards of tobacco: Commentary
A.D. Lopez

Smoking and carcinoma of the lung
R. Doll & A. Bradford Hill

News
94

Books & Electronic Media
96

Readers' Forum
97