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Abstract 

Laboratory reflectance spectra of ninety-one soil samples from Israel were 
convolved into the six TM bandpasses allocated within the VIS-NIR-SWIR spectral 
region (0.4-2.5 p). Laboratory convolved TM spectra were  used as raw data against 
which to run the NIRA-VNIRA (Near Infrared Analysis and  Visible  and Near Infrared 
Analysis, respectively) procedure  using a method called  Thematic Mapper Analysis 
(TMA). Hourteen soil properties  and constituents were examined for possible prediction 
from the TM spectra, but only four were found to be significantly predictable: 
carbomtes (CaCO,), specific surface area (SSA), total silica (Sioz) and loss-on-ignition 
residual (LOI). Prediction performance of the method is still low relative to  the results 
obtained using a similar population  and an analysis routine for highest spectral 
resolution data, however the  extremely difficult conditions used (low spectral resolution 
and complex soil matrix), the prediction performance is likely  to  be  good  and is very 
promising for the remote sensing applications of soils. Further study with real TM data 
and field measurements is strongly recommended. 

1. Introduction 

Near Infrared Analysis (NIRA in the 1.0-2.5 pm spectral region) and Visible-Near 
Infrared Analysis (VNIRA in  the 0.4-1.0 pm spectral region) methodologies are 
sinlilar routines  that  have  been successfully used to predict several soil properties from 
their reflectance spectra (BEN-DOR and BANIN, 1994a,b). Basically, NIRA is a method 
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that \vas developed to predict the concentration of a giren constituent  that consists of 
significant spectral features in the short wave infrared (SWTR) spectral region. Recently, 
BEN-DOR et al. ( 1994a) successfully applied the NIRA concept into featureless soil 
constituents in the visible and near infrared regions  and  concluded  that low spectral 
resolution is not necessarily a limitation for quantitative analysis of soils. 

The TM data  have  been widely studied for various applications by using various 
analytical techniques such  as band rationing, color composite technique, analysis of the 
TM spectrum (uninking) are clustering analysis, discriminate analysis, and phnciple 
component annalysis (PCA). Soil is a complex system of nlinerals, organic matter and 
water,  and  hence may prove to be complicated in their analysis.  Based on a modified 
stepwise  principal component analysis, CSTLLAG et al. (19931,  shomed  that salinity of 
soils can be detected using six broad bands across  the VIS-NIR-SWIR region as derived 
from high resolution spectra. They pointed out that their identified bands  may yield 
higher overall  accuracy than that currently available  from Landsat MSS, TM, and SPOT 
XS in terms of spectral recognition of salinity status. 

In  another study, PRICE (1990) concluded  that four broad-band spectral 
measurements across the VIS-MW-SWIR region, as derived from  high spectral 
resolution of more  than 500 soils, are sufficient to describe their spectra. 

Based on the idea that the six broad spectral bands of the TM spectrum does hold 
chernical  information in the VIS-NB-SWTR regions  and  based on the fact that the 
NIRA-VNIRA  methods successfully run  on low spectral  resolution spectra, we applied 
and  report  here a study that examines the synergy between TM spectra and NIRA 
approach. 

Soi1 sampling 

Ninety-one  soil samples that represent twelve soil groups in Israel were selected to 
cover the arid  and  semiarid climatic zone of Israel (BEN-DOR and BANW, 1994b). The 
samples were collected rnostly from the A0 horizon of the soils (upper 5 cm) witlin an 
area of about 1 m2. The soils were air dried and  gently  crushcd to pass  through a 6 2 mm 
sieve. Subsamples were further grounded (quantitatively) by agate mortar to  pass 
through a 0.355 mm sieve. 

Chernical and mechanical analyses 

The following soil properties and constituents were determîned by applying 
laboratory  techniques that are  mostly summarized in the "Method of Soil Analysis" text 
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book  (MILLER and KEENY, 1986),  these being: Clay content (CLAY), Specific surface 
area (SSA), Cation exchange  capacity (CEC), Hygroscopic  moisture (HIGF), 
Exchangeable sodium percentages (CNaP), Calcium carbonate content  (,CaCO,J, and 
Organic matter content (OM). The total  elenlentcd analyses (iron-Fe20,, alunlina-A120,, 
silica-SiO,, loss-on-ignition residual-LOT,  and potassium-&O) were carried out  using 
the X-ray fluorescence method  at  XRAL Laboratories (Canada) and  the free iron oxides 
(Fed) were determined by  using  the Dithionite Citrate Bicarbonate (DCB) method 
provided  by MEHRA and JACKSON (1960). Soil aggregate size distribution was 
accomplished through differential sieving of the < 2 n~ dry  soils. The sieving 
procedure consisted of shaking 400 grams  of soil for  five minutes through six different 
sieves as follows: 2-1.4 mm (Fl), 1.4-1.0 mm (F2). 1-0.5 mm (F3), 0.5-0.25 mm (F4), 
0.25-0.1 mm (F5) and < 0.1 mm (F6). Soil matel-ials remaining on each of the sieves 
after the shaking period  were  accurately  weighed and reported  as percentages of the 
initial 400 grams of material. The average aggregate size (AVGR) was calculated as a 
geometrical mean of the six aggregate size fractions. 

where WFi is the  weight (in grams) of fraction F,, left on the corresponding sieve, d, 
is the average size of  the  relevant F, fraction and 400 refers to the initial weight of the 
soil sample examined. 

Spectral  measurements  and  compression 

Spectral measurements: Soil reflectance spectm were recorded separately by two 
spectrophotometers for the VIS-NIR  (0.4-1.1 pm) and SWIR (1-2.5 p m )  regions as 
follows: For the SWIR region, we used an Alpha Centauri MATTSON FTIR 
spectrophotometer optimized to  the  SWIR (1-2.5 pm) region (spectral resolution of 
1.9 cm-', in telms of wavenumber, providing 3,113 non equal spectral bands) and a 
Prying Mantis bidirectional Harrick diffuse reilectance attachment (DRA two 
dimensional model). For  the  VIS-NIR region, we used a LICOR spectrometer optimized 
to the VIS-NIR region  (0.4-1.1 pn; spectral resolution of 1 nm, in terms of wave 
numnber providing 700 equal spectral bands) and an integrating sphere attachment coated 
with BaSO,. In both of the above  spectral regions, a standard sample preparation routine 
was applied to the < 0.355 mm soil  powders  and the soil reflectance spectrum was 
reported relative to a BaSO,  spectrum. 

Spectrum compression into TM bands: In both  VIS-NIR  and SWR regions the 
spectral and wavelength values of  al1 original bands that were  allocated  within the TM 
spectral bands were averaged.  Table 1 presents the TM bands, together with their 
spectral regions. Table 1 also  shows the average wavelength of each TM band and the 
nunlber of original spectral bands required for the calculation of the convolved TM 
values (both for wavelength  and spectral readings). 
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Table 1. The  TM bands and their spectral rLmu7_ges together with the convolved wavelength and 
number of spectral points talren for the convolution process. 

Spectral range Convolved wavelength Spectral points in 
TM band (mm) (mm) convolved baudpass 

0.40-n.57 0.16 
0.52-0.60 0.56 
0.62-0.69 0.66 
0.76-0.9-1. 0.83 
1.55-1.75 1 .65 

10.1- I 2.56 ND." 
3.08-3.35  2.72 

120 
€0 
70 
140 
3x3 

N.D:% 
285 

The NIRA-VNIIRA methodology that is used  to analyze the convolved TM spectra is 
termed Thematic Mapper Analysis (TMA). The TMA  (and ~ ~ - V N I F t A )  procedure 
requires ~ W O  stages: 1 ) the calibration stage, where the prediction equation is developed, 
and 3)  the  validation stage, where the previous stage is validated (DAVIES and G b w ,  
1987). Since the suggested algorithm is basically an empirical  rnethod, the validation 
stage is extremely critical. The complete TMA procedure absolutely requires both the 
calibration  and the validation stages to predict  unknotvn  samples. 

Calibration stage 

This procedure utilized a subgroup (22-50 samples) that  was selected directly from 
the ninety-one soi1 samples. A simple linear  regression procedure betwesn the 
concentration of a given constituent and  the  spectral response (reflectance [RI, 
absorption [A=log( IR)] or their derivatives [first-R',  A',  and  second-A"]) of every band 
was run. A Multiple Regression Analysis (MRA) was  run  between the chemical values 
and al1 six TM bands and their corresponding reflectance  values. This procedure was 
used  to examine each  of the spectral parameters (R. A, or their derivatives) and each 
MM stage. The result, a multi-term  equation,  was  then  used to predict the 
concentration of "unlmown" validated samples in stage 2. 

Validation stage 

Unknown subgroups (37-56 samples) that  were not used in the calibration process 
mere  used  to  validate the calibration equation produced in stage 1. For that purpose, the 
spectra of al1 the validation samples were mathematically manipulated exactly as were 
the spectra that  provided the prediction equation.  Then the concentration of each 
constituent  was calculated using the corresponding  prediction equation obtained in 
stage 1. The calculated results (predicted) were  compared  with  the chemical results 
(measured). Every prediction equation of the calibration stage for each of the M M  
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steps  was examined against the validation  subgroup. The prediction equation that 
yielded the highest validation performance was declared the preferred equation, and 
used further in  this study. 

Statistical  Analyses 

The MRA procedure selects a best multiple correlation equation between a 
constituent concentration Cp in a given sample  and the selected spectral parameters as 
follows: 

Ci, = b” + b1 Ll + b2 L, +... +bT1 L,? (1) 

where 6, is an intercept, b,, b, ... b, are  weighting factors for the spectra readings in 
various selected wavelengths 1 to I I .  L,, L2...Lrt, are the values of the spectral parameters 
at wavelengths  1 to 12 and could be either reflectance data (R), absorption data (A) or 
their derivatives (first R’,A’ or second A”). Fredicted  values of the constituents’ 
concentrations were calculated from equation 1 and  the standard error of calibration 
(SEC) was then calculated according to DAVIES and GRANT (1987) as follows: 

where C,,, is the value measured by  the chemical analysis, C,, is the predicted value on 
the basis of the spectral analysis, N,. is the  number of the samples in the set  and  n is the 
number of terms in the prediction equation. 

The calibration equation (2) was  used to predict the constituent concentration of 
another set of  soi1 samples not used in the calibration stage. The standard error of 
performance (SEP) was then calculated as follows: 

where N,. is the total number of tested samples in this stage. 
ln addition  to the above  parameters, we applied  a  bias  test  that was adopted  from 

MILLER and MILLER (1988). It  examines  the  regression  line  between  the  results of the 
reference  and  the  alternative  methods  (in Our case  the  chemical  and  the  TM-validation 
results  respectively)  and  uses  three  null  hypotheses in order  to  reject or accept the regression 
line  (Cp=a.Cm+b)  as  a 1: 1 line. The assumptions of the  null  hypotheses  are: 

1 ) The  slope of the regression  line (a) is unity, 
2) The  intercept of the  regression  line (b) is zero  and, 
3) The regression coefficient (r2) is unity. 
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In figure 1 the original reflectance spectrum of a representative soil (l3-7) together 
with  the  six TR4 band passes in the VIS-NIR-SWIR regions, is presented. Figure 2 
indicates that convolving the original spectra into the six  TM band passes significantly 
affects the spectral features of the continuous  spectrum. In order to roughly examine  the 
effect of cornpressing the original  spcctrum  into  the  Th1 spectrum, MT compared the  soil 
chemistry with some of their convolved 7Tvl spectra. ln  figure 2, six convolved TM 
spectra of six representative soi1 samples are presented. Table 3 presents the chemistry 
of these selected soils as  determined by chemical methods and their classification 
according to the United States Department of Agriculture [USDA). In general, the Thil 
spectra of the soils me quite similar. However, some differences can be observed, 
mainly in the apparent reflectance values.  Apparent reflectance actually relates to the 
soil brightness (or soil "albedo") and correlates with the CaCO, content while showing a 
correlation  with the Fed  and Oh4 amounts. A high  content of CaCO, is attributed to a 
light  soil color (and hence to higher VIS reflectance, BAUER et n1.,1979), a high  Fed 
content is attributed to red soil color (and hence  to a moderate to low VIS reflectance, 
ScmvE~rnftwN, 1988) and a high OM content is attributed to darlr soil color (and hence 
to the lowest VIS reflectance MCIlEAGUE et al., 197 1). 

s 1 , ,  , , , , , , ~ , I  
O 
0.4 0.6 0.8 1 .O 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

Wavelength (Pm) 

Figure 1. Reflectance 
spectrum of 
representative soil samplc 
B-7 in the VIS-NIR- 
SWIR spectral regiun 
(0.4-2.Spm) and the 
positions of six TM band 
#passes allacated in this 
region. 

Thus, sample C-2, which  contains a relatively high  amount of CaCO, (40.3%) and 
relatively low anlounts of  Fecl (1,967 ppmj and OM (1.02%) presents high reflectance 
levels throughout al1 spectral regions  (high  albedo). Sample A-4, which  contains 
relatively high amounts of Fed (14,794 ppm) and BM (5.65%~) and  has a relatively low 
&CO, content (8.45'%)- presents low reflectance levels throughout al1 spectral regions 
(low albedo). A~SQ note that soils with a relatively high Fed  content (A-4, H-2, and 
E-1) have a spectral feature around 0.56 mm, which  can  be assigned to ferrous ion 
(HUNT et al. 1971). A relatively high content of Clay (8-4, H-2, and J-1) shows a 
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negative slope of the TM curve going from band TA45 to band TM7 because of the 
relatively high absorption of OH in d a y  minerals at around 2.2 mm (band TM7). It can 
be concluded that even though the convolved TM spectra contain only six spectral 
bands, and  much of the spectral information is apparently reduced by the spectral 
compression, important information concerning the chenistry of the soils can still  be 
roughly extracted from the convolved TM spectra. 

n.7 r I 

H - Y  

0 ;  I I l 1 1 I I 
0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 

Wavelength (Pm) 

Figure 2. Convolved TM 
reflectance spectra of six 
representative soils. Each 
of the  soils corresponds 
to a different soil group 
as classified according to 
the USDA classification 
method (see Table 2). 

Table 2. Chelnical  values of six representative soil samples  and  their  classifications  according  to  the LTSDA. 

Soi1 Samplr 
USDA 

Classification Clay (%) 

E- 1 Rhodoxeralf 1.83 13.9 4,302 1.27 
c-2 Xerorthent 10.3 19.1 1,967 1 .O2 
B-1 Haploxeroll 41.99 39.3 5,253 4.9 1 
A-4 Xrrochrept 8.45 46.1 17,791 5.65 
H-2  Xerent 18.5 61.2 3,876 1.85 
J- 1 Fluvent 38.9 50.6 6,777 1.14 

Based  on  the  above,  we hrther studied  the  relationship  between  the TM spectra and  the 
soil chemistry by  using the TMA approach. For that  purpose we  used all manipulated 
spectra as discussed  in  the Mutwiul und inerlmd section. To illustrate  the  influence of the 
mathematical  manipulations on a  given  spectrum, in figure 3 we present  the original 
convolved TM sprctrum of sample B-7 together  with  its  absorbance,  and  first  and  second 
derivatives of the absorbance TM convolved  spectrum. It is  apparent  that  the  conversion of 
reflectance  data (R) into  absorbance  values  (A=log  [UR])  does  not  affect  the  original TM 
spectral  features. Also notice  that  the  fïrst  derivation  technique  yields  a  curve  that looks 
quite similar to  the  original TM reeflectance curve,  except for slight  spectral enlmcenlent 
around 0.4-0.7 mm. The  second  derivative  better  "enhanced"  the VIS region  and  a 
significant  peak  can  be  detected  around 0.57 mm. 
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Table 3. The  optimal results for ench ~nanipulation  stage ( R  A, R'. A', A"). The optimal information 
includes: F and SEP of the validation  stage, R2 and SEC of the calibration stage and the tïrst wavelength 
in the prediction  equation.  Vdues  in bold repressnt the prediction  stage  selected. 

1 

II 

m 

III 

m 

C", (%) A 
0.69 - 11.40 
0.79 - 11.07 

0.46ym 

OM (gr,) A 
0.39 - 2.03 
0.36 - 1.38 

0.66pm 

SSA (%) A 
0.46 - 63.8 
0.60 - 60.8 

0.83ym 

CEC ( Q) A 
0.41 - 10.7 
0.54 - 9.97 

0.83pn 

Clay (%,) R 
0.28 - 11.50 
0.39 - 13.19 

0.66pm 

Math 
C;mp Property r2 - SEP 

R2 - SEC 
h, 

m 

rn 

Lu 

III 

rn 

KIGF (2,) A 
0.40 - 1.98 
0.54 - 2.01 

0.83pm 

Mhl,O, (%,l A 
0.26 - 2.51 
0.35 - 2.54 

Q.83ym 

FezO, (%) R 
0.27 - 1.39 
0.37 - 1.26 
0.83pm 

SiO, (%) '4 
0.67 - 12.60 
0.68 - 13.34 

1.65ym 

LOI (B.) A 
0.71 - 5.71 
0.80 - 4.67 

1.65pm 

Math 
? m p  Property r2-SEP 

R2 - SEC 
h, 

IV Fed (ppm) A 
0.41 - 3341 
0.50 - 2930 

0.66ym 

IV A\'WUIUII) d' 
0.10 - 0.18 
0.12 - 0.19 

1 .6Sp  

IV Fi(%) R' 
0.29 - 5.61 
0.21 - 6.69 

0.56ym 

IV CNapi%I A 
0. 17 - 0.37 
0.10 - 0.36 

0.46ym 

IV K$ ( B I  A 
0.17 - 0.37 
0.10 - 0.36 

0.4hym 

h'iath: 5pestnl mathmatic m c n i p u l a t i o n ~ R - R ~ f l e c t a n c ~ ; A - ~ ~ s o r b ~ ~ c ~ : ~ ~ ~ - ~ ~ ~ t  derivatives A"-Serond darivative): P: Single 
ctxfficient of colrelation ktxeen validation  data; SEP Standard r m r  I If prediction: R2: ItMtiplc coeGcient of comlation bztnea 
cdihmtion data; SEC: Standard enor of calibraiton: hl: Fit \vavelength in the calibration quation. 

NIM-WIRA (and TMA) techniques require the selection of a representative 
calibration set, which is chemically matched with its validation set and  with the 
population of a large number of samples (MUWY, 1988). Since we identified four 
different groups of properties, four independent testing groups were used for the TMA 
examination. Basically the M M  approach (and hence the TM4 as well) is an empirical 
method that allows (actually requires) many combinations of samples and data 
manipulations to obtain optimal prediction performance (STARK, 19SS). The criteria of 
low SEP and high r2 of the validation set were selected to indicate the optimal data 
manipulation. The results of  this initial analysis are presented in table 5 where the data 
manipulation (A, R, R', A' or A") that yielded the best performance along with their 
statistical parameters (rZ9 SEP, R2, SEC), and with the first wavelength of the prediction 
equation ( I l ) ,  are presented. 
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0.5 

0.4 

0.3 
0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 

3 

kbsorbance fint derivatlve 

-2.5 
0.4 0.7 I 1.3 1.6 1.9 2.2 

-2- 
0.4 0.7 I 1.3 1.6 1.9 2.2  2.5 

Figure 3. The effect of  converting the convolved TM reflectancc  spectrum of a representative 
soil  sample (€3-7) into absorbance (A) and its manipulation into first (A’) and  second (A”) 
derivatives. 

From table 3 it can be seen that most of the predictions (and particularly those with 
r2 > 0.4.5) require transformation into A with no derivation. Only four constituents 
could be reasonably predicted using the convolved TM  spectra:  CaCO,, SSA, Sioz, and 
LOI. 

NORRIS and WJLLIAMS (1984) concluded that the derivation technique eliminates 
the baseline differentiation caused by particle size distribution (termed “particle size 
effect”). Based  on the fact that significant TMA predictions do not require derivation 
manipulation, it may  be concluded that TMA predictions strongly depend on the 
apparent reflectance (albedo) rather than on specific absorption. To examine this issue, 
we further studied  the prediction equations of the four significant properties. Table 4 
presents the  optimal prediction equations dong with  their suggested wavelength 
assignments.  CaCO, is predicted by three bands in the VIS region: 0.46, 0.56 and 
0.66  mm  (bands ThiI1, TM2, and TM3, respectively). Since CaCO, does not have any 
spectral features in the VIS region, it is predicted by the soil brightness (albedo). 
BEN-DOR and BANIN, (1994a) concluded that even the highest spectral resolution data 
in the VIS region required that CaCO,  be predicted via soil albedo. The first 
wavelength  chosen by the TMA procedure to be part of the prediction equation (which 
is considered to be  the  most important part in the equation) was 0.46 mm (band TM1) 
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which is quite similar to the first wavelength  that BEN-DOR and BANIN (1994bb) found 
for the prediction of CaCO, from soils (0.401 mm) using higher resolution  spectra. 

Table 4. The best calibration equations for predicting four soil constituent5 and this suggested 
wavelength assignments which w r e  entered into the calibration equation. The selection ofeach 
equation was based on table 5 .  

CaCO, A 115.7 -325.1  0.66 TM3 Soi1 brightncss 
( 6 )  657.2 0.56 TkI7 

-407.6 0.46 TM 1 
SSA A 96.7  471 1.3 ......- 7 77 m17 + h (OH-AI ) 

( 6 )  -4696.7 1.65 ml5 2)  + h (OH-AI) 

-216.2 0.46 T M 1  

(6) 794.9  1.65 TM5 
-216.9 0.83 Tb11 311 (OH-Al) 
46.7 0.46  TM1 CaCO, assignment 

( 6 )  -314.3  1.65 TM5 

799 0.83 TM4 3lJ (OH-AI) 

SiO: A 111.06 -495.9 1.22 TM7 2)  + h (OH-AI) 

LOI a 17.11 1-01 .s _.-_ 7 17 TM7 IJ + ?L ( OH-AI ) 

12.2 n.83 Th14 3U (OH-Al) 
115.3 0.56 TM? C L " ,  assignment 
-80.7 0.36  TM 1 CaCO, assignment 

IJ = stretching mode, h = bending mode. 

Table 5 presents the linear correlation coefficient matrices of several  important 
properties. It can  be clearly seen  that a high correlation occurs between CaCO,-SiOl 
and CaCO,-EOl (r = -0.899 and  0.913, respectively) and between SSA-Clay  and SSA- 
A120, (r=0.824 and 0.830 respectively). As BEN-DOR and BANIN (1994a) pointed  out, 
intercorrelation is the major mechanism that enables featureless soil  properties  to  be 
predicted hy the VNIRA-NRA methodologies. SiOz9 LOI and SSA, belong to the same 
"chemical" group (Group 111). SSA is a property that relies mainly on the  smectite 
minera1 content, which is considered  to  be the major Clay mineral in Israeli soils 
(BLNIN and AMIEL, 1970). Thus, the SSA assignments are  attributed  to the 
combination mode of OH (at band TM7). the third overtone of OH (at band TM4), and 
probably to Fe (mostly in the structural formation as presented by a high correlation 
with Fe& (r = 0.578)  and partially by the free Fe as presented by moderate correlation 
with Fed (r = 0.617)). LOI is a property that represents the loss of weight  during 
ignition. This property îs a combination of organic matter removal, dehydroxylation of 
the lattice OH group and decarboxylation of CO, groups (~/IACKENZIE 1957). From table 
5 it can be seen that the LOI highly correlates with CaCO, (r = 0.913) and  has a low 
correlation with OM (r = 0.401) and SSA (r = 0.279). Therefore we  assume  that 
the decarboxylation reaction is a major contributor to the LO1 values  and hence mostly 
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to CaCO, minerals (bands TM2 and  TM31 and to OH combination mode in clay 
minerals (band TM7). The SiOL is inversely correlated with  the LOI and CaCO, 
(r  = -0.899 and -0.983, respectively) and therefore was assigned to  the LOI and CaCO, 
wavelengths. 

Table 5. Coefficient of correlation (r) between al1 of the soil properties studied. The correlation 
was determined using only the chelnical values. 

CaCO. 

OM 

SSA 

Clay 

ALO, 

Fe,O, 
SiO, 

LOI 
Fed 

1 0.059 -0.037 0.1616  -0.366 -0.284 - 
0.899":$ 

1  0.511 0.413 0.475 0.501  -0.341 
1 0,824:% 0.830":::  O,878:k:? -0.326 

1  0.645 0.686" -0.415 
1 0.979:": -0.035 

1  -0.126 
1 

0.Y 13 

0.401 
0.279 
0.393 

-0.049 

0.045 

0 , 9 8 3 ~  

1 

-0.381 

0.462 
0.617" 
0.529" 
0.8152: 

0.808::: 
0.046 

-0.1 15 
1 

* Sigmkcant at  0.95  level; **: Signifiernt at 0.99 level. 

Figure 4 presents the "Predicted" vs. "Measured" values of the calibration (A) and 
validation (B) sets. The values  for  al1 properties and for both  sets  appear to fall in the 
vicinity of the 1 : 1 line. However, in most of the properties (especially in the validation 
stage) some  bias can be observed. Table 6 presents the regression  line (Cp=aC,+b) 
parameters (a. b and rz) of the  validation stage along with their statistical significance 
based on MILLER and MILLER test ( 1988). Ody SSA does not significantly match the 
1:l line, and therefore holds bias. The other properties (CaCO,, SOL, and LOI) do not 
significantly differ from the ideal 1: 1 line (,for both a and b parameters), and therefore 
hold no bias. 

Table 6. The regression line parameters (r2-coefficient of correlation, a-slope and b-thc intercept) 
of seven soil properties in the validation stage. Also  shown  are the parameters significance (at 
O.95), that the r2 is not different from unity, a is not differ from 1 and b is not different from O 
(see text ). 

SEP 15 a b 

CaCO, 11.4 0.69j: 0.84": 6.34"' 
SSA 63.8 0.46 0.47  77.21 
SiO! 12.6 0.67::: 0.71:::  11.15" 
LOI 5.71 0.71" 0.75:s  6.12" 

* Sipfkant at 0.95 level. 

145 



E. BEN-DOR, A. BANIN 

90 

54 
36 

O 
Q 36 54 90 

60 
n 

36 
2 4 

O. 

36 54 90 

24 36 

120 

72 
48 

O 
O 38 72 120 

O 38 72 120 

400 

160 

O 

Figure 4. Plots of the predicted (Cp) vs. measured (Cm) values at the calibration (A) and 
validation (B) stages for the optimal TMA prediction of the significant soi1 properties. 
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Evaluntiotl of Several Soi1 Properties Usitlg Convolved TM Spectra 

The SEP value is a major criterion used to judge the prediction performance of the 
NIRA methodology (DAVIES and GRANT, 1987). Relatively low SEP values,  combined 
with SEP and SEC values that are relatively close, are major conditions for optimal 
prediction (NORRIS and WILLIAMS, 1984). From table 3 it can be seen that the SEP 
values  in al1  of the selected stages are similar to the SEC values.  Although the SEP 
values of the selected stages were relatively low, major consideration should be given to 
the coefficient of prediction variance  (CPV=SEP/[Max-Min])  and to the chemical 
perfonnance. 

Table 7 presents the SEC and SEP values of the selected optimal stages (i.e., stage 
with the highest performance), the analytical error (AE) of the chemical analysis, the 
chemical range of the validation set  [Max-Min]), the coefficient of prediction variance 
(CPV = SEP/(Max-Min) and the SEP/AE ratio. It can be  seen that the  CPV  values 
varied between 1.5% and 18%. A relatively high prediction performance  was obtained 
for the SSA (15%) and a relatively low prediction performance was  obtained for the 
SiO, (18%). A coinparison of the SEP and the analytical error (AE) indicates that the 
TMA prediction performance still lags behind the chenlical perfonnance. 

Table 7. Statistical paranleters of the calibration, validation and the chemical stages. 

Propertv SEC’  SEP’ A E j  Max-Min4 CPVj SEPIAE 

“0, 11.07  11.40 1.3 65.3 O. 17 8.77 
SSA 60.8 63.8 4.0  414.1 0.15 1.5.95 
SiO, 13.34 12.60 1” 70.3 O. 18 12.60 
LOI 4.67 5.7 1 1 1: 36.19 0.16 5.7 1 

~ ~ _ _ ~  ~ _ _ ~ _ _ _ _ _ _ _ _ _ _ _ _ ~  

1: SEC - Standard e m r  of cdibmtion; 2 SEP - Standard e m r  of prediction; 3: AE - Analytical emr; 4 Max-hlin - 
Validation  chemical range; 5: CPV - Coefficient of prediction variation, SEP/(Max-Min) ; *: Estinmted  values. 

In order to compare the TMA  analysis results obtained here to the optimal NIRA- 
VNIRA results obtained elsewhere (for the same soi1 populations and for the entire 
spectral region), we further studied  the SEP values. Table 8 presents the optimal SEP 
values obtained for the four significant properties (CaCO,, SSA, SiO,, LOI) using TMA, 
VNIRA (BEN-DOR and BANIN, 1994b) and NIRA (BEN-DOR and B m ,  1994a) 
techniques. It can  be seen lhat both the VNIRA  and the NIRA  routines gave a better 
performance than the TMA procedure. However, for the above properties, the TMA 
method gave a prediction performance that was  not  much different than those of the 
VNIRA and NZRA routines. Considering the relatively broad band the convolved TM 
spectra consists of, and  its  undersampling, it can be concluded that the TMA approach 
may be very promising for remote sensing applications of soils. However, further study 
is needed to examine the performance of the TMA strategy in the field using real TM 
data. 
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Table 8. Cornpaison between prediction  performances  obtained  by  the TMA. VNTRA and NIR4 
approaches for the same soil samples. 

Property 

CaCO, 1 11.3 1 1.3 (VNIRA ) 
SSA III 63.8 50.5 (NIRA) 
SiO, III 12.6 1 1.9 (NIRA) 

LOI m 5.71 4.03 (NIPLA) 

* According  to table 2.; <'* Accordmg  to  BEN-DOR Pr ul., 1991 and BEN-DOR and B.ANIN. 1993. 

Convolved TM spectra of soils contained  important  information regarding several 
soil properties and constituents. There is a rough  but positive  correlation between TM 
spectra and  the soil  chemistry based  on soil  brightness or albedo. The  derivation 
technique  enhances some of the VIS region  in  various  samples,  while in other  samples it 
does not. The TMA methodology was found  to  be a sufficient  vehicle to  estimate 
CaCO,, SSA, SiO2. and LOI in ssils.  It is assumed that an intercorrelation between 
CaCO, and  other constituents was the  major mechanism  that  enables the prediction of 
these  properties.  Although the TMA results show a relatively low prediction 
performance compared to the analytical, VNLR/sr, and NIRA results, the TMA 
performance is likelp to  be useful for remote-sensing  applications of soils. 
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