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Abstract

Laboratory reflectance spectra of ninety-one soil samples from Israel were
convolved into the six TM bandpasses allocated within the VIS-NIR-SWIR spectral
region (0.4-2.5 pm). Laboratory convolved TM spectra were used as raw data against
which to run the NIRA-VNIRA (Near Infrared Analysis and Visible and Near Infrared
Analysis, respectively) procedure using a method called Thematic Mapper Analysis
(TMA). Fourteen soil properties and constituents were examined for possible prediction
from the TM spectra, but only four were found to be significantly predictable:
carbonates (CaCQ,), specific surface area (SSA), total silica (Si0O,) and loss-on-ignition
residual (LOI). Prediction performance of the method is still low relative to the results
obtained using a similar population and an analysis routine for highest spectral
resolution data, however the extremely difficult conditions used (low spectral resolution
and complex soil matrix), the prediction performance is likely to be good and is very
promising for the remote sensing applications of soils. Further study with real TM data
and field measurements is strongly recommended.

1. Introduction

Near Infrared Analysis (NIRA in the 1.0-2.5 pm spectral region) and Visible-Near
Infrared Analysis (VNIRA in the 0.4-1.0 pm spectral region) methodologies are
similar routines that have been successfully used to predict several soil properties from
their reflectance spectra (BEN-DOR and BANIN, 1994a,b). Basically, NIRA is a method
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that was developed to predict the concentration of a given constituent that consists of
significant spectral features in the short wave infrared (SWIR) spectral region. Recently,
BEN-DOR er al. (1994a) successfully applied the NIRA concept into featureless soil
constituents in the visible and near infrared regions and concluded that low spectral
resolution is not necessarily a limitation for quantitative analysis of soils.

The TM data have been widely studied for various applications by using various
analytical techniques such as band rationing, color composite technique, analysis of the
TM spectrum (unmixing) are clustering analysis, discriminate analysis, and principle
component analysis (PCA). Soil is a complex system of minerals, organic matter and
water, and hence may prove to be complicated in their analysis. Based on a modified
stepwise principal component analysis, CSILLAG et al. (1993), showed that salinity of
soils can be detected using six broad bands across the VIS-NIR-SWIR region as derived
from high resolution spectra. They pointed out that their identified bands may yield
higher overall accuracy than that currently available from Landsat MSS, TM, and SPOT
XS in terms of spectral recognition of salinity status.

In another study, PRICE (1990) concluded that four broad-band spectral
measurements across the VIS-NIR-SWIR region, as derived from high spectral
resolution of more than 500 soils, are sufticient to describe their spectra.

Based on the idea that the six broad spectral bands of the TM spectrum does hold
chemical information in the VIS-NIR-SWIR regions and based on the fact that the
NIRA-VNIRA methods successfully run on low spectral resolution spectra, we applied
and report here a study that examines the synergy between TM spectra and NIRA
approach.

2. Materials and methods

Soil sampling

Ninety-one soil samples that represent twelve soil groups in Israel were selected to
cover the arid and semiarid climatic zone of Israel (BEN-DOR and BANIN, 1994b). The
samples were collected mostly from the AQ horizon of the soils (upper 5 cm) within an
area of about 1 m2. The soils were air dried and gently crushed to pass through a < 2 mm
sieve. Subsamples were further grounded (quantitatively) by agate mortar to pass
through a 0.355 mm sieve.

Chemical and mechanical analyses

The following soil properties and constituents were determined by applying
laboratory techniques that are mostly summarized in the "Method of Soil Analysis" text
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book (MILLER and KEENY, 1986), these being: Clay content (CLAY), Specific surface
area (SSA), Cation exchange capacity (CEC), Hygroscopic moisture (HIGF),
Exchangeable sodium percentages (CNaP), Calcium carbonate content (CaCO,), and
Organic matter content (OM). The total elemental analyses (iron-Fe,O,, alumina-Al O,
silica-Si0,, loss-on-ignition residual-LOI, and potassium-K,0) were carried out using
the X-ray fluorescence method at XRAL Laboratories (Canada) and the free iron oxides
(Fed) were determined by using the Dithionite Citrate Bicarbonate (DCB) method
provided by MEHRA and JACKSON (1960). Soil aggregate size distribution was
accomplished through differential sieving of the <2 mm dry soils. The sieving
procedure consisted of shaking 400 grams of soil for five minutes through six different
sieves as follows: 2-1.4 mm (F1), 1.4-1.0 mm (F2), 1-0.5 mm (F3), 0.5-0.25 mm (F4),
0.25-0.1 mm (F5) and < 0.1 mm (F6). Soil materials remaining on each of the sieves
after the shaking period were accurately weighed and reported as percentages of the
initial 400 grams of material. The average aggregate size (AVGR) was calculated as a
geometrical mean of the six aggregate size fractions.

6 d
AVGR = D W, -~
2; 400

where W is the weight (in grams) of fraction F,, left on the corresponding sieve, d
is the average size of the relevant F, fraction and 400 refers to the initial weight of the
soil sample examined.

Spectral measurements and compression

Spectral measurements: Soil reflectance spectra were recorded separately by two
spectrophotometers for the VIS-NIR (0.4-1.1 pm) and SWIR (1-2.5 pm) regions as
follows: For the SWIR region, we used an Alpha Centauri MATTSON FTIR
spectrophotometer optimized to the SWIR (1-2.5 um) region (spectral resolution of
1.9cm”, in terms of wavenumber, providing 3,113 non equal spectral bands) and a
Prying Mantis bidirectional Harrick diffuse reflectance attachment (DRA two
dimensional model). For the VIS-NIR region, we used a LICOR spectrometer optimized
to the VIS-NIR region (0.4-1.1 pm; spectral resolution of 1 nm, in terms of wave
number providing 700 equal spectral bands) and an integrating sphere attachment coated
with BaSO,. In both of the above spectral regions, a standard sample preparation routine
was applied to the <0.355 mm soil powders and the soil reflectance spectrum was
reported relative to a BaSO, spectrum.

Spectrum compression into TM bands: In both VIS-NIR and SWIR regions the
spectral and wavelength values of all original bands that were allocated within the TM
spectral bands were averaged. Table 1 presents the TM bands, together with their
spectral regions. Table 1 also shows the average wavelength of each TM band and the
number of original spectral bands required for the calculation of the convolved TM
values (both for wavelength and spectral readings).
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Table 1. The TM bands and their spectral ranges together with the convolved wavelength and
number of spectral points taken for the convolution process.

Spectral range Convolved wavelength Spectral points in
TM band (mm) (mm) convolved bandpass
™I 0.40-0.52 0.46 120
T™M2 0.52-0.60 0.56 80
T™M3 0.62-0.69 0.66 70
T™M4 0.76-0.94 0.83 140
TM™MS5 1.55-1.75 1.65 383
T™6 10.4-12.56 N.D.# N.D.#¥
T™M7 2.08-2.35 222 285

% Not detemined.

Speciral Analysis

The NIRA-VNIRA methodology that is used to analyze the convolved TM spectra is
termed Thematic Mapper Analysis (TMA). The TMA (and NIRA-VNIRA) procedure
requires iwo stages: 1) the calibration stage, where the prediction equation is developed,
and 2) the validation stage, where the previous stage is validated (DAVIES and GRANT,
1987). Since the suggested algorithm is basically an empirical method, the validation
stage is extremely critical. The complete TMA procedure absolutely requires both the
calibration and the validation stages to predict unknown samples.

Calibration stage

This procedure utilized a subgroup (22-50 samples) that was selected directly from
the ninety-one soil samples. A simple linear regression procedure between the
concentration of a given constituent and the spectral response (reflectance [R],
absorption [A=log(1/R)] or their derivatives [first-R', A', and second-A"]) of every band
was run. A Multiple Regression Analysis (MRA) was run between the chemical values
and all six TM bands and their corresponding reflectance values. This procedure was
used to examine each of the spectral parameters (R. A, or their derivatives) and each
MRA stage. The result, a multi-term equation, was then used to predict the
concentration of "unknown" validated samples in stage 2.

Validation stage

Unknown subgroups (37-56 samples) that were not used in the calibration process
were used to validate the calibration equation produced in stage 1. For that purpose, the
spectra of all the validation samples were mathematically manipulated exactly as were
the spectra that provided the prediction equation. Then the concentration of each
constituent was calculated using the corresponding prediction equation obtained in
stage 1. The calculated results (predicted) were compared with the chemical results
(measured). Every prediction equation of the calibration stage for each of the MRA
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steps was examined against the validation subgroup. The prediction equation that
yielded the highest validation performance was declared the preferred equation, and
used further in this study.

Statistical Analyses

The MRA procedure selects a best multiple correlation equation between a
constituent concentration C, in a given sample and the selected spectral parameters as
follows:

C,=by+b L, +b,L,+..+b,L, (0

where b, is an intercept, b,, b,...b, are weighting factors for the spectra readings in
various selected wavelengths 1 to n. L, L,...L , are the values of the spectral parameters
at wavelengths 1 to n and could be either reflectance data (R), absorption data (A) or
their derivatives (first R',A' or second A"). Predicted values of the constituents'
concentrations were calculated from equation 1 and the standard error of calibration

(SEC) was then calculated according to DAVIES and GRANT (1987) as follows:

SEC = 2(6,-¢)" -
a N.-n-1 @

where C,, is the value measured by the chemical analysis, C, is the predicted value on
the basis of the spectral analysis, N is the number of the samples in the set and n is the
number of terms in the prediction equation.

The calibration equation (2) was used to predict the constituent concentration of

another set of soil samples not used in the calibration stage. The standard error of
performance (SEP) was then calculated as follows:

2.(C,—C,)
SEP = _N——l—— 3

where N, is the total number of tested samples in this stage.

In addition to the above parameters, we applied a bias test that was adopted from
MILLER and MILLER (1988). It examines the regression line between the results of the
reference and the alternative methods (in our case the chemical and the TM-validation
results respectively) and uses three null hypotheses in order to reject or accept the regression
line (C=a.C_+b) as a 1:1 line. The assumptions of the null hypotheses are:

1) The slope of the regression line (a) is unity,

2) The intercept of the regression line (b) is zero and,

3) The regression coefficient (1?) is unity.
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3. Resulis and discussion

In figure 1 the original reflectance spectrum of a representative soil (B-7) together
with the six TM band passes in the VIS-NIR-SWIR regions, is presented. Figure 2
indicates that convolving the original spectra into the six TM band passes significantly
affects the spectral features of the continuous spectrum. In order to roughly examine the
effect of compressing the original spectrum into the TM spectrum, we compared the soil
chemistry with some of their convolved TM spectra. In figure 2, six convolved TM
spectra of six representative soil samples are presented. Table 3 presents the chemistry
of these selected soils as determined by chemical methods and their classification
according to the United States Department of Agriculture (USDA). In general, the TM
spectra of the soils are quite similar. However, some differences can be observed,
mainly in the apparent reflectance values. Apparent reflectance actually relates to the
soil brightness (or soil "albedo”) and correlates with the CaCO, content while showing a
correlation with the Fed and OM amounts. A high content of CaCO, is attributed to a
light soil color (and hence to higher VIS reflectance, BAUER er al.,1979), a high Fed
content is attributed to red soil color (and hence to a moderate to low VIS reflectance,
SCHWERTMANN, 1988) and a high OM content is attributed to dark soil color (and hence
to the lowest VIS reflectance MCKEAGUE erf al., 1971).

Figuore 1. Reflectance
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O
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Wavelength (uim)

Thus, sample C-2, which contains a relatively high amount of CaCO, (40.3%) and
relatively low amounts of Fed (1,967 ppm) and OM (1.02%) presents high reflectance
levels throughout all spectral regions (high albedo). Sample A-4, which contains
relatively high amounts of Fed (14,794 ppm) and OM (5.65%) and has a relatively low
CaCO, content (8.45%). presents low reflectance levels throughout all spectral regions
(low albedo). Also note that soils with a relatively high Fed content (A-4, H-2, and
E-1) have a spectral feature around 0.56 mm, which can be assigned to ferrous ion
(HUNT et al. 1971). A relatively high content of clay (A-4, H-2, and J-1) shows a
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negative slope of the TM curve going from band TMS5 to band TM7 because of the
relatively high absorption of OH in clay minerals at around 2.2 mm (band TM?7). It can
be concluded that even though the convolved TM spectra contain only six spectral
bands, and much of the spectral information is apparently reduced by the spectral
compression, important information concerning the chemistry of the soils can still be
roughly extracted from the convelved TM spectra.

o Figure 2. Convolved TM
e mm L2 reflectance spectra of six
0.6 T representative soils. Each

of the soils corresponds
to a ditferent soil group
as classified according to
the USDA classification
method (see Table 2).
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Table 2. Chemical values of six representative soil samples and their classifications according to the USDA.

Soil Sample cl aixbfll)ciu on CaCoO, (%) Clay (%) Fed (ppm) OM (%)
E-1 Rhodoxeralf 1.83 13.9 4,302 1.27
C-2 Xerorthent 40.3 19.1 1,967 1.02
B-1 Haploxeroll 41.99 39.3 5,253 491
A-4 Xerochrept 8.45 46.1 17,794 5.65
H-2 Xerent 18.5 61.2 3,876 1.85
I-1 Fluvent 38.9 50.6 6,777 1.14

Based on the above, we further studied the relationship between the TM spectra and the
soil chemistry by using the TMA approach. For that purpose we used all manipulated
spectra as discussed in the Marerial and method section. To illustrate the influence of the
mathematical manipulations on a given spectrum, in figure 3 we present the original
convolved TM spectrum of sample B-7 together with its absorbance, and first and second
derivatives of the absorbance TM convolved spectrum. It is apparent that the conversion of
reflectance data (R) into absorbance values (A=log [1/R]) does not affect the original TM
spectral features. Also notice that the first derivation technique yields a curve that looks
quite similar to the original TM reflectance curve, except for slight spectral enhancement
around 0.4-0.7mm. The second derivative better "enhanced" the VIS region and a
significant peak can be detected around 0.57 mm.
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Table 3. The optimal results for each manipulation stage (R, A, R, A", A"). The optimal information
includes: 12 and SEP of the validation stage, R? and SEC of the calibration stage and the first wavelength
in the prediction equation. Values in bold represent the prediction stage selected.

Math Math Math
Group  Property ?-SEP [ Group  Property 12-SEP | Group  Property 2 - SEP
R?- SEC R?-SEC R2- SEC
}\q }“1 )\"
I CaCoO, (%) A o1 HIGF (%) A IV Fed (ppm) A
0.69 - 11.40 0.40-1.98 0.41 - 3341
0.79-11.07 0.54 -2.01 0.50-2930
0.46um 0.83um 0.66um
I OM (%) A m  ALO, (%) A IV AVGR(mm) Al
0.39-2.03 0.26 - 2.51 0.10-0.18
0.36-1.38 0.35-2.54 0.12-0.19
(.66um 0.83um 1.65um
144 SSA (%) A m Fe,0, (%) R v Fi (%) R
0.46 - 63.8 0.27-1.39 0.29-5.61
0.60 - 60.8 0.37-1.26 0.21 - 6.69
0.83um 0.83um 0.56um
m CEC (%) A il Si0, (%) A IV CNap (%) A
0.41-10.7 0.67 - 12.60 0.17-0.37
0.54-9.97 0.68 - 13.34 0.10-0.36
0.83um 1.65um 0.46um
m Clay (%) R I LOI (%) A v K0 (%) A
0.28 - 12.50 0.71 - 5.71 0.17-0.37
0.39-13.19 0.80 - 4.67 0.10-0.36
0.66um 1.65um 0.46pm

Math: spectral mathematic manipulation(R-Reflectance; A-Absorbance;R'&A'-First derivatives; A"-Second derivative); 1 Single
coefficient of correlation between validation data; SEP: Standard error of prediction: R Multiple coefficient of correlation between
calibration data; SEC: Standard error of calibraiton: A First wavelength in the calibration equation.

NIRA-VNIRA (and TMA) techniques require the selection of a representative
calibration set, which is chemically matched with its validation set and with the
population of a large number of samples (MURRAY, 1988). Since we identified four
different groups of properties, four independent testing groups were used for the TMA
examination. Basically the NIRA approach (and hence the TMA as well) is an empirical
method that allows (actually requires) many combinations of samples and data
manipulations to obtain optimal prediction performance (STARK, 1988). The criteria of
low SEP and high 12 of the validation set were selected to indicate the optimal data
manipulation. The results of this initial analysis are presented in table 5 where the data
manipulation (A, R, R', A" or A") that yielded the best performance along with their
statistical parameters (12, SEP, R2, SEC), and with the first wavelength of the prediction
equation (A,), are presented.
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Figure 3. The effect of converting the convolved TM reflectance spectrum of a representative
soil sample (B-7) into absorbance (A) and its manipulation into first (A") and second (A")
derivatives.

From table 3 it can be seen that most of the predictions (and particularly those with
2> 0.45) require transformation into A with no derivation. Only four constituents
could be reasonably predicted using the convolved TM spectra: CaCO,, SSA, Si0,, and
LOL

NORRIS and WILLIAMS (1984) concluded that the derivation technique eliminates
the baseline differentiation caused by particle size distribution (termed "particle size
effect"). Based on the fact that significant TMA predictions do not require derivation
manipulation, it may be concluded that TMA predictions strongly depend on the
apparent reflectance (albedo) rather than on specific absorption. To examine this issue,
we further studied the prediction equations of the four significant properties. Table 4
presents the optimal prediction equations along with their suggested wavelength
assignments. CaCO, is predicted by three bands in the VIS region: 0.46, (.56 and
0.66 mm (bands TM1, TM2, and TM3, respectively). Since CaCO, does not have any
spectral features in the VIS region, it is predicted by the soil brightness (albedo).
BEN-DOR and BANIN, (1994a) concluded that even the highest spectral resolution data
in the VIS region required that CaCO, be predicted via soil albedo. The first
wavelength chosen by the TMA procedure to be part of the prediction equation (which
is considered to be the most important part in the equation) was 0.46 mm (band TM1)
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which is quite similar to the first wavelength that BEN-DOR and BANIN (1994b) found
for the prediction of CaCO, from soils (0.401 mm) using higher resolution spectra.

Table 4. The best calibration equations for predicting four soil constituents and this suggested
wavelength assignments which were entered into the calibration equation. The selection of each
equation was based on table 5.

Mathematics Weighting  Wavelengt

Property tspectral bands) Constant coefficient h TM band  Suggested assignment
(b, (b, (Hm)
CaCo, A 115.7 -325.1 0.66 T™3 Soil brightness
(6) 657.2 0.56 TM2 "
-407.6 0.46 TM1 "
SSA A 96.7 4711.3 222 T™M7 v+ A (OH-AD)
() -4696.7 1.65 T™MS v+ A (OH-AD
799 0.83 T™M4 3u (OH-AD
-216.2 0.46 T™I -
Si0, A 10.06 -495.9 222 T™7 v+ A (OH-A)
(6) 794.9 1.635 TM™M5 -
-216.9 0.83 T™M4 3v (OH-A))
46.7 0.46 T™1 CaCO, assignment
LOI A 42.21 201.5 222 ™7 U + A (OH-AD
(G)) -314.3 1.65 T™S -
122 0.83 ™4 3v (OH-Al)
115.3 0.56 ™2 CaCO, assignment
-80.7 0.46 T™M1 CaCO, assignment

v = stretching mode, A = bending mode.

Table 5 presents the linear correlation coefficient matrices of several important
properties. It can be clearly seen that a high correlation occurs between CaCO,-SiO,
and CaCO,-LOT (r =-0.899 and 0.913, respectively) and between SSA-Clay and SSA-
ALO, (r=0.824 and 0.830 respectively). As BEN-DOR and BANIN (1994a) pointed out,
intercorrelation is the major mechanism that enables featureless soil properties to be
predicted by the VNIRA-NIRA methodologies. Si0O,, LOI and SSA, belong to the same
"chemical" group (Group IlI). SSA is a property that relies mainly on the smectite
mineral content, which is considered to be the major clay mineral in Israeli soils
(BANIN and AMIEL, 1970). Thus, the SSA assignments are aftributed to the
combination mode of OH (at band TM7), the third overtone of OH (at band TM4), and
probably to Fe (mostly in the structural formation as presented by a high correlation
with Fe,0, (r=0.878) and partially by the free Fe as presented by moderate correlation
with Fed (r=0.617)). LOI is a property that represents the loss of weight during
ignition. This property is a combination of organic matter removal, dehydroxylation of
the lattice OH group and decarboxylation of CO, groups (MACKENZIE 1957). From table
5 it can be seen that the LOI highly correlates with CaCO, (r =0.913) and has a low
correlation with OM (r=0.401) and SSA (r=0.279). Therefore we assume that
the decarboxylation reaction is a major contributor to the LOI values and hence mostly
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to CaCO, minerals (bands TM2 and TM3) and to OH combination mode in clay
minerals (band TM7). The SiO, is inversely correlated with the LOI and CaCoO,
(r=-0.899 and -0.983, respectively) and therefore was assigned to the LOI and CaCO,
wavelengths.

Table 5. Coefficient of correlation (r) between all of the soil properties studied. The correlation
was determined using only the chemical values.

CaCoO, OM SSA Clay AlLO, Fe,0, Si0, LOT Fed
CaCo, 1 0.059 -0.037  0.1616 -0.366  -0.284 - 0913  -0.381
0.899%*

OM L 0.511 0413 0.475 0.501 -0.341 0.401 0.462

SSA 1 0.824=*  0.830%* 0.878** -0.326 0.279  0.617*
Clay 1 0.645  0.686*  -0.415 0.393  (0.529%
ALO, 1 0979  -0.035 -0.049 0.815%
Fe,O, 1 -0.126 0.045  0.808+

Si0, 1 - 0.046

0.983%%
LOI 1 -0.115
Fed 1

* Significant at 0.95 level; ** Significant at 0.99 level.

Figure 4 presents the "Predicted" vs. "Measured" values of the calibration (A) and
validation (B) sets. The values for all properties and for both sets appear to fall in the
vicinity of the 1:1 line. However, in most of the properties (especially in the validation
stage) some bias can be observed. Table 6 presents the regression line (C=aC,+b)
parameters (a, b and 12) of the validation stage along with their statistical significance
based on MILLER and MILLER fest (1988). Only SSA does not significantly match the
1:1 line, and therefore holds bias. The other properties (CaCO,, SiO,, and LOI) do not
significantly differ from the ideal 1:1 line (for both a and b parameters), and therefore
hold no bias.

Table 6. The regression line parameters (12-coefficient of correlation, a-slope and b-the intercept)
of seven soil properties in the validation stage. Also shown are the parameters significance (at
0.95), that the 12 is not different from unity, a is not differ from 1 and b is not different from 0
(see text).

SEP 12 a b
CaCO, 11.4 0.69* 0.84% 6.34%
SSA 63.8 0.46 0.47 77.21
Si0, 12.6 0.67+ 0.71% 11.15%
LOI 5.71 0.71* 0.75% 6.12%

# Significant at 0.95 level.
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Figure 4. Plots of the predicted (C,) vs. measured (C,) values at the calibration (A) and
validation (B) stages for the optimal TMA prediction of the significant soil properties.
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The SEP value is a major criterion used to judge the prediction performance of the
NIRA methodology (DAVIES and GRANT, 1987). Relatively low SEP values, combined
with SEP and SEC values that are relatively close, are major conditions for optimal
prediction (NORRIS and WILLIAMS, 1984). From table 3 it can be seen that the SEP
values in all of the selected stages are similar to the SEC values. Although the SEP
values of the selected stages were relatively low, major consideration should be given to
the coefficient of prediction variance (CPV=SEP/[Max-Min]) and to the chemical
performance.

Table 7 presents the SEC and SEP values of the selected optimal stages (i.e., stage
with the highest performance), the analytical error (AE) of the chemical analysis, the
chemical range of the validation set [Max-Min)), the coefficient of prediction variance
(CPV = SEP/(Max-Min) and the SEP/AE ratio. It can be seen that the CPV values
varied between 15% and 18%. A relatively high prediction performance was obtained
for the SSA (15%) and a relatively low prediction performance was obtained for the
SiO, (18%). A comparison of the SEP and the analytical error (AE) indicates that the
TMA prediction performance still lags behind the chemical performance.

Table 7. Statistical parameters of the calibration, validation and the chemical stages.

Property SEC' SEP* AF’ Max-Min' cpv? SEP/AE
CaCo, 11.07 11.40 1.3 65.3 0.17 8.77
SSA 60.3 63.8 4.0 414.1 0.15 15.95

310, 13.34 12.60 1* 70.3 0.18 12.60
Lol 4.67 5.71 1* 36.19 0.16 5.71

1: SEC - Standard error of calibration; 2: SEP - Standard error of prediction; 3: AE - Analytical error; 4: Max-Min ~
Validation chemical range; 5: CPV - Coefficient of prediction variation, SEP/(Max-Min) ; *: Estimated values.

In order to compare the TMA analysis results obtained here to the optimal NIRA-
VNIRA results obtained elsewhere (for the same soil populations and for the entire
spectral region), we further studied the SEP values. Table 8 presents the optimal SEP
values obtained for the four significant properties (CaCQ,, SSA, SiO,, LOI) using TMA,
VNIRA (BEN-DOR and BANIN, 1994b) and NIRA (BEN-DOR and BANIN, 1994a)
techniques. It can be seen that both the VNIRA and the NIRA routines gave a better
performance than the TMA procedure. However, for the above properties, the TMA
method gave a prediction performance that was not much different than those of the
VNIRA and NIRA routines. Considering the relatively broad band the convolved T™M
spectra consists of, and its undersampling, it can be concluded that the TMA approach
may be very promising for remote sensing applications of soils. However, further study
is needed to examine the performance of the TMA strategy in the field using real TM
data.
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Table 8. Comparison between prediction performances obtained by the TMA. VNIRA and NIRA
approaches for the same soil samples.

SEP in VNIRA or NIRA

Property Group™ SEP in TMA Prediction Prediction™*
CaCo, I 114 11.3 (VNIRA)
SSA o 63.8 50.5 (NIRA)
Si0, m 12.6 11.9 (NIRA)
LOI m 571 4.03 (NIRA)

* According to table 2.; ** According to BEN-DOR ef al., 1991 and BEN-DOR and BANIN, 1993.

4. Summary and conclusions

Convolved TM spectra of soils contained important information regarding several
soil properties and constituents. There is a rough but positive correlation between TM
spectra and the soil chemistry based on soil brightness or albedo. The derivation
technique enhances some of the VIS region in various samples, while in other samples it
does not. The TMA methodology was found to be a sufficient vehicle to estimate
CaCO,, SSA, Si0O,. and LOI in soils. It is assumed that an intercorrelation between
CaCO, and other constituents was the major mechanism that epables the prediction of
these properties. Although the TMA results show a relatively low prediction
performance compared to the analytical, VNIRA, and NIRA results, the TMA
performance is likely to be useful for remote-sensing applications of soils.
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