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Résumé 

Une machine automatique  apprenante  et efficace,  voir  une sorte 
de machine comportant les aptitudes du  cerveau animal constitue de 
nos jours  un  grand défi pour l’humanité. Certes, des  Scientifiques s’y 
attelent sérieusement. 

A travers ce  qui suit, nous apportons notre contribution à ce type 
de machine, considérant plusieurs méthodes d’apprentissasge pour les 
réseaux à Fonction Radiale de  Base (FRB) utilisés pour la recon- 
naissance de la parole, des  vocabulaires  isolés  en particulier. Du fait, 
observant la dynamicité de la parole, des réseaux à connexions re- 
tardées et  aux unités intégratives sont les  plus indiqués. Enfin, nous 
comparons l’aptitude à la généralisation et les coûts machines de nos 
modèles à ceux  des perceptrons multicouches. Nos études montrent 
que l’apprentissage supervisé des centroïdes des fonctions de base 
donne des résultats appréciables et à moindre coût. 

Abstract 

Efficient and  automatic  adaptative (learning)  Machine, a kind of brain-like 
machine,  is today a challenge to  human being. Surely,  Scientists are working 
hardly  in the field. 

In  this  paper we contribute to that effort of achieving this  type of machine, 
considering  several  learning  procedure for Radial Basis Function (RBF) Net- 
works applied to a problem of speech recognition,  namely  isolated word 
recognition We do consider, owing the  dymanic  nature of speech,  delayed 
connections  and  integration  units  to  the network. The results  obtained  are 
compared on both generalization  ability  and  computational  costs  with the 
ones of multilayer  perceptrons.  Our  study shows that supervised  learning of 
the centroids of the   ba is  functions gives appreciable  results a t  a significant 
lower cos t . 
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cei 
Since the mists (dawn) of time, speech is an  efficient and reliable communi- 
cation aid. It is shown that speech, as an acoustic wave, is propagated with 
high  velocity, got round obstacles and dtered less. The speech  complexity 
rnaltes it difficult to process as well for recognition or/and understanding. 
Cognitive tasks, such as vision, speech, language processing and  motor con- 
trol are characteriaed by a high degree of uncertainty  and variability and 
it h a  proved difficult to achieved  good performance for these tasks using 
standard serial programming methods. A suitable  and  attractive systems for 
these tasks might make  use of multiple interacting  constraints. In general, 
suc11 contraints are too complex to be easily programme$ and require the use 
of automatic learning strategies. 
Therefore, massively  para.lle1 distributed processors models, such as "braiin- 
like" models called artificial neural net,worlcs (ANN) are interesting in the 
light o f  their numerous interrelated c.onstraints to tacle these problems of 
cognitive tasks, namely speech recognition task. 
Till today, despite the availability of high speed pa.ralle1 or non supercomput- 
ers the  training procedures costs of (ANN) limit their applications to natura.1 
problems. Our slight contribution to  the topic is to c.ompare  in terms of com- 
putational costs and generalization results on landmark  applications learning 
algorithms. In this  paper, we consider time delayed Radial Ba& Func.tisns 
(RBF) neural networks [Broo 88, Mood 891 for sequence recognition. It is 
our aim to compare the learning procedures of RBF networks in term of 
generalization abilities and learning time on a specific  speech  recognition 
task.These experiments show that  the simplicity of the learning rules avail- 
able for RBF neural networks  makes them preferable, extending the results 
a.lready achieved in [Cecc 93, Cecc 941. 

.f eseripeion and 
The database we used is composed of italian vocabularies. For this task of 
word recognition issue, the  database is the ten first italian digits uttered by 
64 native female and male speakers (28 speakers for training  and 36 rests 
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for test). Training speakers spoken three times the ten digits, while the 
test speakers produce ten repetitions of  al1 the digits; this set is about 4440 
isolated words. 
An high fidelity noise reduction microphone was  used in recording room 
consisting in  an ordinary office. The silent portions at the beginning and 
the end of each utterance were  removed  by using an energy-based treshold- 
ing algorithm. The preprocessing and  feature  extraction phase is performed 
on a Personal Computer equipped with the DIVA board (ALCATEL Face) 
wich extracts in real-time the mel-cepstral parameters described above. The 
neural network learning algorithms, programmed in C language, run on a 
standard UNIX worltstation (SUN Microsystems Sparcstation 2) 

2.2 Models architecture 
Basically, Radial Basis Functions (RBF) networks are considered through- 
out  these  task. The main idea behind RBF networks is the construction of 
complex decision  regions  by superposition of simple kernel functions. During 
the learning  phase  the centers and the widths of the kernel functions are the 
main parameters  to be estimated.  The typical choice of kernel function is a 
Gaussian which  gives the highest output when the  input is near its center 
and monotically decreases as the distance from the center increases. 
Indeed, RBF networks  were  originally introduced as a means of function in- 
terpolation [Broo 881. Confident of the results obtained by Cybenko [Cybe 891, 
for sigmoid hidden units i.e.,  two-layers perceptrons can uniformly approxi- 
mate any continuous function, Park and  Sandberg  [Park 911 and  Hartman et 
al [Hart 901 independentely extended these results to RBF networks where 
each output computes the following set of M approximating functions con- 
structed from a set of L bais  functions q5(z): 

where M is the number of output units  and the 4 j 7 s  are L kernel functions 
computed by the hidden units. Their form is generally a Gaussian: 
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where k is a norrnalising constant  and Ci is a covariance matrH which de- 
scribes the contour of a multidimensional ellipsoid, it is frequently assumed 
to be diagonal Ci = al, where a is a constant smoothing factor equal for all 
hidden units which rneasures the radius of a multidimentional sphere,  and I 
is the identity  matrix. The vector mi represents the input stimulus to  whkh 
the  unit j is rnaximally receptive, ix . ,  it is the centroid of the kernel function 

Another important peculiarity of RBF neural networks  is their use in max- 
imum  likelihood classification. Indeed, as the Parzen Window anaogy sug- 
gests, the role of the function fi is the arpproximation of the class conditional 
probability density function by means of the potential functions  method. 
With  this classification  scheme a.n unknown input sample is classified ac- 
cording to the index of the potential function which  have the maximum 
value. 
In the order to achieve the above goals  several learning procedures can be 
used. The main points are the number and the location of the centroids. In 
[Spect 901 a kernel function is placed on  each training pattern  and  the 2u;j 

weights are fixed  by  solving a linear system. While an exact fitting of the 

the clus- ter code vectors 

[Broo 88, Mood 89, Reyn 92, Beng  92,  Chou 92, Musa 921. . 
Apart from  the  algorithm  adopted, the most importa.nt question is whether 
the, clustering must be  super- or unsuper-vised. In the first case the clusters 
will contain data points belonging to  the same class and  the kernel centers 
will be ’representative samples’ of a given clas. Whereas, for the second case 
the clustering method produces a self-organising quantiaation of the  input 1 -  

space. This process tries to automatically discover the features of the input 
data,  and  the class-membership information is used  only in tell upper layer. i- 

The  last step o f  the learning procedure for RBF networks  involves the com- 
putation of the hidden-to-output weights. With LMS training one hm: 

dj  * 

where d; is the desired activation o f  the i - th output  unit for the  pattern 
.ci). Other  method, based on pseudo-inverse, can  also be used. 
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2.2.1 Unsupervised  learning of center  locations 

Classical unsupervised clustering algorithms can be used for the computation 
of center locations. The K-means [Spat SOI algorithm and  the Self-Organizing 
Feature Mup (SOFM) [Koho 901 are commonly  used  for this task. The  SOFM 
algorithm has the propertiy of creating a topologically ordered codebook, 
i.e., the spatial proximity between units implies  proximity  between the cor- 
responding code vectors. The SOFM algorithm can be outlined as follows: 
given a set of L neural cells, organized as a bidinlensional grid,  with weight 
vectors ml(t),  mz(t), . . . , m ~ ( t ) ,  for  each input sample ~ ( t )  select the nearest 
weight vector to it, m;(t), and apply the following  rule: 

m;(t + 1) = rni(t) + c.(t)[.(t) - m;(t)] if i E Nl(t)  (3) 
m;(t + 1) = rn;(t) i ft N&) (4) 

where O < a(t) < 1 is the learning rate and N;(t)  is the neighbourhood of 
the neuron Z of radius y ( t ) .  The learning rate a(t) and  the neighbourhood 
radius y(t) are slowly decreasing functions. The SOFM mode1 is inspired by 
the cortical maps of animal brains and has been widely studied both  from 
analytical and applicability point of  view [Koho 901. The parameters a(t)  
and y(t) play an  important role  in the convergence of the algorithm and  the 
topological ordering. Typical choice are a(t)  = aoe-t/on and y ( t )  = yOe-t/'l 
with ao, al, yo, T~ suitable constants. For example, in order to  guarantee  the 
topological ordering, the value of 70 must be more .than half of the size of 
the grid and 71 must ensure  a slow decrease in the initial phase and a faster 
decrease once the map is ordered (e.g., 500 5 y1 5 2000 is a good range 
of values}. Similar considerations apply to  the parameters a0 and al. If 
a. value is too small, it could remarkably slow  down the learning process, 
whereas a too high value could lead to  the divergence of the algorithm; the 
range of values 0.05 5 a0 5 0.5 is appropriate for many real applications. 

2.2.2 Supervised  learning of center  locations 

The supervised version of SOFM is  known as Learning Vector Quantizution 
(LVQ). It does not take the neighbourhood interaction into account, i.e., 
the updating is carried out  just for the winner neufon, except that  the class 
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rnembership O the input  pattern is used to  establish  the sign of the  updating 
term in (3b). 

Specifically, each hidden unit is labelle$ with a c las  index, and the  updating 
rule for the training pattern z ( t )  is the following.  Let I = argmin[(11x(t) - 
m;(t) I I l  then 

The learning rate O < a(t)  < 1 may be constant or a slowly decreasing func- 
tion as before. The above algorithm and  its variants have  been  successfufly 
applied to many classification tasks. 

The. asymptotic values of vectors m;(t) resulting  from this procedure will be 
the center locations of the RBF hidden nodes; they can be considered as 
representative of the classes to  be  discriminated. 

Once the centroid of the lcernel functions have  been compukd the  struc- 
ture of the covariance matrices uj allows to change the overlapping  between 
lternels belonging to different  classes. An efficient method for kernel widths 
estimation can be found in [Musa 921. It uses the Gram-Schmidt orthogonal- 
ization to find the eigenvectsrs and  the  eigenvahes of the covariance rnatrix, 
representing respectively the principal axes of a multidirnensional ellipsoid 
and their lenghts. However, when  znnsupervised kernel center cornputation is 
performed Cj is a diagonal matrix of the form Cj = ujl. If T is the number 
of training examples and fi is the winning frequency of neuron j at  the end 
of the clustering procedure, the srnoothing factor uj could  be estimated with 
the following rule [Chou 923: 

oj = 8 0 ( 1  - fj/T)f 1,. . - 7  L 

where 00 is a constant. Chou and Chen [Chou 921 propose to choose oo = a. 
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2.2.4 Generalised radial basis function 

Another learning scheme for RBF networks is the so called Generalised Ra- 
dial Basis Functions (GRBF) [Pogg 901, ie., the use of gradient descent 
method for supervised learning of center locations. Given an  input vector z = 
(zl, . . . , ZN) and  the corresponding desired output vector d = ( d l ,  . . . , d N )  
the  updating formulae for this algorithm look  like: 

This  method  has been applied to speech  recognition  by Wu and  Chan [Chan 911 
obtaining no appreciable improvement of performance with respect to clas- 
sical multilayer perceptrons with sigmoid activation units. Indeed, the long 
learning times do  not  allow large networks to be used, and  the advantages of 
easy learning procedures carried out layer  by  layer are completely lost. 

I 

In many speech recognition systems, a large discrepancy is found between 
the training procedure and  the  testing procedure. The training criterion, 
generally Maximun  Likelihood Estimation, is  very far from the word accuracy 
the system is expected to maximixe. 
The considered networks  have a first RBF hidden layer, a second  layer for 
input  data categorization built with sigmoid-activation nodes, and last an 
output layer integrating over tirne the  partial classification performed. 

-_ 

3.1 Unsupesvised  elustering of data 
In the first experiment the kernel centroids, mi, were computed using the 
SOFM algorithm as clustering tool, and the weights w;j were adjusted with 
the LMS algorithm. The parameters ai were  considered constant, because 
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Table 1: The recognition performance of an RBF network trained with unsu- 
pervised clustering of data for the  computation of the center locations. The 
network  architecture is depicted in figure 5.1. 

CLASS % 
O 

.. 

94.4 
1 
2 
3 
4 
Fi 
6 
7 
8 
9 
Total 

96.6 
97.5 
86.6 
94.2 
96.4 
94.2 
97.5 
98.6 
92.1 
94.8 

Table 2: The recognition performance of a.n RBF network trained with su- 
pervised clustering (LVQ) of data for the  computation of the center locations. 
The network  architecture is the same as Table. 

CLASS % 
O 97.2 
1 96.1 
2 97.8 
3 85.2 
4 94.7 
5 98.6 
6 95.3 
7 90.0 
8 98.6 
9 95.5 
Tot al 95.5 
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Table 3: The recognition  performance of an RBF network trained with  gra- 
dient  descent  algorithm. The  net  architecture  has 90 input  units  and 10 
output nodes.  Three  experiments were considered: NETl, NET2  and  NET3 
corresponding to different numbers of hidden  units.  These  numbers are re- 
spectively 16, 32 and 64. 

CLASS NETl NET2 NET3 
O 92.7 95.0 94.1 
1 91.3 96.4 96.4 
2 93.6 98.6 97.8 
3 69.1 82.7 86.4 
4 88.9 89.4 92.2 
5 98.3 98.1 98.3 
6 86.6 91.1 91.9 
7 95.0 95.5 98.1 
8 88.9 98.9 98.9 
9 92.7 97.7 97.7 
Tot  al 89.7 94.3 95.1 

Table 4: The recognition  performance of a  multilayer  perceptron  on the sarne 
task. The network in this  case  has 9 input nodes which are  fully  connected 
to  the hidden nodes with tree delays (O, 1 and a) ,  successive windows are 
shifted  one  frame at a time. The second hidden layer is fully connected  with 
the first  hidden layer with five delays ( O ,  1 ,  2, 3 and 4). 

CLASS % 
O 94.7 
1 94.4 
2 86.4 
3 80.2 
4 92.5 
5 99.4 
6 76.0 
7 86.9 
8 95.8 
9 92.1 
Tot al 80.8 
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Table 5:  The computing resources  needed by the described algorithms in trem 
of floatting point operations. Here N is the number of training samples, of the. 
applied algorithms, n, and O are respectively the nunlber of hidden and  output. 
units whereas d is the dimension of each input sample, ;i is the neighbourhood 
radius. Note that for time delay  networks the nurnber of units as each layer 
must be multiplied by the nurnber of delays with the upper layer. 

Algorithm FLOP 
SBFM + LMS N(2nd + 3;i'd) + SNno 
LVQ + LMS N(2nd + 2d) + 4Nn.o 
GRBF N ( 5 o  4- $ 7 ~ 0  + 78 4- 5nd) 
MLP N ( 5 o  -k 47ao 4- n + 5nd) 

it  had been demonstrated repectively that,  the code vectors tend to be uni- 
formly distributed due to  the learning rules adopted [Koho 901 and also the 
kernel widhts learning does not improve the generalization performences of 
the resulting network [Wett 921. 
Obviously, we notice that  the performance improves as the number of hid- 
den units increases. On the other  hand, the centroid computation and LMS 
estimation of  the hidden to output weights can lead to unacceptable corn- 
putational requirements when  very large networks are used. Table 1 shows 
the recognition performance of 256 hidden units network. The convergence 
and consequently the learning times strictly depend on the adopted  param- 
eters ~ ( t ) ,  y( t ) ,  7 which are for Our experriments a(t) = 0.2e-t~z000 and 
y(t) = 5e-t/1000. The learning procedures required respectively for each it- 
eration  about N(2nd + 3Yd floatting point operations for the first learning l 

step (n the number of hidden neurons, d the  input dimensions, Nthe training 
vectors number 6494 for Our case) and 4Nno floating point operations for the 
second step (O the number of output units). 

Using the LVQ algorithm we tried to set the center locations with supervised 
learning. We notified that  the first hidden layep. performs a raw classification 
of the  input speech  snrepshots refined later at  the second stage. The hidden 
units were uniformly t h r e  



to class 'three'. Table 2  and 5 summarises respectively the recognition per- 
centages and  the floatting point operations needed for each iteration.  It is 
important to emphasise that only 50 epochs of the algorithm were  sufficient 
for convergence while about 4200 epochs were needed for the first experiment. 

As mentionned in [Wett 921 this method can perform better  than  the previous 
ones. Therefore, three experiments were  considered: NET1, NET2 and  NET3 
corresponding to different numbers of hidden units (16, 32 and 64). The 
overall performance and the complexity of the algorithm are summarised in 
Table 3 and 5 respectively. The overall computing time is about 10 times 
greater than  that of Iayer  by  layer learning scheme of previous experiment. 

3.4 Multilayer perceptrons 
The  last  experiment makes use of the cornmon Time Delay Neural Network 
(TDNN) [Waib 911. The direct comparison with the previous results is not 
immediate. Indeed, in this case the hidden units have a completely different 
behaviour and therefore it is possible that  the sizing adopted before does not 
fit for this case. For example, the  input layer  dimension of 90 corresponding 
to a segment of 200 mseconds of speech, is too wide and several trials have 
shown that it is difficult to reach good local minima in the error surface. Due 
to this  reason, we implemented a TDNN network whose the Ilidden nodes 
look at a window of three consecutive  frames (27 input nodes), and successive 
windows are shifted one frame at time; furthermore, the second hidden layer 
is fully connected to  the first hidden layer with five delays (O, 1, 2, 3 and 4). 
Table 4 and 5 surnmarises the recognition rate obtained  and  the complexity 
of the algorithm respectively. 

In sight, to  take advantage of the significant low training cost of RBF net- 
works,  while obtaining  better recognition performance; modified forms of 
RBF networks have been investigated for sequence recognition task, isolated 
word recognition in  particular. Therefore, we shown in this  paper  that  the 
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models considered per€orm quite well, although the absolute  results (about 
95.5% of correct classification) do not seem impressive, due  to the database 
limits. 
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the speech data.  This work was supported by contratto  quinquennale IIASS- 
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