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Abstract 

We present a method for proving that existentially quantified formulas are valid  in the 
initial mode1  of a given set of equations. This approach avoids  completion and explicit 
induction and relies on the notion of  cover set. Attemping to prove a formula, we in- 
stantiate  it with terms from the cover set and a simplification strategy is started.  The 
simplification is based upon an ordered term rewriting system and may use  previously 
proved conjectures. We  show  how to use the proof obtained from Our method to generate 
a recursive definition of a Skolem function for an existentially quantified formula. 

keywords: Existence proofs, induction, term rewriting, cover sets, program synthesis. 

Résumé 

Les  formules existentielles jouent un rôle important  dans le domaine de la synthèse déductive 
de programmes. Nous présentons une méthode permettant  la construction (automatique) 
de preuves de validité de formules existentielles dans le  modèle initial d'un ensemble 
d'équations. Cette méthode est  basée sur une notion de cover set  et  de système de 
réécriture ordonné. Nous  proposons  également un algorithme de synthèse de définitions 
récursives de fonction de Skolem pour une formule existentielle à partir de sa preuve de 
validité. 
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1.1 Motivation 

Existence formulas are frequently used in computer science to describe a relation between 
the input  and the  output of a desired program. In  the field of program synthesis inductive 
existence proofs are used to compute algorithmic definitions for the slrolem functions under 
consideration [ E l .  Inductive theorems are usually  valid only in particular models of a given 
set of axioms,  for instance Herbrand models or the initial model. We propose a method 
for existence proofs in  the initial model of an equational variety. The basic idea vms 
inspired by the way Chazarain and Ihmalis [8] use (purely) algebraic simplifications to 
mechanize inductive reasoning. We consider first-order existentially quantified formulas 
of the form V 3: 3 y @(z, g), where 3: = ICI . . . , 2, and y = YI?. . . , yr are variables and is 
any  quantifier-free formula with equa1it.y as only predicate symbol. 

McCarthy [7] and Burstall[6] recognized the importance of inductive reasoning in program 
verification and computer science. Burstall proposed a structural induction principle for 
recursively  defined data structures. Since then, work has been  intensively done  in  this 
field.  Musser [14] used the Knuth-Bendix completion procedure to  prove equations by 
induction from a.n equational specification of data types. This method has been ca.lled the 
inductionless induction, since it tries to get rid of induction. 
Our approwh relies on the notion of  cover sets and uses  axioms (stated as ordered rewrite 
rules) and previously  proved conjectures to reduce the formula to be proved to a tautology 
or to a smaller (w.r.t a well-founded ordering) instance of the formula  itself. Our method 
diffas from the one proposed  in [Ml in the fact that we use cover sets and ordered rewriting 
instead of test sets  and traditional term rewriting. The contributions of this paper are 
threefold: First, we can now deal with interesting equational theories  for  which terminating 
term rewriting systems do not estist and where the method proposed  in [8] fails. Second, we 
enhance the flexibility of the method by allowing the user to choose the kind of induction 
principle he evants to apply. Depending on the choice of the cover set he can perform either 
structural  induction or term rewriting induction [16]. Third, we present an algorithm to 
synthesize a recursive definition of a skolem function for an existentially quantified formula. 

Let us describe in a feev words  how we proceed  in attempting  to prove a existentially 
qumtified formula in the initial model of a given set E of equations. E will be divided 
into two parts: a set of rewrite rules R and a set of equations El. The rewrite rules 
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serve to define functions and  are used  in the evaluation of terms. The equations represent 
additional knowledge about the problem domain which  may  be  used  for the proof and the 
program synthesis. Ordered rewriting allows us to use such equations, whenever the term 
obtained after the application of the considered equation is smaller (w.r.t a well-founded 
ordering) than  the one before application. 
The universally quantified variables of the formula to be  proved are replaced with the 
terms of the cover set and  the obtained formulas are  then reduced  using the rewrite rules 
from R or/and by equations from El. If the formulas are  in “solved”  form  (e.g. tautology 
or  smaller instance) then we are done, else we proceed instantiating either universally or 
existentially quantified variables with elements of the cover set. The simplification process 
is then repeated till al1 relevant  formulas are transformed into formulas in “solved”  form. 

The remainder of the paper is organized as follows. Section 2 introduces the essential no- 
tions used throughout this paper. Section 3 discusses two theorems for inductive existence 
proofs  based on different notions of  cover sets. In section 4, we consider an example and 
compare Our method with other well-known inductive proof methods. Section 5 presents 
an  dgorithm for generating a recursive  definition of a skolem function for an existentially 
quantified formula. We also  give an example to illustrate the way  we synthesize recursive 
function definition from existence proofs. 

2 Basic notions 

We assume that the reader is familiar with the definitions  used  in the field of term rewrit- 
ing. We adopt the notations used in [8]. 
Let X be a set of variables and F a signature of function symbols.  Let T ( F ,  X )  denote 
the set of terms built from F and X and G T ( F )  the  set of ground terms. An equation 
is a pair written as 1 = r. A specification is a triple SP = ( 4 ,  Fd, E ) ,  where Fh and Fd 
are two disjoint sets of function symbols and E a set of equations over T(Fk U F d ,  X ) .  Fk 
is  called the set of constructors of SP and Fd the set of defined function symbols. E will 
be  divided  in  two sets El and E2, where the equations of El serve to define the functions 
symbols of Fd and can be transformed into a terminating term rewriting system R. E2 

describes additional knowledge about  the problem domain. A term rewriting system R 
associated with an equational theory E is a finite set of rewrite rules R = (1; 4 ri}&, 
such that { l i  = and E are equivalent  (i.e, s = t is true in {li -+ if and only if 
s =E t ) .  Given a set of equations E,  we recall that a Herbrand model of E is a model of 
E whose domain is the set of ground terms. An equation s = t is a logical  consequence of 
E iff it is  valid  in al1 models of E. This will be denoted by E s = t. We denote by =E 
the smallest monotonic congruence that contains E (s =E t E s = t ) .  n o m  the well 
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known soundness and completeness theorem of  Birkhoff we get: E F s = t E s = t. 
The initial mode1 I ( E )  is defined to  be the quotient of the term algebra by the congruence 
= E ,  restricted to ground terms. A reduction ordering is a transitive monotonic relation on 
terms which is terminating m d  stable under substitutions. Two  well-founded orderings 
>1 and >2 are compatible if (>1 U >2)+ is welEfounded, or, equivalently, if they are  both 
included in a well-founded order. 

2.1 Ordered Term rewriting systerns 

Ordered term rewriting system d b w  us to overcome the limitations that are traditionallly 
caused by termination criteria. They are based on the iclea that unoriented equations can 
also be  used  for rewriting, provided that they are used along a reducing direction. As 
a consequence, we c m  now deal with symmetric equations, which are not orientable as 
rewrite rules. Commutativity equations are well-known examples of this. 

Definition 1 A term t[u] is reducible by an equation 1 = r if there is a substitution u 
such than 

e u(1) = u, and 

8 u(Z) > O ( T )  

where < is a ground-total simplification ordering on T(F7 X) (i.e.? a rnonotonic and stable 
ordering, which has the subterrn property and is total on ground term). 

An ordering > has the subterm property, if .t > s whenever s is a proper subterm of t. 

Definitisn 2 An ordered term rewriting system consists of a terminating term rewriting 
system (w.r.t a ground-total simplification ordering) and a possibly empty set of equations. 

An ordered term rewriting sequence is then a sequence of traditional and ordered term 
rewriting steps. Since the ordering is well-founded,  no term can be reduced  infinitely. The 
totality condition implies ground confluence of the ordered term rewriting system and can 
be dropped when the set E of equations is empty, since ground confluence is not necessmy 
for the correctness of  Our proof method. Ground confluence will be  necessary if we want 
to synthesize programs with deterministic results. 
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2.2 Inductive  theorems and cover sets 

An equation 1 = r is an inductive theorem of a given set of axioms El written E kind 1 = c, 
if and only  if,  for  every ground substitution 0, the equation o(1) = O(.) is a logical 
consequence of E. 

We take the following to be Our operational definition of inductive existence theorems (see 
P l  1 * 

Definition 3 A formula of the form Vz3y@(z,y) is an inductive theorem of a given set 
of equations E if for al1 ground substitutions u there exists a ground substitution v such 
that @(u(z), .(y)) is a logical  consequence of E. 

The above definition is not effective  because it involves testing al1 ground substitutions. 
In order to develop an effective method, we consider finite sets of nonground terms that 
can cover all ground cases. This is  formalized  in the following definition. 

Definition 4 Let E be a set of equations and > a stable, well-founded order. A set of 
terms {ti} of sort s is a >-cover set for s (with respect to E )  if,  for  every ground term g 
of sort s, there is a ti and a substitution u such that g =E u(ti) and g 2 a(&). 

We can easily  generalize this notion for n-tuples of t e r m  of possibly  different sorts. A 
cover set M for s1 x . . . x s, is then a set of n-tuples of terms from SI,.. . , s,, such that 
for every n-tuple < t l , .  . . , tn > of ground terms there exists a n-tuple < gl,.. . ,g, > from 
M and a substitution o, such that t; =E o ( g i ) ,  and ti 2 gi, 1 6 i 5 TI. 

Example 1 Let be the recursive path ordering [IO] generated by the precedence 
order s > + > O. Then M = {O, s(O), 2 + y} is a >,po-cover set for natural numbers with 
the following equations defining the addition. 

(NI)  2 + 0 = 0  
(Nz)  z + s(y) = s(z + y) 

Several notions of  cover sets have been proposed [2], [16], [4]. We will  see another definition 
of  cover sets, which is  b&ed on the so-called “cover functions” and was fmt introduced 
in [17]. It may be hard sometimes to find a suitable cover set. As proposed in [4], the 
function symbols in the conjecture and their definitions offer an insight into the problem. 
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We now formulate two theorem, which  show  how to prove cxistentidly qumtified formulas 
in  the initial mode1  of a set of equations. The two theorems are based on different notion 
of cover sets. 

THEOREM 1: Let >1 and >z be two wll-founded  and compatible orders on T(F9 X). 
Let E be a set of equations and T an ordered term rewriting system associated to E,  
(T consists of a terminating term rewriting system R and a possibly empty set El of 
equations). Let M be a >I-cover set for s1 x . . . x sn. The following formulas: 

are inductive theorems, if 

B For al1 @i and for  al1 substitutions cr with O(.) E M ,  there exists a substitution 1-1 
such that p(yj), is either a elernent from the cover set for the sort of y j  or a variable 
of the same sort, (1 5 j 5 rj, and such that 

@i(c(z),p(y)j --++ @i, where @ i  is either 

1. an equational tautology (Say a = z), or 
2. a formula of the form Vz'3i.!/ = H(z ' )  (explicît form) 
3. a formula @ k ( a ( ~ ) ~ i ) ,  with a substitution cy such that a($) <<2 c(~), where 

c<z is the multiset extension of <2. 

We should mention that  the above theorem remains sound even  if the term rewriting 
system R does not terminate. For the sake of simplicity we prove the theorem with 
formulas containing only one universal and one existential variable. 

Proof: We show that for any ground term s the following  holds: 

vi3t E GT(F)  E t- &;(s, t )  (") 

We prove (*j by induction on ground terms over the well-founded order <, in  which the 
orders 6 1  and <2 are both included (we know that such an order exists, since <1 and <2 

are compatible). We now assume that ('x) holds for a.ny s' such that s' < s a,nd  prove that 
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(*) holds  for S. 

Since M is a >l-cover set for the  sort of s, there is a cover set term s1 E M and a ground 
substitution u such that o(s1) =E s and s 2- a(s1). By hypothesis there exists for al1 i a 
term T such that 

and  after application of O 

Consider now the following  cases: 

1. Ci7i is an equational tautology. Then @.;(a(q) ,T)  is also an equational tautology and 
@i(s, T )  too. Hence, (*) holds by taking for t any ground instance of T. 

2. @i is of the form VzJ3y’.i = H(z’), which is an equational theorem and consequently 
@ ; ( a ( s ~ ) , T )  and @i(s,T)  too. We can then prove (*) by taking for t the  term 
T[Y’lfWz‘))l. 

3. Qi is of the form @ k ( w , i )  and w <2 SI. The stability of <z implies that s’ = 
u(w) <2 ~ ( q )  and since <1 and <2 are both included  in <, we have: s‘ = ~ ( w )  < 
c ( s 1 )  < S .  n o m  the induction hypothesis we  ltnow that there exists a term t’, such 
that E F @k(s’ , i ) .  Hence, after application of the ground substitution 77 : y’ * t( 
to (***) ive get: 

Hence @i(a(sl) ,  q(T)) is an equational theorem and @i(s, q(T)) too. Therefore we can 
prove (*) by taking q(T) for t .  O 

The first two  cases of the theorem can be seen as the base  cases and  the last one as the 
counterpart of the induction hypothesis in a traditional proof  by induction. If the set of 
equations El is empty  and if  we choose (for <2) the decreasing order generated by the 
term rewriting relation then,  the above theorem is reduced to term rewriting induction 
[16]. The decreasing order generated by a reduction order > is (> U D)+, where O is the 
strict  super  term order. 
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The next exa,mple illustrates  the importance of ordered term rewriting within ou-  proof 
method. Let us fmt give an informa1 description of the way the above theorem can be used 
to find  proofs. First, we replace the universal  variables of the formula to be proved with 
the terms of the cover set. Then, we use the rewrite rules from R or/a,nd the equations 
from El to simplifly the instantiated formulas. If the simplified  formulas are of one of the 
forms mentioned in the theorem (e.g., tautology or a smaller instance of the conjecture 
itself) we are done. If not, we replace the existential variable with cover set terms and try 
to simplify the obtained formulas with the ordered term rewriting system. If one of these 
formulas is already in one of the cases l., 2. or 3. of the theorern, we are done.  Btherwise, 
we apply a@n the same procedure to  the obtained formulas. The termination of the 
procese is not guaranteed, but whenever it terminates our theorem ensures the validity of 
al1 lemrnas @pi obtained during the proof. 

Example 2 let >lpo  be the lesricographic path order generated by the precedence  order 
O < s < +. Then _RI = .{O, s(z)} is a >Ipo-cover set for nat. Consider now the following 
ordered term rewriting system E,  which consists of R = {O+x + z, S(z) + y  4 S(z+y)} 
and the equation .El = {z + y = y + x}. We assume that  the conjecture C: b’x, y S(z) = 
S(y) 3 x = y has been already proved. 

Let P(x): Vz-Jy.S(x) = S(y) + O be the formula to be proved. 
We replace the universal variable with each term of the cover set and get: 
P(0) : 3y.S(O) = S(y) + O  
P(S(x1)) : Vx13y.S(S(z1)) = S(y) + O  

P’(0) : 3y.S(O) = O + S(y) 
P’(S(21)) : Vq3y.S(S(x,)) = O+ S(y) 

P”(0) : 3y.o = y 
P’‘(S(Z1)) : Vx13y.S(z1) = y 

Since O + S(y) <lpo  S(y) + O we can use El to get: 

Using R and C these two  formulas are reduced to: 

which satisfy respectively the cases 2. and 3. of the theorem. Therefore, P ( x )  is true in 
the initial mode1  of E. 

The above example is trivial, but it cannot be  proved without using the commutativity 
of the addition. Since commutativity equations are synlmetric, orienting them  in either 
direction results in  infinite rewrite sequences. Ordered rewriting allows us to get rid of 
this situation without being  forced to reflect the commutativity property of operators in 
al1 rewrite rules where they occur. 
We now introduce mother definition of  cover sets, which incorporates additional infor- 
mation via the so-called “cover functions” . The following  cover set definition  generalizes 
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the one in [17] by  allowing the description of ground terms instead of ground constructor 
terms of a sort S. 

Definition 5 Let GT(F), be  the set of  al1 ground terms of sort s and M be a finite set 
of n-tuples of terms (taken from (T(F,X) , ,  x . . . x T(F,X) , , ) )  

0 We  Say a mapping @ : M --+ P(GT(F),, x . . . x GT(F),,) is a cover function for 
s1 x . . . x sn upon M if 

1. Completeness for  any n-tuple of ground terms 2'1 =< tl ,  . . . , t ,  > there is an 
n-tuple T2 =< ml,. . . , m, >E M ,  such that 'Il  E Q(T2) and a substitution O 

such that ti =E .(mi) i = 1,. . . , n 
2. Minimality Q(T2) # 0 for T2 E M 
3. Uniqueness Tz in (1) is unique. 

M is said  to be a cover set for s1 x . . . x sn if M possesses a cover function defined 
above. 

A comparison of the different notions of cover sets and their respective induction principles 
is beyond the scope of this paper. 
Let  us now introduce a relation on terms which is necessary for the soundness of the cover 
set (as defined above) induction principle. 

Definition 6 Let > be a reduction ordering, E a set of equations and G a set of ground 
terms. A term tl is said to be  inductively greater than t2 with respect to G if for any 
ground substitution O and for  any term t E G, 

This is denoted by tl >i t 2  with respect to G. 

Let SubT(t =< t l ,  . . . , t, >, @(t))  denote the n-tuples of terms such that for  any term 
s =< SI,. . . ,sn > E SubT(t =< t l , .  . . , t ,  >, q( t ) )  there is j ,  1 5 j 5 n, such that 
si = ti, 1 5 i < j and tj >i sj with respect to @(t) and sj is a strict  subterm of t j .  

We  now formulate another theorem which relies on the last definition of  cover sets. 

THEOREM 2: Let > be a reduction order on T ( F ,  X ) .  Let E be a set of equations and 
T the ordered term rewriting system associated to E .  Let M be a cover set for SI,. . . , s, 
with cover function Il. The following formulas: 
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Vdya? i (5 ,  y) (5 = 21.1. Zn 9 y = 131.. . ym) and i = 1,. . . , 1  

are inductive theorems, if 

e For all @pi and for  al1 substitutions Q with a(.) E A l 7  there exists a substitution p 
such that &) is either a element from the cover set for the sort of y j  or a variable 
of the same sort, (1 5 j 5 r )  and such that 

@i(c(z),p(y)) +$ +i, where Pi is either 

1. an equational tautology (say a = a ) ,  or 
2. a formula of the form Vz’3y).i = H(z‘) (explicit form) 
3. a formula @,s(a(x), i), with a substitution cy such that a(%) E SubT(a(z), II(a(z))) 

Prooj analogous to  the proof of theorem 1. 

The above theorem can be seen as a generalized  version of the structura.1 induction prin- 
ciple.  If the cover set contains only constructor terrns and if there is no relation between 
the constructors then, we get the  structural induction principle as a special case. 

Consider the following rewrite rules for the definition of append and reverse funetions for 
lists: 
R = { appen.d(ni1, 1 )  + 1 

reverse(ni1) -+ ni1 
reveme(cons(n, m))  + append(rewerse(m), cons(a, nil))} 
Let the recursive path ordering generated by the precedence order reverse > append > 
com > ml. R is obviowly terminating (1v.r.t We also assume the following  lemmas: 
(Ll) : Va : El, rn : list:reeJerse(a~pend(.I72, cons(a, nil))) = cons(a,  reverse(m)) 
(L2) : Va, b, cl d : El, 1, r : list.cons(a, append(1, cons@, nil))) = con.s(c, append(r, cons(d, nilj)) 
= % a = c A l = r ) A b = d  
Consider the following theorem: 

append(cons(a, l ) ,  m) --f cons(a, append(1, m)) 
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where the witness for 12 is  clearly  going to be reuerse(ll), but we have to find a suitable 
cover set  in order to prove (*). Consider the following  cover set 

M = {nil, cons(u, nil), cons(x1,  uppend(l',  cons(x2, nil)))} with the following  cover func- 
tion: 

@ : M -+ P(Tc) 
Q(ni1) = nil, 
@(cons(a,nil)) = ( 1  1 111 = 1}, 
Q(cons(z1, append(l1, cons(z2, nil)))) = (1 1 121 > 1) 

Wir first replace the universal  variable 11 with the cover set elements: 

- 3 2  : list.reverse(reverse(nil)) = reverse(l2) 
- Vx  : El 312 : Zist.reverse(reverse(cons(x, nil))) = reverse(l2) 
- Vxl,x2 : El, 1 : list 312 : list.reverse(reverse(cons(x1, append(l,  cons(z2, nil))))) = 
reverse(l2) 

These formulas are reduced (using the rules  in R and (Ll) ) to: 

- 312 : list.nil = reverse(l2) (1) 

- Vx  : El, 312.cons(x, nil) = reverse(l2) (11) 

- Vz1,x2 : El, 1 : list.cons(x1, append(reverse(rewerse(l)), cons(z2, mi l ) ) )  = reverse(l2) 
(III) 
Since (I), (II) and (III) cannot be reduced, we substitute the cover set values nil, cons(y, nil) 
and cons(y1, uppend(l',cons(y2,nil))) for the existential variable 12 respectively  in (1), (II) 
and (III). After simplification we get: 

- ni1 = ni1 
- Vx : El 3y : El.cons(x, nil) = cons(y, nil) 
-Vzl, 1c2 : El, 1 : list 3y1, y2 : El, 1' : list.cons(z1, uppend(,reverse(rewerse(b)), cons(x2, nil))) = 
cons(y2,  uppend(reverse(l'), cons(y1, nil))). 

The first formula is an equational tautology. The second is also a tautology if  we take x 
for y. After applying (L2) to the  third formula, we get: 

Vx1,x2 : El, 1 : list  3y1, y2 : El, 1' : list. x1 = y2Areverse(reverse(l)) = reverse(1')  Ax2 = 
Y1 

which  consists of two  formulas  in the explicit form mentioned by case 2 of theorem 2 and 
a formula which  is a smaller instance of (*), since 1 is a proper subterm of 11 and 11 >' 1 
holds. Therefore, (*) is true in the initial mode1  of R. 
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Remark The above formula c m o t  be  proved by taking {nil,cons(a;,Z)} as cover set. 
This illustrates the fact that Our proof method is a generalized  version of the  structural 
induction principle (see also [17]). We should  also mention that  the test set method would 
fail trying to prove (*)> since (nil, cons(z, 1 ) )  is an inappropriate test set for R. 

In this section we show  how to generate recursive definitions of  skolem functions for ex- 
istentially quantified formulas. These generated functions (or progranas) are in fact by- 
prsducts of existence proofs csnstructed wing  the proof method proposed in this paper. 
Before introducing the algorithm, we first restrict the definitions of  cover sets in order to 
avoid  possible  inconsistencies  in the definition of the functions we will be generate. The 
following restrictions are now placed on  the definitions of  cover sets: 

1. The given  well-founded ordering rnmt be total on ground terms. 

2. For any ground term t there exists a unique cover set  term tl and a substitution 
cr, such that t =E and a(t1) is ground and minimal by the given ordering. 

These restrictions guarantee that  the gensrated program are ground confluent. Ground 
confluence means that the results of the programs are deterrninistic. 

5.1 The algorithm 

Let hf = {cl, . . . , cm} be a cover set of s1 X 1 .  . . , Xsk.  Out of a proof of an existentially 
quantified formula Vz3y @(zI y) (where 5 = 21,. . . .I xk and y = YI,. . . yn) by means of 
theorern 1 or theorem 2 we can tale n-tuples of terms t l % .  . . , tm such that, 

Consider now each 9j and let f : SI x . . . x s k  + s (where s is the sort of t j i  and 
i = 1 , .  . . , n) be the following function: 

1. f(cj)  = tjir if @ j  is an equational tautology (Say z=z) and where tji must be closed, 
since we want to synthesize functions and not relations. 
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2. f ( c j )  = y(tj;), if Q j  is  of the form Vx’3d.i = N ( z ’ )  and where 7 is the substitution 
y : yl --+ H(z‘).  

3. f ( c j )  = y( t j i ) ,  if @j is  of the form @ ( a ( z ~ , .  . . , zk), d )  where 
y : ---+ f(a(z1,. . . , zk)), @(XI,. . . , zk) << cj and where << is the multiset extension 
of the given  well-founded  ordering. 

1 and 2 are  the base  cases,  whereas 3 represents the recursion  case of the definition of 
the generated skolem function. Functions which are constructed by means of the above 
algorithm represent the computational content of existence proofs  derived  using the proof 
method proposed in this paper. 

THEOREM 3: If we can prove the validity of an existentially quantified formula by 
means of theorem 1 or theorem 2 then,  the function which  is  derived  using the above 
algorithm satisfies the existence  formula. 

Proof: Let E be  the given set of equations and f the function, which  was derived from 
Vz3y Q(z, y) (*) by  means of the above algorithm. The function f satisfies (*) if @(z, f(z)) 
is an inductive theorem of E. i.e., Vt  E G T ( F )  E l- @ ( t , f ( t ) ) .  Rom the proof of (*) we 
can take a term T E GT(F) such that, El- Q(t ,T).  Therefore, @(il f ( t ) )  is an equational 
theorem, since f ( t )  is an instance of T for  a.ny t E G T ( F ) .  O 

- The synthesized function is completely  defined,  since the completeness of the cover sets 
is guaranteed by definition. 

- The function is terminating, since her arguments are smaller (w.r.t the given  well-founded 
ordering) after each recursive  call. 

- The function is well defined,  since the cover set is “non-overlapping”. 

Example 3 Consider the example of section 4. Using the above algorithm we can gener- 
ate  the following function f : list -+ list: 

- f(niZ) = ni1 
- f(cons(z, nil)) = cms(z ,  nil) 
- f(cons(z1,  uppend(l, cons(z2,nil))) = cons(zz, uppend( f ( l ) ,  c o n s ( z ~ ,  nil))) 

Through Our proof and synthesis method we have generated a new  version  of the reverse 
function, which is more  efficient than  the initial one. Depending on the choice  of the cover 
set, we can synthesize efficient programs. An important aspect of our method is that it can 
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be  used to transform programs by transforming (using another cover set) their respective 
proofs. 

We have presented a method for  proving the validity of existence formulas in the initial 
mode1  of a given set of equations. This method generalizes the one developed in [8] by 
using ordered term rewriting and cover sets. As a consequence, we c m  deal now with 
interesting equationd theories for which terminating term rewriting systems do not exist. 
Cover sets, as opposed to test  sets, improve the flexibility and  the power  of the method. 
Suitable cover sets may be (automatically) constructed from  completely  defined functions. 
We have  also proposed in  this  paper an algorithm which synthesiaes a recursive function 
out of an existence proof. We plan to investigate the relationship betvseen the different 
notions of cover sets, test  sets  and their respective induction principles. We are dso 
insterested in finding methods to  automate the determination of  cover sets. 
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