Implementation of Composite Objects in an
Object-Oriented Database System

Hafida BELBACHIR* and Hiroshi ARISAWA**

* Institut d'Informatique. U.S.T.0. BP. 1505 EL M'NAOUAR, ORAN, ALGERIA
*¥ Department of Elecirical and Computer Engineering, Faculty of Engineering,
Yokohama National University. 156. Tokiwadai. hodogaya-ku, Yokohama 240, JAPAN

Keywords : object-oriented model. composite object. schema evolution.

Abstract

The composilc object is a nested object on which the composite relationship is imposed. The
concept of composite object is very important in many applications where the nested object is defined
and manipulated as a single entity. However few object oriented systems take into account composite
objects. In this paper. we propose an approach to modelize and to implement the composite objects. This
approach extends the semantics of composite objects and reduces the time consuming when modification
operations are performed on composite object.

Résumé

Dans les systémces de base de données orientées objet, le domaine d’un attribut peut eire une
classe. ce qui crée un lien de référence entre la classe a laquelle appartient Iattribut ¢t 1a classe domaine.
Cependant ce lien ne refléte aucune sémantique. Une relation spéciale dite relation de composition peut
ctre ajouter au licn de référence pour représenter le fait qu'un objet est une partic d’un autre objet dit
objet composite.

Le concept d’objet composite est trés important pour plusicurs applications ou 1'objet complexe est défini
¢t manipulé comme une seule entité. Cependant trés peu de systémes orientés objet prennent en compte
cele notion.

Dans cei article, nous présentons une approche de modélisation et d’implémentation de 1'objet
composite, Cetie approche augmente la sémantique du concept d’objet compaosite, et permet de réduire le
temps consommé lors d’opération de manipulation des objets composites.

L INTRODUCTION

In object-oriented systems, an object can have any number of attributes, and any
of these attributes may take values from other classes (the values of the attributes are
instances of other classes) [1][8][14]. This type of object is a nested object
[21[3][61[9][11]. The nesting of objects does not capture any special relationship

— 606 —



between objects. Many applications [4]{10][15], require the ability to define and
manipulate a nested object as a single logical entity.

Also an important relationship may be superimposed on the nested object : the
composite relationship [7][12]{13][17]. The composite relationship captures the notion
that an object is a part of another object. A composite object is that part of a
conventional nested object on which the composite relationship is imposed. The
composite object references its components through a composite attribute. This
reference is called composite reference between the object and its component objects
(also between the class of object and the class of components).

A composite object is defined as a directed acyclic graph where a node can be
either a single component (with no component objects), or a root of a graph with its own
component objects. A directed edge in the graph represents the composite relationship
between a composite object and its component. This graph is called the composite graph.

The semantic of a composite reference is further refined by the concepts
exclusive, shared, dependent, independent {13]. The composite reference may be of two
types exclusive or shared. An exclusive composite reference from one object to another
object means that the second object is a part of only the first object. Shared composite
reference from one object to another object means that the second object is a part of the
first object and possibly other objects.

A composite reference may be dependent or independent. A dependent composite
reference from one object to another means that the existence of the second object
depends on the existence of the first object, while an independent composite reference
from one object to another means that the existence of the second object is independent
of the existence of the first object.

The object oriented model of database management system ORION [12][13] is
the first database system which supports the composite relationship (is-part-of
relationship). ORION modelizes the composite relationship by maintaining in each
component a list of reverse composite references, that is, object identifier of its
composites.

A reverse composite reference consists of two flags in addition to the object
identifier of the composite. The first flag indicates whether the object is a dependent
component of the composite, while the second flag indicates whether the object is an
exclusive component of the composite. However this approach suffers from a number of
shortcomings. First, this representation is redundant since the type of the composite
relationship between two classes C1 and C2 is represented in every instance of C2. Then
this type is the same for every instance of C2, component of instances belonging to C1.
In this paper, we propose to maintain the type of the composite reference only in the
classes, and not in instances level. '

The second shortcoming is the need to keep in each instance, the list of object identifiers
of its composites. This approach is time consuming when one type of attribute is
modified into- another one also when schema change operations and instances operations
are executed. To palliate to this second problem, an approach using the reverse pointers
in a separate data structure is also proposed in this paper.

— 607 —



This paper is organized as follows. In section 2 we present briefly our object-
oriented system which supports the composite relationship, then an example illustrating
the composite reference types is given. The section 3 describes the implementation of
composite objects. The section 4 formalizes the concept of composite reference, and
gives the rules which must be verified by the types of composite reference. In section S,
we discuss the impacts of composite reference property on the semantic of some
operations. The section 6 concludes this paper.

1. MODEL DEFINITION

The model [5] is based on a set of fundamental objeci-oriented concepts common
to most object-oriented programming and knowledge representation (object identifier,
attribute and method, class, inheritance). To take into account the application semantic
the concepts of “'facet" and "'Integrity constraint" are added in the model. The facets
[16] are attributes descriptors. They are used to modelize the sharing value, the inference
(which permits to compute attribute value), the dynamic inheritance, the constraints
(which can be defined on attributes to restrict their values) and the composite reference.

The class is defined by its name, its super-classes, its attributes, its methods and
its integrity constraints (the integrity constraint is a restriction that need to be verified by
the values of the attributes). An attribute is described by its name and a list of facets. We
distinguish :

_ - Type faceis (Yoone, %list-of, Y%set) : they specify if the attribute is single-valued
(atomic), structured (its value is an object which belongs to another class called the
attribute domain), or mulii-valued (its value is a set of atomic values or a set of objects).
The structured and multi-valued attributes create the attribute/domain link (or reference
link).

- Restriction facets (Y%domain, %interval, %to-verify, %except, Yemincard,
Ymaxcard) . they limit the value of an attribute.

- Value faceis (Y%const, %default, %init-value, %proc-attac) : they give or
compute the value of an attribute.

- Inheritance facet (Y%inherited-from) which allows to solve the name conflicts
arising from multiple inheritance. The user can specify the super-class from which the
attribute is inherited.

- Composite faceis (Yocomposite, %exc, %dep) : the domain of an atiribute of
class C may be a class, and then creates an attribute/domain link between class C and
domain class. This link can be composite reference link. Then the user can specify this
composite reference by the facet %composite (value = true). As mentioned earlier, the
composite reference may be shared or exclusive, independent or dependent. The user can
specify the type of composite reference by using the facets %exc and %dep. The facet
%eexc specifies if the composite reference is exclusive or shared while, the facet Y%dep
specifies if the composite reference is dependent or independent. The user can modify the
type of composite reference. A detailed study is given in section 5.

— 608 —



III. EXAMPLE OF COMPOSITE REFERENCE TYPES

The following example (as shown in the figure 1), illustrates the types of
composite reference. This example describes the database, called the ""neighborhoods
management" which contains information about neighborhoods, their houses, gardens
and schools. For the purpose of simplicity, we supposed that each neighborhood contains
only individual houses, one school, one garden. The individual house is described by its
rooms and its lot. The garden can be shared by the other neighborhoods but the school
belongs to one neighborhood.

The class EDUCATION inventory all schools, universities, institutes,..

NEIGHBOHQOOD HOUSE g » OWNER
hame I(E,D) houseouwner =spuesei |name
n-house address age
n-gafdeh— roomhouse =i nationality
n-school 4 lothouse
N
E];UC;:TH])- (S.D) - (E,D)
ed-sch0o. -_l(s,l) s (E’n
SCHOOL GARDEN LOT ROQM
name area atea height
nb-classes nb-trees level widh
nb-students, length
— Cotftpositelinlg ) \ :Exclusive  §:Shared ’
--+ _atiribute/domain link ; D :Dependent  I:Independent

Figure 1 : Example of composite reference types

The house belongs to one neighborhood then the composite attribute n-fouse is
exclusive dependent. Likewise a room is a part of only one house then the composite
attribute roomhouse is exclusive dependent. The lot is a part of only one house but it can
be used for another house when the first is destructed, then the composite attribute
Jothouse is exclusive independent.

A garden may be shared by many neighborhoods then the composite attribute n-
garden is shared independent. The school is a part of only one neighborhood but it is
inventoried by the education organization then the composite attribute #-school is shared
dependent and the composite attribute ed-school is shared independent.

— 609 —



The attribute houseowner has domain class OWNER but it is not compasite. The
owner is not a component of house.

V. COMPOSITE OBJECT IMPLEMENTATION

A class C references another class C', with composite reference, via a composite
attribute A means that the value of the attribute A, of an instance x belonging to C, is the
identifier of an instance y belonging to C'. So, every composite instance of C contains an
instance identifier of class C'. With this representation, we can find, for each composite
instance, the ideniifiers of its components directly or indirectly referenced from this
instance via composite references.

Given a component, it is often necessary to determine its direct or indirect
composites. Orion [13] proposes to maintain in each component a list of reverse
composite references, that is, object identifiers of its direct composite objects. The
number of reverse composite references in a component is equal to the number of its
direct composites. A reverse composite reference consists of two flags in addition to the
object identifier of a composite. One flag (D) indicates whether the object is a dependent
component of the composite, while the other flag (X) indicates whether the object is an
exclusive component of the composite. This approach is space and time consuming, since
it requires to keep in every component the object identifier of the composite and two
flags (D,X).

To prevent this disadvantage, the type of the composite relationship is maintained
in the class rather than in every component, also the list of reverse composite references
of each component is not kept in the instance component, but it maintained in a separate
data structure. More precisely every component identifier with its composite identifiers
are an instance of a pre-defined class INSTANCES.

The pre-defined class INSTANCES contains the identifiers of component
instances with their composite identifters. It is defined as following :

Defineclass INSTANCES
attributes -
# component : component identifier.
# composite : list of composite identifiers.

This approach solves both the redundancy (the type of composite reference is
maintained in the class rather in every component) and reduces the time consuming when
modification operations are executed ( instead of checking of and modifying the
instances of the concerned class only some instances of pre-defined class INSTANCES
are considered). The study of the semantic of these operations is detailed in section 5.

V. COMPOSITE REFERENCE CONSTRAINTS

— 610 —



An object may have many composite reference to it. These references may be of
different types. However, some rules must be respected by these references. Theses rules
are based on the semantic of composite reference types.

As said previously, the type of composite reference is represented in the classes,
rather than in the objects, then we define the rules on the classes.

We first formalize the composite reference by a graph said class composite
reference graph. Then we define the rules as conditions on this graph.

a) Class composite reference graph

Definition

A class composite reference graph G = (X, U) consists of a nodes set X and an
edges set U, where the nodes set X is the classes set and the edges set U is defined as
follows :

U= {(c,.c,),c, € X,c, € X /¢, has a composite reference to ¢, }

This graph is further valued by the type of composite reference : every edge is
valued by two values v1 and v2, vl indicates whether the type of link is exclusive (vl =
1) or shared (v1 = 0), while the other value indicates whether the type is dependent (v2 =
1) or independent (v2 = 0). This valuation is represented by a function V defined as
follows :

D1 ={1,0},D2 = {1,0}
V:U— DixD2
(¢,¢3) > V(¢ 0,) =(v,v2)

In figure 2, the class composite reference graph associated to the database
neighborhoods management” is presented.

NEIGHBORHOOD EDUCATION
{L1) ©,1
) &n o0
HO,
) GARDEN SCHOOL
(ly (L1
LOT ROOM

Figure 2 : Class composite reference graph

— 611 —



We denotes " (¢), the classes set which have a composite reference fo ¢
I (©)={c, /(¢,,¢) eV}

b) Graph conditions

condition 1
If a class ¢, has an exclusive composite reference to c, then ¢, is the only class which

has composite reference to c. Formally
Vee X(Je,¢ el (@) AV (c,0)=(1,-)=>T () ={c})

condition 2
A class ¢ has at the most one a dependent composite reference to it. Formally

VeeX(3e ¢ eT ()nV(c,¢)=(=1) = —de,,¢, ¢, Ac, eT7 () AV (c,,¢) = (=1)

These conditions on the graph are the rules which musi be satisfied when
modification operations are executed. We discuss now these operations and there
semantics.

Vi. OPERATIONS ON COMPOSITE OBJECTS

The operations on composite objects can be classified on three classes : 1)
changes to composite reference type, 2) changes to the schema evolution, 3) changes to
the instances. The rules defined previously must be preserved before and after any
change operations.

In the following, let's suppose that a class C has a composite attribute A whose domain is
a class D.

1) changes to composite reference type

Changes to the composite reference type include changing the composite
reference to a non composite reference, changing an exclusive composite attribute to a
shared composite attribute (and vice versa) and changing a dependent composite
attribute to an independent (and vice versa).

1-a) change a composite reference o a non composite reference

This operation is executed without condition. The change from the composite
attribute A to a non composite attribute is implemented by :

— 612 —



- changing the type of the attribute in the definition of class C (deleting the facets
\%exc, \Yodep and changing the value of the facet \%ocomposite).

- accessing the instances of the class D in the pre-defined class INSTANCES and
dropping reverse composite reference to instances of the class C.

1-b) change an exclusive composite atiribute to a shared composite attribute

This operation is executed without condition. The change is implemented by
modifying the value of the facet %exc in the class definition of C.

1-¢) change a shared composite attribute to an exclusive composite attribute

The class D must not already have an exclusive composite reference to it
(condition 1). The instances of the class D (in the pre-defined class INSTANCES) which
are referenced through A, must have only one reverse composite reference (otherwise
the operation is rejected). The change is realized by modifying the type in the class C
(changing the value of the facet %oexc).

1-d) chc}nge a dependent éompbsile aitribute to an independent composite attribute

This operation is executed without condition. The change is realized by changing
the value of the facet %dep in the class definition of C.

1-e) change an independent composite attribute to a dependent composite attribute

If the composite reference is exclusive the change is realized without condition,
but .if it is shared, the class D must not already have a dependent reference to it
(condition 2). The change is implemented by modifying the value of the facet %dep in
the class definition of C.

2) schema evolution

Only schema change operations which involve a composite object are considered.
These operations are : dropping a composite attribute or dropping a class.

2-a) drop a composite attribute A in the class C

If A is a dependent composite attribute, all instances that are referenced through
A are deleted in the class D (deleting instances may imply deleting instances of another
classes, see operation 3-b) and in the pre-defined class INSTANCES.

If the attribute A is independent, only reverse composite reference of instances
belonging to class D to instance of class C are dropped, in the pre-defined class
INSTANCES.

— 613 —



2-b) drop an existing class C

The instances belonging to the class C are deleted. If the class C has one or more
dependent composite attributes, then all instances that are referenced through the
dependent composite attribute by the instances of class C are deleted (deletion is
recursively repeated).

If the class C was the domain of an attribute Al of another class C1, Al is
assigned a new domain which is the first super-class of C.

All subclasses of class C become immediate subclasses of the super-classes of C.

3) changes to the instances

We discuss only about operations which have impact on the composite objects as,
creating, deleting a composite instance, making an instance a part of composite object or
deleting the composite reference between two instances.

3-a) create a new composile insiance x 1o a class C

i) For each none composite attribute whose domain is a class then put the
identifier of the referenced instance into x.

ii) For each composite attribute, if the referenced instance y exists and the
composite reference is exclusive, then y must not already have any composite reference
to it ( otherwise the operation is rejected).

If ihe referenced instance y does not exist then creates the instance y and its associate
instance in the pre-defined class INSTANCES.

Put the identifier of referenced instance y into instance x, and insert the identifier of x
into the list of reverse composite reference of y (in the class INSTANCES).

3-b) delete a composite instance x from the class C.

i) If the instance x has a dependent composite reference to it then reject this
operation else delete the identifier of x from the composite instance.

ii) Delete x from the class C and from the pre-defined class INSTANCES.

iii) For each composite attribute A that references a class D,
if the composite reference is dependent, then delete the referenced instances ( deletion is
recursively repeated) else delete the identifier x from the list of reverse composite
references of y (into the class INSTANCES).

3-c) deleie a composite reference between instance x and insiance y

i) Delete the identifier y from the instance x.
if) Delete the identifier x from the list of reverse composite references of .

— 614 —



3-d) make an instance y component of an instance x.

i) If the composite reference is exclusive, then y must not already have any
composite reference to it (otherwise reject the operation).

ii) Put the identifier of y into x, and insert the identifier of x into the list of reverse
composites of y.

VII, CONCLUSION

The notion of composite object is very important in the new applications as
computer-aided design, office automation, speech processing and so on, where the object
must be treated as a whole. Also, to take into account the semantic of these applications,
the notion of the composite reference is refined by the concepts of shared, exclusive,
dependent and independent.

In this paper, we have presented an approach to modelize and implement the
composite object in our object oriented database. The proposed approach permits to
reduce the time consuming when modification operations are executed.

The semantics of these operations have been presented, showing the efficiency of
our approach.

REFERENCES

9 S.Abiteboul and S.Grumbach “Bases de donnees et Objets Structures”, TSI,
Vol.6, No5, 1987.

[2] M.Adiba ‘Modeling Complex Objects for Multimedia Databases”, in Entity
Relationship Approch : Ten Years of Experience in Information Modeling,
S.Spaccapietra Ed., North Holland 1987.

[3]  T.Andrews and C.Harris, ~“Combined Language and Database Advances in an
Object-Oriented Development Environment”, In Proc.2nd Int.Conf.on Object-Oriented
Programming Systems, Languages, and Applications, Orlando, Florida, Oct.1987.

[4] H.Afsarmanesh, D Knapp, D.MCLeod and A.Parker, "An Object-Oriented
Approach to VLSI'CAD" Proceedings of the International Conference on Very Large
Data Bases, august 1985.

[5]  L.Babahamed, ‘'Requetes de Consuliation dans une Base de Donnees Orientes
Objet", Thése de Magister, Université d'Es-sénia, Algeria, 1993.

— 615 —



[6]  IBanerjee et al., “Data Model Issues for Object-Orienied Applications”, ACM
Trans. on Office Information Systems, Vol5, Nol, 1987.

[71  C.Djeraba and H.Brinand , A Design Object Concepi” , in Proceedings of
International Symposium on Advanced Database Technologies and their Integration,
Nara, Japan, october 1994.

[8] R.Ducournau, "YAFOOL", Version 3.22 Manuel de Reference SEMA METRA
Montrouge, 1988.

(9]  D.Fishman et al, "IRIS : an Object-Oriented Database Management System” |
ACM Trans, on Office Information Systems, Vol 5, nol, 1987.

[10] SHudson and RKing , “"The Cactis Project : Database Support for Sofiware
Engineering”, IEEE Transactions on Software Engineering, june 1988.

{111 WXKim, HT.Chou and J.Banesjee, 'Operations and Implementation of Complex
Objects”, in Proceedings of the Data Engineering Conference, Los Angelos, Calif,, 1987.

[12] WKim, J.B.Banerjee, H.T.Chou, J.F.Garza and D. Woelk, “‘Composite Object
Support in an Objeci-Oriented Database System", in Proceedings of OOPSLA'87, 1987.

[13] WXKim, EBertino and J.F.Garza, “Composite Objects Revisted” in Proceedings
of SIGMOD, volume 2, 1989.

[14] R.Lorie and W Ploutfe, “"Complex Objecis and their Use in Design Transaction”
in Proc.Databases for Engineering Applications, Database Week 1983 (ACM), San jose,
California, May 1983.

[15] WXKim and F.Lochovsky, “Object-Oriented Concepis, Databases, and
Applications”, Addison-Wesley, 1989.

[16] F.Rechenmann, "SHIRKA : Systeme de Gestion de Bases de Connaissances
Cenirees Objet”, Manuel d'utilisation INRIA, Rocquencourt, 1987.

[17] M.E. Winston, R.Chaffin and D.A Herrmann, “Taxonomy of Pari-Whole
Relations”, Cognitive Science 11, 417-444, 1987.

— 616 —



