Handling Code Displacements in the Debugging of Optimised Programs

William S. Shu

Department of Mathematics and Computer Science,
University of Buea, P. O. Box 63, Bueca, CAMEROON.

November 1995

KEY WORDS: Interactive Source-level Debugging, Debugging of Optimised Programs, Path
Metric Space, Distance Function, Optimisation.

ABSTRACT;: Instruction code reordering is a common consequence of many optimisation
techniques and must be masked out in the source-level debugging of optimised programs. To
capture the notion of "distances along [specified] paths", a function A is defined and used. A
mimics the usual mathematical distance function though it is applied in a "path metric space":
it gives the distance between two points in a program but also the path along which it is
measured. A is used to correct optimisation effects of code movements at debug-time.

RESUME: Changer I'ordre d’exécution des instructions est une conséquence fréquente de
plusieurs techniques d’optimisation et ceci doit éire rectifi€ lors de la mise au point, an niveau
source, des programmes optimisés. Pour capter l'idée de "distances sur une trajectoire
[spécifiée]", une fonction A est définie et utilisée. A ressemble 2 la fonction habituelle des
distances métriques en mathématique mais efle est appliquée dans un "espace méirique des
trajectoires": elle donne la distance entre deux positions dans un programme mais aussi le
chemin sur lequel cetie derniére est effectuée. A est utilisée pour corriger, lors du de la mise
au point, les effets de déplacement des instructions par 1’optimiseur.

1. INTRODUCTION

In the source-level debugging of unoptimised programs, there is a simple match between source
and target codes. Thus, sewting breakpoints or accessing variables at debug time is
straightforward. The source-code is matched to its target code where the breakpoint is set.
Similarly, symbol table information permits one to identify the location of a variable, which
could then be assigned to or read. Thus, a variable would be in scope if it was defined in the
block or procedure in which the program was stopped (i.e. at the current breakpoint).

In the presence of optimisation, this simple match betwesn source and target code is lost.
Instruction codes are moved around or replaced. New ones are inserted, and others deleted.
Conventional debugging can take place only if one monitors and corrects for the effects of
optimisation. One effect of optimisation is to move code, relative to each other, and so alter
their expected execution sequence. I adapt a function termed a "path metric” to measure this
displacement. A path metric is similar to a conventional mathematical metric but the [execution]
path on which the distance function is measured must be identified as well.

— 854 —

The metric is then used to adapt a conventional debugger to one for optimised programs. Many
applications — especially real-time and fault-tolerant ones — require debugging-on the final,
optimised version of a program. Besides being cheaper to adapt an existing debugger than to
conceive new ones, using the metric provides a simple but sound basis on which code
displacement issues are systematically handled or interpreted. Furthermore, the formal nature
of this metric approach eases correctness proofs on such debuggers.

11. Other works

A number of works have dealt with issues arising from the source-level debugging of optimised
programs. For instance, Hennessy {4] considered variable access. Zellweger [8] studied control-
flow issues and how to mask out adverse optimisation effects. The DOC system of Coutant et
al. [3] defined the ranges of optimisation effects based on addsess ranges of instructions. These
ranges identified memory locations for values of variables to be displayed. Others, such as
Brooks et al. [2) monitored the effects of optimisation for a user who would then decide on how
best 10 debug his/her program. Meanwhile, Holzle et al. [5] preferred to "deoptimise” relevant
code segments by incrementally fre-Jcompiling an unoptimised version at debug-time.

Shu [6,7] formally characterised the effects of optimisation on debugging. He held that formal
reasoning on the issues involved would lead to greater understanding and better debugger design
for a wide class of programs. Thus, the effects of optimisation on debugging were examined
within an algebraic framework. This paper studies a formal characterisation based on metric
distances which focuses on measuring and masking code movements.

2. USE OF PATH METRIC CHARACTERIZATION IN DEBUGGING

2.1. Mapping Program Instructions to Nodes

A given program may be seen as a graph whose nodes are its instructions, and whose arcs
determine control flow. Instructions added, removed or replaced by optimisation are also seen
as nodes. However, the actual instructions, which could even be program units, do not matter;
one is interested only in the optimising transformations applied to them and how to undo their
effects.

For expository clarity, I assume a model of compilation where naive code is generated and
optimisation is then applied separately, though the principles discussed apply to other
compilation strategies as well. Thus, in [Figure 1] program (a) is compiled to b.1 and then
successively optimised to (b.2) and (b.3). Optimisation transformations are assumed correct.

The model of the source-level debugger is a conventional one for unoptimised programs:
allowing for minor adjustments, a table associates address [ranges] of target codes to successive
source codes constructs. For instance, the current execution point of a program in the source
code is that source code identified with the target code address from the table. In practice,
source code addresses may be given in terms of line numbers, blocks and so on.

Control is exchanged between a running program and a debugger at breakpoints. Other

debugger features, such as single-siepping, are viewed as special versions of breakpointing., For
" interactive source-level debugging, the breakpoints are in the executed code, but have to be
expressed as positions in the source-code via the address table.

— 855 —

2.2. Measuring Displacements

Let M be the set of all nodes that could be used in a program and G(M) is a graph describing
the program obtained from nodes in M. Each node denotes a single instruction code as
discussed above. Each instruction in the program is initially mapped to a unique node in M:
multiple instances of the same instruction correspond to distinct nodes. Thus, G(M) is initially
a directed graph of the unoptimised program. A path on the graph (P} is specified in terms of
nodes found on it. For instance, (AB) (or (4, B)) describes a set of directed paths from A to B,
possibly through intervening nodes. Iterm such a description a path specification. A path may
be expressed in terms of altsmative nodes, and a set of paths may be described by the same path
specification.

A path is measured using a special distance function in a path metric space. See [Appendix A]
for a full discussion on this. (M,A,5) defines a path metric space. For a path specification (P),
A is a function that retums the pair (r, [). 7 is the "length" of {P) as measured by 8, a
conventional distance function. !is the actual path used for the measurement of 7, since (P) may

Figure 1 ~ Source, Naive and Optimised codes

S0 :<start node> T00 :<stari node> T00 :<start node> T00 :<start node>
82: a = 5; 5 kg §O R ; ik GO sk ; ok GO ek
83: if (¢ != %) |702: mov a,5 T10: mov a,5 § T10: ;
S4: b = ctd; T02: mov a,5 T02: mov a,5
55: else ; EER QY e

gg Z : gé, T03: mov ax,c ; ik §F ; wEk QY wEk

. - . | T04: cmp ax,x |T03: mov ax,cC T03: mov ax,c
58: e = atbtc; T05: Jje @L1: T04: cmp ax,x T04: cmp ax,x

T05: Je @Ll: T05: Je @LI1:

; EEE G4 e
|706: mov axzc ; Rk Q4 wwk ;e §q wk
T07: add ax,d T06: mov ax,cC T06: mov ax,c

T08: mov b,ax |[T07: add ax,d T07: add ax,d
T08: mov b,ax T08: mov b,ax

;iR §F
709: jmp @L2 ; ik §F ek ; Rk G sk
T09: Jjmp QL2 T0%: Jmp @L2
;e QF
@Li: ; ek G sk ; ik GG e
T10: mov a,5 erLl: g o
; dE Q7 g wEE Q7w s dwE QT wwk
Tll: mov a&,23 |[T1il: mov a,23 T1l: mov a,23
er2: BL2: €r2:
. e Q@ ; wEE QR wEk § kEE GB WX

T1l2: mov ax,a
|T12: mov ax,a |[Tl2: mov ax,;a T14: add axic

T13: add ax,b T13: add ax,b 713: add ax, b
T14: add ax,c |T14: add ax.c B{71:: fov o am |
T15: mov e,ax |T15: mov e,ax !

source code naive target code first optimisation | second optimisation
(@) (b.1) (b.2) (b.3)

— 856 —

describe more than one path. Let (P) be the path (AB) where A and B are positions of a node
before and after optimisation. Then r defines the relative displacement of the node {on path [}
due to optimisation. For the discussion following, r is the number of arcs (and hence
instructions) linking two nodes, but r assumes a special value 7 if there is no path between them.
(r,) is sometimes wriiten as (4,, Ap) to stress that they correspond to mathematical projections
of A,

2.3. Handling Code reordering

Consider [Figure 1] where the C program fragment in (a) is compiled to an 8086 assembly code
in (b.1). For expository reasons, instructions have been labelled and the names of source-level
variables have been used directly in the assembly code. Also, *** S5 *** shows where target
code for source statement S j begins.

Suppose a user wants to stop just before statement S 6 at debug-time. For the unoptimised code
(b.1) this is at T10, or strictly speaking, just before T10. Expressing this in terms of the path
metric, A,(700,T10) =5 when measured on the path (T00,T05,T11). Afier optimisation in (b.2),
T10 is just before T02 and so A (T00,T10) =] on the same path. Unfortunately, a conventional
debugger would use the map in (b.I) — for which A, is 5 — and hence stop at T05. Sucha
debugger is adapted for optimised programs by mapping its pre-optimisation values for A to
matching post-optimisation ones. [Figure 2] iltustrates this map. It also gives the special value
of Tto T10 when it is deleted. See also {section 2.5].

2.4. Choice and iterative constructs

Measuring code movements across choice constructs, such as if-statements, is straight-forward,
However, one may also have to identify the particular choice point (construct) when masking
the optimisation effect. For example, a breakpoint at T10, just before T035, in [Figure 1(b.2)]
must not be honoured if the comparison in S3 evaluates to true: one needs to know the choice
point provoking this decision.

Code movements across loop boundaries pose similar problems as for choice constructs.
Generally, code movements involving loops have the additional problem of identifying the
particular loop iteration for which the code should execute. See also [Appendix A.4].

2.5. Mapping target and source codes

Figure 2 — Optimisation and changing path metric distances

DISTANCE PRE-Optim. POST-Optimisation
Source Target (b.1) (b.2) b.3)

S0 — S8 TOO — T12
S0 — S6 TOO — T10
S0 — 8§83 TOO — TO3
TOO — TO5
S2- 83 TO2 — TO03

- b N
[STV, S SCRE i)
— N

— 857 —

When code is moved around, source statements no longer have contiguous ranges of target code,
Identifying where a source statement is actually executed, or where it begins, in the target code
becomes problematic. As has been pointed out (Zellweger [8], Shu [7]), it is desirable to select
the target code range that executes the Ley statement effeci of a statement. The key statement
effect is core semantic effect of a statement; for an assignment statement it is the assignment
operation, and for a GOTO statement it is the transfer of control.

Also, one has to keep track of the textual and semantic positions of code. For example, the
textual position of T10 in (Figure 1(b.2)] is just before T11 but its semantic one is just before
T02. In(b.3) T10 is deleted. TO2 implemenis its semantics and hence determines where. The
issues raised by source-target maps are quite complicated. It suffices to say that the path metric
could be used in a measure of the distribution of target code “fragments" for a given source
code. Hence, one may estimate where a key statement effect is located, perhaps by observing
how the fragments are clustered, or assess how syntactic and semantic positions of statements
may "migrate".

3. SOME IMPLEMENTATION ISSUES

In many uses of the path metric A, any path is all right if it uniquely determines the relative
execution order of the desired nodes. Furthermore, measuring absolute distances and their
attendant computational costs may be avoided if one is only interested in their relative execution
order. Thus, a boolean-based relaiional algebra may be developed over A and used more
conveniently in debugger implementations. For instance, one has comparisons, based on A, such
as:

BEF(A,B)=A<B. ie. A<Band A =B.

AFT(A, B =B < A,

NEU@A, B)=A =8
Also, code movemenis not perceived at source-code level may be ignored. For instance
swapping T13 and T14 produces code movemenis totally within source statement S7 which
may thus be ignored.

Existing algorithms could be modified and used. Likewise, implementation structures naturally
available in some optimisation techniques may be adapted. For instance, the notion of basic
blocks (Aho er al. [11), as opposed to individual target insiructions, is used to a first
approximation of the path metric in relational comparisons.

4. CONCLUSION

Many optimisation techniques reorder instruction codes and so a debugger for unoptimised
programs operates on false execution sequences. Consequently, I developed a graph-based
program model on which code displacements are measured in a path metric space [details in
Appendix A]. The measurements are then used to monitor and mask out the effects of reordered
codes. I then pointed out how the identification of textual and semantic positions of codes
during source-target maps could be located using the metric.

An advantage of the path metric approach is that results can be obtained after approximate
calculations, adding flexibility to interpretations of code displacements in it. Various
interpretations of debug issues, besides source-target maps, could be built over the path metric
or the associated relational algebra. Thus, though the paper focused on reordered execution

— 858 —

sequences of instructions, the metric may also be used in optimisation-induced data/variable
access (i.e. assignments and use) probiems, including relocation of variables in memory.

5. REFERENCES

[1]. Aho, A. V., Sethi, R., and Ullman, J. D., Compilers: Principles, Techniques, and Tools,
Addison-Wesley, Reading, Massachusetts, (1986).

[2]. Brooks, G., Hansen, G. J., and Simons, S., A new approach to debugging optimised
code, ACM SIGPLAN’92 Conference on Programming Language Design and
Implementation, San Francisco, California (June 1992), pp.1-11.

[31. Coutant, D. S., Meloy, S., and Ruscetta, M., DOC: A practical approach to source-level
debugging of globally optimised code, Proc. of the SIGPLAN’88 Conference on
Programming Language Design and Implementation, Atlanta, Georgia, (Jun 1988),
pp.125-134.

[4]. Hennessy, J., Symbolic debugging of optimised code, ACM Transactions on
Programming Languages and Systems 4(3), (1982) pp.323-344.

[5]. Holzle, U., Chambers, C., and Ungar, D., Debugging optimised code with dynamic
deoptimization, ACM SIGPLAN’92 Conference on Programming Language Design and
Implementation, San Francisco, California, (June 1992), pp.32-43.

[6]. Shu, W. S., A Unified Approach to the Debugging of Optimised Programs, PhD
Dissertation, Department of Computer Science, University of Nottingham, England, UK,
(1989).

[n. Shu, W. S., A new basis for debugging ... from optimised programs, in: Tchuente M.
(ed.), "Proceedings of the 1st International Conference on Research in Computer
Science, Yaoundé, Cameroon”, INRIA, France, Oct 1992).

[8l. Zellweger, P. T., .Interactions between high-level debugging and optimised code, PhD
Dissertation, Computer Science Division - EECS, University of California, Berkeley,
(1984).

APPENDIX A

A DEFINING THE PATH METRIC

Here I show how the path metric was developed, explaining the reasoning behind it. One wants
to measure distances between nodes on a directed path and handle the special case where they
have no common path — that is, when they are on a null path. Unfortunately, a conventional
mathematical metric does not include information on the "path (or direction!) of measurement”,
As such, I adapt the conventional metric space to a path metric space so as t0 state my case
formally; it identifies the paths along which conventional metric measurements are made. As
one moves from one path to another, relational comparisons based on the metric measurements
should be preserved or ensured. I examine acyclic paths then allow for cyclic graphs.

— 859 —

Al. Distances along acyclic paths

A conventional mathematical metric is given in [Definition 1] below. To facilitate the
discussion, the term path is understood to denote a single path or a path specification [Section
2.2]: the former is a special case of the latter. Also, the following notation is adopted:

Forany A, B,C, Y, Z e M,

- {P) denotes a path, P.

- (ABC) or {4, B, C) denotes a path from A to C via B, in order.

- (A+B+C) denotes a path through the nodes 4, B and C but in any order.

- 3{ABC)) stands for 8(A, B) + &(B, C).

- (A, Ap correspond to the pair (7, /); they are, component-wise, projections of A.

Definition 1: A metric space is a pair (b, 8) where J is a "distance function" defined on the set
M, and satisfies the following for all X, ¥, Z € M:

dX,N e [re Rir20}; Ris the set of real numbers. (1.1
SEN=0 & X=Y (12)
XYy =8(r.X) [symmetry] (1.3)
XY + (V. 2) 2 8D [iriangle inequality] (1.4)

1 define a metric along acyclic paths on a directed graph in terms of the number of arcs linking
the two nodes. This number depends on the actual path used. This leads to {Definition 2}
below. Now, of the aliernatives given by a path specification [¢f. Section 2.2] only one —
which usually denotes the desired execution path — is selected. Any relevant assertions are
made on nodes from the path, though the path specification must be precise enough. In
[Definition 3], I select the shortest non-null path, if there is one, that contains the nodes
specified. A shortest path is used because it gives a conceptually simple and consistent way (I
think!) of implementing/visualising the metric. Besides, efficient algorithms exist for shortest
path problems. However, as explained in [Section 3] assertions on paths are essentially
relational and so the shortest path constraint may be relaxed.

Definition 2: Each arc in an execution path contributes a /ink — the unit of measure — to the
distance between two nodes. If the distance, n, is obtained from links on a path, (P), we say
is measured on (P). Two nodes are comparable if there exists a path linking them ie. they lie
on a path. Otherwise, they are incomparable (or independent).

Let # be the number of links in a path, and T be larger than any n. Define
S(A, B) = { n if the path (AB) is non-null,

1 otherwise

Take T to be v+/ where v is the maximum number of nodes in the graph. Clearly, 8 is a
distance function: it is applied on straight line graphs.

Definition 3: Let (P) be a path specification. Then o((P)) is a function that retums a single path
defined by, or containing {(P). For our purposes, let o{{P)) be a shortest path linking the points
explicitly stated in (P).

— 860 —

A.2. Distances ever acyclic paths

Suppose that for optimisation purposes I need a path specification containing T00 and T15
[Figure 1(b.1)]. Let the path (T00,706,T15) be given and suppose it establishes the relative
positions of TO0 and T15. At some later point in time I want to optimise T10 as in
[Figure 1(b.2)]. The path (T00,T11,T15) thus becomes the better choice. One should be able
to switch over to the latter path without invalidating earlier decisions on T00 and T15.

In effect, assertions over one acyclic path should carry over to other paths, if their premises are
still valid. To this end, I define a metric A that takes into account the path along which it is
measured. I call it a path metric — and from it define a path metric space — since it mimics
a conventional mathematical metric [space]. A is given in [Definition 4] and it identifies valid
distances (Eqns 2.1 — 2.2) as well as how they could be added or compared (Eqns 2.3, 2.4).

Definition 3: Let 8, be 6 measured on an acyclic path {¢). Let &; be the null path and (P) =
o((AB+CD)). Define A to have the following properties and operations:

A(AB) € {(r.) | r = 8(A,B) and [= (AB)} .1
Vb, r=1 & =G 2.2)

(B(A.B) + &(C.D)), (PY) if @y #(P)

t, Dp) otherwise

A(A,B) +, AC.D) = { [sum rule] (2.3)

A(AB) 2, A(CD) & 8,(A,B)238,(C.D) [partial order] (2.4)

A.3. Defining a path metric space

I want to characterise nodes as points in a path metric space, (M, A,8). The main motivation
for (M, A, 9) is to be able to assess the position (or displacement) of an instruction code on an
execution path. In this way, a debugger may be able to identify the correct code even afier
multiple displacements. Thus, things are very much like in a conventional metric, except that
we take the precaution of identifying the paths used, or mapping prior measurements {or
assumptions] onto the same path.

Definition 4: A path metric space is the tuple (M,A,3) where & = {8, | e are paths in the graph}
and A is the path metric function. 8,’s are identically defined distance functions, but applied to
separate paths in the graph. Let A, B, C, D € M. Let P be the set of paths on M and R the set
of real numbers. A satisfies the following for all paths.

A4, Bye ((nDIreRr20,andle P) (3.1)

AL B)=(0,) & A=B (32)

AL By = { (8,(A.B), (AB)) if 0(AB)) = ¢ and ¢ # Dy 33)
(t, Bp) otherwise

A(A, B) +, AB; ©) 2, A4, C) (3.4)

— 861 —

Note that » depends on (e} and hence A, since the value of is obtained from measurements
along {e). Also, from Eqn. 3.4 and the acyclic natre of G(M), relational comparisons are
preserved across paths in a given G(M).

Proposition 1: (M.A,J) is a path meiric space, given 8 and A in Definitions 3 and 4.

Proof: The 3,’s are identical to some distance function 8, as explained earlier. One has to show
that A satisfies equations 3.1 to 3.4. Equations 3.1 to 3.3 are trivial to prove. Only Equation
5.4 needs proving.

If c{ABCY)) # D, then the inequality holds, given that each F; i = AB, BC, AC is obtained using
3, a metric function, on the path a({(4BC)). If a{ABC)) = J; then there is no path from 4 to
C through B. Therefore, A(4,B) or A(B,C) or both are equal to (1, &@p). From A-addition and
given that T 2 §((AC)), the inequality holds. 0

Ad. Allowing for cyclic graphs

In a cyclic graph, the distance between two nodes, A and B, which lic on a cycle may be
measured from A to B or from B to A. This is undesirable because the relative execution order
of nodes is no longer unique. Thus, in [Figure 3(ii)], the distance (AB) is either 2 via (ACB) or
1 through (BA). Besides, paths may become infinite, through loop unravelling, and hence
invalidate 8. Some restrictions thus become necessary, and their nature depends on whether the
graph is a reducible flow graph or not.

A reducible flow graph (RFG), G, is one whose forward edges form an acyclic graph in which
every node can be reached from the initial [i.c. start] node of G. Also, its back edges consist
only of edges whose head dominates their tail; that is, all computations that reach each tail must
first pass through its head (See Aho ez al. [1]).

Figure 3 — (i) Reducible and (ii) Non-Reducible Flow-Graphs

S S — S —
! | L
T 1(X
> T > .I > i
‘i Ll
Two valid paths Two valid paths into loop
between & and B from Start Node
@ (i)

— 862 —

If measurements on two points, A and B, are such that A precedes B in any computationat
sequence from the start node (i.e. A dominates B), then A can be used on reducible flow graphs
(RFGs). Clearly, since all nodes are reached from the start node via acyclic paths, a RFG may
be perceived as an acyclic graph obtained by notionally severing loops at their back edges.

Unfortunately, in the presence of loops, relative code movements may become ambiguous or
invalidated in a debugging context. Consider ? (i). In each iteration of the loop, the instruction,
A, is executed before B. However, B is seen as execuied before A across iterations (i.e. across
back edges). This is the case if a debugger stopped the program at C but the user expects
execution to reach A through (CBA). This may be corrected for in a debugger by knowing the
"iteration number" in which the instructions are found. Such additional information from the
computational procedure used is termed a determinant (cf. Shu [7]). It may be seen as an
attribute of the path.

Non-reducible flow graphs (NRFGs) typically contain multi-entry loop(s) [? (ii)). The current
loop entry may be used as a determinant in any measurements. Potentially, this implies n
measurements for an s-entry loop! Fortunately, NRFGs are rare — even in unstructured
programs. They are rarer still, because of structured programming. Besides, many conventional
optimisations will not take place in their presence.

— 863 —

