
William S. S h
DePaPtment of Mathematics and Cornputer Science,

University of Buea, P. O. Box 63, Buea, C M R O O N .

$TRACT: Instruction code reordering is a common consequene of many optimisation
techniques and must lx masked out in the source-level debugging of optimised pmgms. To
capmxx the notion of "distances dong [specifiedl paths", a function A is defiryd and used. A
mimics the usual mathematical distance h c t i o n thoagh it is applied in a "path metric space":
if gives the distance ktween two points in a pmgrm but dso the path dong vhich it is
measured. A is used to correct optimisation effects of code movements at debug-time.

E: Changer l'ordre d'ex6cution des instructions est une consCquence frkquente de
plusieurs techniques d'optimisation et ceci doit &Be rectifie lors de 12 mise au point, au niveau
source, des progrmes optimisCs. Pour capter I'id6e de "distances sur une trajectoire
[q6cifi&]", me fonction A est definie et utilide. A ressemble & la fonction habituelle des
distances mCWiques en math6matique mais elle est appliquge dans un "espace mettique des
trajectoires": elle donne la distance entre deux psitiom dans un programme mais aussi le
chemin sur lequel cette demini$re est effectuQ. A est utilide pour corriger, loes du de la mise
au point, les effets de d6placemernt des instrplcti~nn~ par I'opbimiseur.

1.

In the sotme-level debugging of unoptimisai pmgms, thexx is a simple match between source
and target codes. Thw, setting breakpoints or acessing variables at debug time is
straightfoward. The source-code is matched to its target code where the breakpint is set.
Shilarly, symhl table information prmits one to identify the location of a variable, which
could then be assigneai to or Rad. Thus, a variable would be in s c o p if it was defined in the
block or procedure in which the program was stopped (Le. at the cumnt breakpoint).
In the presence of optimisation, this simple match betwen soupce md target code L lost.
Imtfuction codes aee moved m u n d or ~placed . New ones m inserted, and others deleted.
Conventional debugging c m take @lace o d y if one plnonitors and comcts for the effects of
optimisation. One effect of optimisation is to move code, relative to each other. and $0 alter
their expected executiorn sequence. I adapt a function temed a "path metric" to measure this
displacement. A pafh metric is similw to a conventiond mathematical meuic but the [execution]
path on which the distance function is measured must be identified as well.

- 854 -

The met& is then used to adapt a conventional debugger to one for optimised programs. Many
applications - especially real-time and fault-tolerant ones - require debugging.on the final,
optimised version of a program. Besides being cheaper to adapt an existing debugger than to
conceive new ones, using the metric provides a simple but Sound basis on which code
displacement issues are systematically handled or inteqreted. Furthermore, the fonnal nature
of this metric approach eases correcmess proofs on such debuggers.

1.1. Other works
A number of works have dealt with issues arising from the source-level debugging of optimised
programs. For instance, HeMessy [4] considered variable access. Zellweger [8] studied control-
flow issues and how to mask out adverse optimisation effects. The DOC system of Coutant et
al. [3] defined the ranges of optimisation effects based on address ranges of instructions. These
ranges identified memory locations for values of variables to be displayed. Others, such as
Brooks et al. [2] monitored the effects of optimisation for a user Who would then decide on how
best to debug hisber program. Meanwhile, Holzle et ai. [SI prefemd to "deoptimise" relevant
code segments by incrementally [re-Icompiling an unoptimised version at debug-time.

Shu [6,7] formally characterised the effects of optimisation on debugging. He held that formal
reasoning on the issues involved would lead to greater understandmg and better debugger design
for a wide class of programs. Thus. the effects of optimisation on debugging were examined
within an dgebraic framework. This paper studies a formal characterisation based on metric
distances which focuses on measuring and masking code movements.

2. USE OF PATH METRIC CHARACTERIZATION IN DEBUGGING

2.1. Mapping Program Instructions to Nodes

A given program may be seen as a graph whose nodes are its insmctions, and whose arcs
determine control flow. Instructions added, removed or replaced by optimisation are dso seen
as nodes. However, the actual instructions, which could even be program units, do not matter,
one is interested only in the optimising transformations applied to them and how to undo their
effects.

For expository clarity, 1 assume a mode1 of compilation where naive code is generated and
optimisation is then applied separately, though the principles discussed apply to other
compilation strategies as well. Thus, in Figure 11 program (a) is compiled to b.1 and then
successively optimised to (b.2) and (b.3). Optimisation transformations are assumed correct.

The mcdel of the source-level debugger is a conventional one for unoptimised programs:
allowing for minor adjustments, a table associates addvss [ranges] of target codes to successive
source codes constructs. For instance, the current execution point of a program in the source
code is that source code identified with the target code address h m the table. In practice,
source code addresses may be given in tenns of l i e numbers, blocks and so on.

Control is exchanged between a running program and a debugger at breakpoints. Other
debugger features, such as single-stepping, are viewed as special versions of breakpinting. For
interactive source-level debugging, the breakpoints are in the executed code, but have to be
expressed as positions in the source-code via the address table.

- 855 -

the set of dl nodes that CO used in a p m g m and G(M) is a geaph describing
obtained €mm nsdes Each wde denotes a single instruction code as

discussed abve. Each iml.euction i r ogm is initidly mapped to a uniqua node in M:
multiple instances of the s m e instruction CO distinct nodes. Thus, G(M) is initially
a directed gmph of the unoptimise8 ppogm. on the gmph (P) is specified in tems of
nodes found on it. Foi- instance, (AB) (or (A, B)) describes a set of direct4 paths from A ts B,
pssibly through interPrenhg nodes. I tem such a description a pearh 8pec@ccltion. A path may
be expressed in tems of alternative nodes, and a set of paths may be deescribed by the s m e path
specification.
A path is measured ushg a s distance functisn in a paeh meeic space. See [Appendix Al
fop a full discussion on this. A,& defines a path metric Spa=. For a path specification (P),
A is a function that r e m s the paie (r, 0. r is the "length" of (P) as mesrsarred by 6, a
conventiond distance function. I is the actual path used €or the measurement of P, since (P) may

8 0 : .&i node
5 2 : a = 5;
S3: if (c != x)
s4: 13 = c+d;
S5: else
56: a = 5;
S7: x = 13;
S8: e = atbtc; ...

. :*O* s7 ***

@L2 :

. z**:* s$j *:a:>

T11: mov a,23

T12: mov ax,a
T13: add axpb
T14: add ax,c
T15: mov e,ax

naive Wget code
...

(b.1)

. *** s2 ***
T10: rnov a,5
T02: mov a,5

. *** s3 *t*
T03: mov ax,c
T04: cmp ax,x
TO5: 3e @LI:

. :Mc* S4 +**
T06: mov ax,c
T07 : add ax,d
T08: mov b,ax

; :#g* s5 BQ*
T09: jmp @L2

T11: rnov a,23
@L2 :

. +;riph s3 *%:k

r03: mov ax,c
TO4: cmp ax,x
T05: je @L1:

. *** 6&$:***
T06: mov ax,c
T07 : add ax,d
T08: rnov blax

,

. *** S5 *g*
T09: jmp @La

. **t S6 ***
oL1:

. fC** s7 *x*

BL2 :
B11: rnov a,23

f 5 ' r f SB *>k*

T12: rnov ax,a
Tl4: add ax,c
T13: add ax,b
T15: rnov e, ax ...

'(b3)

- 856 -

describe more than one path. Let (P) be the path (AB) where A and B are positions of a node
before and after optimisation. Then r defines the relative displacement of the node [on path I]
due to optimisation. For the discussion following, r is the number of arcs (and hence
instructions) linking two nodes, but r assumes a special value % if there is no path between them.
(r, f) is sometimes written as (Ar, Al) to stress that they correspond to mathematical projections
of A.

2.3. Handling Code reordering

Consider [Figure 11 where the C program fragment in (a) is compiled to an 8086 assembly code
in (b.1). For expsitory reasons, insmctions have been labelled and the names of source-level
variables have been used directly in the assembly code. Also, * * * S j ** * shows where target
code for source statement S j begins.
Suppose a user wants to stop just before statement S 6 at debug-time. For the unoptimised code
(b.1) this is at Tl 0, or svictly speaking, just before T l O. Expressing this in lems of the path
metric, A,.(TOO,TIO) = 5 when measured on the path (TOO,TOS,TII). After optimisation in (b.2),
T l 0 is just before T02 and so Ar(TOO,TIO) = 1 on the same path. Unformnately, a conventional
debugger would use the map in (b.1) - for which Ar is 5 - and hence stop at T05. Such a
debugger is adapted for optimised programs by mapping its pre-optimisation values for A to
matching post-optimisation ones. [Figure 21 illustrates this map. It also gives the special value
of z to T l 0 when it is deleted. See also [section 2.51.

2.4. Choice and iterative constructs

Measuring code movements across choice constructs, such ai if-statements, is straight-forward.
However, one may also have to identify the particular choice point (construct) when masking
the optimisation effect. For example, a breakpint at T10, just before T05, in [Figure l(b.2)J
must not be honoured if the cornparison in S3 evaluates to me: one needs to know the choice
point provoking this decision.

Code movements across loop boundaries pose similar problems as for choice constructs.
Generally, code movements involving loops have the additional problem of identifying the
particular loop iteration for which the code should execute. See also [Appendix A.41.

2.5. Mapping target and source codes

Figure 2 - Optimisation and changing path metric distances

DISTANCE POST-Optimisation PRE-Optim.
Source (b.3) (b.2) m l) Target

SO -+ S8 TOO + Tl2

2 3 2 TOO 4 T03 SO + S3
z 1 5 TOO Tl0 SO + S6
5 6 6

TOO + T05 4 5 4
S2 -) S3 T02 + T03 1 2 1

- 857 -

m e n code is moved amund, source siaternents no longer have contiguouus ranges of mget code.
Identifying w h m a source statement is actually executed, or whepe it begins, in the target code
becomes problematic. As hm b e n pointed out llweger [SI, Shu [7]), it is desirable to select
the. mrget code range that execuks the 6 c q stasernent @ect of a statement. Thc Isey sutement
effect is COR semantic effect of a statement; for an assigrment statement it is the assignment
operation, and for a GOTO statement it is the tramfer of control.

Also, one has to keep mck of the textual and semmtic positions of code. For exmple, the
textual position of T l 0 in [Figure 1@.2)] is juse IxfOPe T l 1 but its SemmtiC one is just kfoee
T O 2. In (b3) T 1 O is deletd. T 02 implements its semantics and hence detemines where. The
issues raised by source-target maps are quite complicatd. Pt suffices to say that the path metric
codd be used in a measure of the distribution of mget code "fragments" for a @en smme
code. Hence. one may e s h a t e wheR a key statement effect is located, perhaps by obselwing
how the f r a ~ e n t s are cluste&, or ssess how syntactic md semantic positions of statemenrs
may "migrate".

In mmy uses of the path metric A, my path is dl mgkt if it uniquely determines the relative
execution order of the desired nodes. Furthermore, measulring absolute distances md their
attendant compueaeional costs may be avoided if one is only interested in their relative execution
order. Thus, a holem-based relational fgebra may be develloped over A and used more
conveniently in debugger implementatiom. For instance, one has comparisons, based on A, such
as:

BEFCA, B) = A < B. i.e. A S B and A f B .
, B) E B 6 A.
, B) = A = B.

Also, code movements not perceived at source-code level may be ignored. For instance
swapping TL3 and T l 4 produces code movements t o w y within source statement S7 which
may thus be ignored.

Existing algorithms could be modified and used. Eikewise, implemenmtion structplpes ~ a t u ~ d l y
available in some optimisation techniques may be adapted. For i m c e , the notion of basic
bloch (Ah et al. [l]), as oppsed to individual mget instructions, is used to 8 fiint
approximation of the path metric in r e l a h A compapisons.

4. @ON@ILUSIOM

M a y optimisation techniques eeorder instruction codes and so a debugger for unoptimised
progrms oprates on false execution sequences. Consequently, 1 developd a pph-based
program mode1 on which code displacements are rneasured in a path metric spce [details in
Appcndix A]. The rneasmments are then used to monitor and mask out the effects of reordered
codes. 1 then pinte8 out how the identification of textuf md semantic positions of codes
during SOUrce-targeE maps could be located using the metnic.

An advantage of the path metric approach is that results c m be obtaineed af&er approximate
cakx"ns , dding flexibility to intepremions of code displacements in it. Various
interpretations of debug issues, besides source-mget maps, could be built over the path metxic
or the associated relational algebra. Thus, though the paper focused on reordered execution

- 858 -

sequences of instructions, the metric may also be used in optimisation-induced datdvariable
access (Le. assignments and use) pmblems, including relocation of variables in memory.

REFERENCES

Aho, A. V., Sethi, R., and Ullman, J. D., Compilers: principles, Techniques, and Tools,
Addison-Wesley, Reading, Massachusetts, (1986).

Brooks, G., Hansen, G. J., and Simons, S., A new approach to debugging optimised
code, ACM SIGPLAN'92 Conference on Programming Language Design and
Implementation, San Francisco, Califomia (June 1992), pp.1-11.

Coutant, D. S., Meloy, S., and Ruscetta, M., DOC: A practical approach to source-level
debugging of globally optimised code, hoc. of the SIGPLAN'88 Conference on
Programming Language Design and Implementation, Atlanta, Georgia, (Jun 1988),

Hennessy, J., Symbolic debugging of optimised code, ACM Transactions on
Programming Languages and Systems 4(3), (1982) pp.323-344.

Holzle, U., Chambers, C., and Ungar, D., Debugging optimised code with dynamic
deoptimization, ACM SIGPLAN'92 Conference on Programming Language Design and
Implementation, San Francisco, Califomia, (June 1992), pp.32-43.

Shu, W. S. , A Unified Approach to the Debugging of Optimised hgrams, PhD
Dissertation, Department of Computer Science, University of Nottingham, England, UK,
(1989).

Shu, W. S., A new bais for debugging ... from optimised programs, in: Tchuente M.
(ed.), "Proceedings of the 1st International Conference on Research in Computer
Science, YaoundC, Cameroon", INRIA, France, Oct 1992).

Zellweger, P. T., Interactions between high-level debugging and optimised code, PhD
Dissertation, Computer Science Division - EECS, University of Califomia, Berkeley,
(1984).

pp.125-134.

APPENDIX A

A DEFIMNG THE PATH METRIC

Here 1 show how the path metric was developed, explaining the reasoning behind it. One wants
to measure distances between nodes on a directed path and handle the special case where they
have no common path - that is, when they are on a nul1 path. Unfortunately, a conventional
mathematical metric does not include information on the "path (or direction!) of measurement".
As such, 1 adapt the conventional metric space to a path mefric space so as to state my case
formally; it identifies the paths along which conventional metric measurements are made. As
one moves fmm one path to another, relational comparisons based on the metric measurements
should be preserved or ensured. 1 examine acyclic paths $en allow for cyclic graphs.

- 859 -

A.X. Distances almg acyclic paths

A conventional mathematical metric is given in [Definition 11 below. To facilitate the
discussion, the tem path is understood to denote a single path or a path specification [Section
2.21: the former is a special case of the latter. Mso, the following notation is adopted:

For any A, B , C, Y, Z E M,
. (P) denotes a path. P.
a (me> oe {A, B, e) denotes a path from A to C via B, in order.
. (A+B+C) denotes a path thmugh the nodes A, B and C but in any order.

stands for 6(A, 5) + qB, C).
conespond to the pair (r, 0; they a, component-Wise, pmjections of A.

Definition 1: A met& space is a pair (Mg 8) whenr: 6 is a "distance funcrion" defied on rhe set
M, and satisfies the following for all X , Y, Z E M:

I P 2 O); B is the set of peal nUrnb.cn. (1.1)
&X,y)=Q e X = Y (1.2)

[synmmewny] (1 . 3
[triangle inequality] (1.4)

1: defiie a rnetric dong acyclic paths on a dipectd graph in tems of the n m b r of arcs linking
the two nodes. This nunmber depends on the acmal path used. This Ieads to [Definition 21
Mow. Now, of the alternatives given by a path spcifncation [c$ Section 2.21 ody one -
which usually denotes the desired execution path - is selected. Any relevant assertions ape
made on nodes from the path, though the path specification must be precise enough. In
[Definition 31, I select the shortest non-null path, if theee is one, that contains the nodes
specified. A shortest path is used because it gives a conceptudly simple and consistent way (1
think!) of irnplementingvisudising the rnetric. Besides, efficient dg~rithms exist for shortest
path problems. However, as explained in [Section 31 assertions on paths are essentidly
relational and so the shortest pafh comtraint r n q k relaxed.

Definition 2: Each m in m execution path contribotes a link - the unit of measuw - to the
distance berneen two nodes. If the distance, n, is obtained h m links on a path, (P), we say p z
is measured on (P). Two nodes are compm&le if there exists a path linking them i.e. they lie
on a path. Bthemise, they are inrompnroble (or indt?p@nndent).

Let 82 be the n w k r of links in a path, and 2 be larger thm my 82. Defme

- 860 -

A.2. Distances over acyclic paths

Suppose that for optimisation purposes 1 need a path specification containing TO O and T l 5
[Figure l(b.l)]. Let the path (TOO,TO6,T15) be given and suppose it establishes the relative
positions of T O O and T15. At some later point in time 1 want to optimise T l 0 as in
[Figure 1(b.2)]. The path (TOO,Tll,T15) thus becomes the better choice. One should be able
to switch over to the latter path without invalidating earlier decisions on TO O and T15.

In effect, assertions over one acyclic path should cany over to other paths, if their premises are
still valid. To this end, 1 define a metric A that takes into account the path along which it is
measured. 1 cal1 it a path metric - and from it define a path metric space - since it mimics
a conventional mathematical metric [space]. A is given in [Definition 41 and it identifies valid
distances (Eqns 2.1 - 2.2) as well as how they could be added or compared (Eqns 2.3, 2.4).

Definition 3: Let 6, be 6 measured on an acyclic path (e). Let 0, be the null path and (P) =
a((AB+CD)). Define A to have the following properties and operations:
A(A,B) E {(r,l) l r = i$(A,B) and 1 = (AB)] (2.1)
V(r& r = ~ w f = 0, (2.2)

[partial order] (2.4)

A.3. Defining a path metric space

1 want to characterise nodes as points in a path mevic space, (M, A\,@. The main motivation
for (M, A, 6) is to be able to assess the position (or displacement) of an instruction code on an
execution path. In this way, a debugger may be able to identify the correct code even after
multiple displacements. Thus, things are very much like in a conventional metric, except that
we take the precaution of identifying the paths used, or mapping prior measurements [or
assumptions] ont0 the same path.

Definition 4 A path metric space is the tuple (M,A,6) where 6 = (6, I e are paths in the graph}
and A is the path metric function. 6,’s are identically defmed distance functions, but applied to
separate paths in the graph. Let A, B , C, D E M. Let P be the set of paths on M and B the set
of real numbers. A satisfies the following for all paths.

A(A, B) E ((r, i) I r E R, r 2 O, and 1 E P) (3.1)
A(A, B) = (O, l) A E B (3.2)

A(A, B) = 1 (6,(A,B), (AB)) if CL(@)) = e and e f 0,
(3.3)

- 861 -

Note that B depends on (e) md hence A, since the value of B is obtained h m rneasurements
dong (e). Also, fmrn Eqn. 3.4 and the acyclic nature of G(M), relational cornparisons are
preserved across paths in a given G(M).

&ion 1: (M,A,S) is a path metric space, given 6 and A in & f i n i t i ~ n ~ 3 and 4.

Prost The 6e's are identical to some distance function 4, as explained earlier. One ha.$ to show
that A satisfies equations 3.1 to 3.4. Equations 3.1 to 3.3 are trivial to prove. 6nly Q ~ a t i ~ n

en the inequdity holds, @ven that each r. , i = A B , BC, AC is obtained using
8, P rnetRc function, on the path ~ ((~ ~ ~) . If a((")) = then thcre is no path h m A to
C thmu@ B. Therefofe, A(A$) or A(B,C) or both are q u d to (7, BP). Frorn A-addition and
given that T 2 &(AC)), the inequality holds. [1

A.4. ~1~~~~~ for cycelic graphs

In a cyclic graph. the distance betwcxn two nodes, A and B, which lie on a cycle may lx
measured .hm A to B or from B to A. This is undesirable because the relative execution order
of nodes is no longer unique. Thus, in [Figure 3(ii)], the distance (AB) is either 2 via (ACB) or
1 through (BA). Besides, paths may becorne infinite, through loop unraveIlimg, and hence
invalidate 6. Some resaictions thus becorne necesSapgr, and their nature depends on whether the
gmph is a reducible flow graph or na.
A reducible flow graph (IWG), G, is one whose f o w a d edges fom an acyclic gmph in which
every node cm be reached from the initial [Le. SM] node of G. Mss, its back edges cornsist
only of edges whose head dominates th& tail: that is, all cornputations that reach each tdl must
first pass through its head (See A h et al. [l]).

J,

1

Two valid paths
behveen A and B

Two valid paths into loop
from Start Node

(ii)

- 862 -

If measurements on two points, A and B, are such that A precedes B in any computational
sequence from the start node (i.e. A dominates B), then A can be used on reducible flow graphs
(RFGs). Clearly, since all nodes are reached from the start node via acyclic paths, a RFG may
be perceived as an acyclic graph obtained by notionally severing loops at their back edges,

Unfortunately, in the presence of loops, relative code movements may become ambiguous or
invalidated in a debugging context. Consider ? (i). In each iteration of the loop, the instruction,
A, is executed before B. However, B is seen as executed before A across iterations (Le. across
back edges). This is the case if a debugger stopped the program at C but the user expects
execution to reach A through (CBA). This may be corrected for in a debugger by knowing the
"iteration number" in which the instructions are found. Such additional information from the
computational procedure used is termed a deteminant (c$ Shu [7]). It may be seen as an
amibute of the path.
Non-reducible flow graphs (NRFGs) typically contain multi-entry loop(s) [? (ii)]. The current
loop entry may be used as a determinant in any measurements. Potentially, this implies n
measurements for an n-entry loop! Formnately, NRFGs are rare - even in unstructured
programs. They are rarer still, because of structured programming. Besides, many conventional
optimisations will not take place in their presence.

- 863 -

