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$TRACT: Instruction code  reordering is a common consequene of many  optimisation 
techniques and must lx masked out in the source-level debugging of optimised pmgms. To 
capmxx the notion of "distances dong [specifiedl paths", a function A is defiryd and  used. A 
mimics the usual mathematical distance h c t i o n  thoagh it is applied in a "path  metric  space": 
if gives the distance ktween two  points in a pmgrm but dso the path dong vhich it is 
measured. A is used to correct optimisation effects of code movements at debug-time. 

E: Changer l'ordre d'ex6cution des instructions est une consCquence frkquente de 
plusieurs techniques d'optimisation et ceci doit &Be rectifie lors de 12 mise au point, au niveau 
source, des progrmes  optimisCs. Pour capter I'id6e de "distances sur une trajectoire 
[q6cifi&]", me fonction A est definie et utilide. A ressemble & la fonction  habituelle des 
distances mCWiques en math6matique mais elle est appliquge dans un "espace mettique des 
trajectoires": elle donne la distance entre deux psitiom dans un programme mais aussi le 
chemin sur lequel cette demini$re est effectuQ. A est utilide pour corriger, loes  du de la mise 
au point, les effets de d6placemernt des instrplcti~nn~ par I'opbimiseur. 

1. 

In the sotme-level debugging of unoptimisai pmgms,  thexx is a simple  match between source 
and target codes. Thw, setting breakpoints or acessing variables at debug  time is 
straightfoward. The source-code is matched to its target code where the breakpint is set. 
Shilarly, symhl table  information prmits one to identify the location of a variable,  which 
could then be assigneai to or Rad. Thus, a variable would be in s c o p  if it was defined in the 
block or procedure in which the program was stopped (Le. at the cumnt breakpoint). 
In the presence of optimisation, this simple match betwen soupce md target code L lost. 
Imtfuction codes aee moved m u n d  or ~placed .  New ones m inserted, and others deleted. 
Conventional debugging c m  take @lace o d y  if one plnonitors and comcts for the  effects of 
optimisation. One effect of optimisation is to move code, relative to each  other.  and $0 alter 
their expected executiorn sequence. I adapt a function temed a "path metric" to measure this 
displacement. A pafh metric is similw to a conventiond mathematical meuic but the [execution] 
path on which the distance function is measured must be identified as well. 
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The met& is then  used  to  adapt  a  conventional  debugger to one  for  optimised  programs.  Many 
applications - especially  real-time  and  fault-tolerant  ones - require debugging.on the  final, 
optimised  version  of  a  program.  Besides  being  cheaper to adapt  an existing  debugger than to 
conceive  new  ones, using the metric provides  a  simple but  Sound basis on which  code 
displacement issues are systematically  handled or inteqreted. Furthermore,  the fonnal nature 
of this metric approach  eases  correcmess  proofs on such debuggers. 

1.1. Other works 
A number  of  works  have  dealt  with issues arising  from  the  source-level  debugging  of  optimised 
programs. For instance,  HeMessy [4] considered  variable  access.  Zellweger [8] studied  control- 
flow  issues  and  how to mask out adverse  optimisation  effects. The DOC system of Coutant et 
al. [3] defined  the  ranges  of  optimisation  effects  based on address  ranges of instructions.  These 
ranges  identified  memory  locations for values  of  variables to be displayed.  Others,  such as 
Brooks et al. [2] monitored  the effects of optimisation for a  user Who would  then  decide  on  how 
best  to  debug hisber program.  Meanwhile,  Holzle et ai. [SI prefemd to "deoptimise"  relevant 
code  segments by incrementally  [re-Icompiling an unoptimised  version  at  debug-time. 

Shu [6,7] formally  characterised the effects of  optimisation on debugging.  He held  that  formal 
reasoning on the issues  involved  would lead to greater  understandmg and better  debugger  design 
for a  wide class of programs.  Thus. the effects of  optimisation on debugging  were  examined 
within an dgebraic framework. This  paper studies a  formal  characterisation  based on metric 
distances  which focuses on measuring  and  masking code movements. 

2. USE OF  PATH  METRIC  CHARACTERIZATION IN DEBUGGING 

2.1.  Mapping  Program Instructions to Nodes 

A given  program  may be seen as a graph whose  nodes are its insmctions, and  whose arcs 
determine  control  flow.  Instructions  added,  removed or replaced  by optimisation  are dso seen 
as nodes.  However,  the  actual  instructions,  which  could  even be program  units,  do not matter, 
one is interested  only in the  optimising  transformations  applied  to  them and how to undo  their 
effects. 

For expository  clarity, 1 assume  a mode1  of compilation  where  naive  code is generated and 
optimisation is then  applied  separately,  though  the  principles  discussed  apply to other 
compilation strategies as well. Thus, in Figure 11 program (a) is compiled to b.1 and  then 
successively  optimised  to (b.2) and (b.3). Optimisation  transformations  are  assumed  correct. 

The mcdel  of  the  source-level  debugger  is  a  conventional  one for unoptimised  programs: 
allowing for  minor adjustments,  a  table  associates addvss [ranges] of target  codes to successive 
source  codes  constructs. For instance, the current  execution  point of a  program in the  source 
code is that  source  code  identified  with  the  target  code  address h m  the  table. In practice, 
source  code  addresses  may be given in tenns of l i e  numbers,  blocks  and so on. 

Control is exchanged  between  a  running  program  and  a  debugger at breakpoints.  Other 
debugger  features, such as single-stepping, are viewed as special  versions of breakpinting. For 
interactive  source-level  debugging, the breakpoints  are in the executed  code,  but  have to be 
expressed as positions in the  source-code via the address  table. 
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the set of dl nodes  that CO used in a p m g m  and G(M) is a geaph describing 
obtained €mm nsdes Each wde denotes a single instruction code as 

discussed abve. Each iml.euction i r ogm is initidly mapped to a uniqua node in M: 
multiple instances of the s m e  instruction CO distinct nodes. Thus, G(M) is initially 
a directed gmph of the unoptimise8 ppogm. on the gmph (P)  is specified in tems of 
nodes found on it. Foi- instance, (AB) (or (A, B)) describes a set of direct4 paths from A ts B, 
pssibly through interPrenhg nodes. I tem such a description a pearh 8pec@ccltion. A path may 
be expressed in tems of alternative nodes, and a set of paths may be deescribed by the s m e  path 
specification. 
A path is measured ushg a s distance functisn in a paeh meeic space. See [Appendix Al 
fop a full discussion on this. A,& defines a path metric Spa=. For a path specification (P), 
A is a function that r e m s  the paie (r, 0. r is the "length" of (P) as mesrsarred by 6, a 
conventiond distance function. I is the actual path used €or the measurement of P, since (P) may 

8 0 : .&i node 
5 2 :  a = 5; 
S3: if (c != x) 
s4: 13 = c+d; 
S5: else 
56: a = 5; 
S7: x = 13; 
S8:  e = atbtc; ... 

. :*O* s7 *** 

@L2 : 

. z**:* s$j *:a:> 

T11: mov a,23 

T12: mov ax,a 
T13: add axpb 
T14: add ax,c 
T15: mov e,ax 

naive Wget code 
... 

(b.1) 

. *** s2 *** 
T10: rnov a,5 
T02: mov a,5 

. *** s3 *t* 
T03: mov ax,c 
T04: cmp ax,x 
TO5: 3e @LI: 

. :Mc* S4 +** 
T06: mov ax,c 
T07 : add ax,d 
T08: mov b,ax 

; :#g* s5 BQ* 
T09: jmp @L2 

T11: rnov a,23 
@L2 : 

. +;riph s3 *%:k 

r03: mov ax,c 
TO4: cmp ax,x 
T05: je @L1: 

. *** 6&$ :*** 
T06: mov ax,c 
T07 : add ax,d 
T08: rnov blax 

, 

. *** S5 *g* 
T09: jmp @La 

. **t S6 *** 
oL1: 

. fC** s7 *x* 

BL2 : 
B11: rnov a,23 

f 5 ' r f  SB *>k* 

T12: rnov ax,a 
Tl4: add ax,c 
T13: add ax,b 
T15: rnov e, ax ... 

'(b3) 
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describe more than one path. Let (P)  be the path (AB) where A and B are  positions of a  node 
before and after optimisation. Then r defines the relative displacement of the  node [on path I ]  
due to optimisation. For the  discussion  following, r is the number of arcs  (and  hence 
instructions) linking two nodes, but r assumes  a  special value % if there is no  path  between them. 
(r,  f )  is sometimes written as (Ar,  Al) to stress that  they correspond to mathematical  projections 
of A. 

2.3.  Handling  Code  reordering 

Consider [Figure 11 where the C program  fragment in (a) is compiled to an 8086 assembly code 
in (b.1). For expsitory reasons, insmctions have  been labelled and the names  of  source-level 
variables have been used directly in the assembly  code. Also, * * * S j ** * shows  where  target 
code for source statement S j begins. 
Suppose  a user wants to stop just before  statement S 6 at debug-time. For the unoptimised  code 
(b.1) this is at Tl 0, or svictly speaking, just before T l  O. Expressing this in lems of the path 
metric, A,.(TOO,TIO) = 5 when  measured on the path (TOO,TOS,TII). After optimisation in (b.2), 
T l 0  is just before T02 and so Ar(TOO,TIO) = 1 on the same path. Unformnately,  a  conventional 
debugger would use the map in (b.1) - for which Ar is 5 - and hence stop at T05. Such  a 
debugger is adapted for optimised  programs  by  mapping its pre-optimisation  values for A to 
matching post-optimisation ones.  [Figure 21 illustrates this map. It also gives  the special value 
of z to T l 0  when it is deleted. See also [section 2.51. 

2.4.  Choice  and  iterative  constructs 

Measuring code movements across choice constructs, such ai if-statements,  is  straight-forward. 
However, one may also have to identify the  particular choice point (construct)  when  masking 
the optimisation effect. For example, a breakpint at T10, just before T05, in [Figure l(b.2)J 
must not be honoured if the cornparison in S3 evaluates to me: one needs to know the choice 
point provoking this decision. 

Code movements across loop boundaries pose similar problems as for choice  constructs. 
Generally, code movements involving loops have the additional problem  of  identifying the 
particular loop iteration for which the code should  execute. See also [Appendix A.41. 

2.5.  Mapping  target  and  source  codes 

Figure  2 - Optimisation  and  changing  path  metric distances 

DISTANCE POST-Optimisation PRE-Optim. 
Source (b.3) (b.2) m l )  Target 

SO -+ S8 TOO + Tl2 

2 3 2 TOO 4 T03 SO + S3 
z 1 5 TOO Tl0 SO + S6 
5 6 6 

TOO + T05 4 5 4 
S2 -) S3 T02 + T03 1 2  1 
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m e n  code is moved amund, source siaternents no longer have contiguouus ranges of mget code. 
Identifying w h m  a source statement is actually executed, or whepe it begins, in the target code 
becomes  problematic. As hm b e n  pointed out llweger [SI, Shu [7]), it is desirable to select 
the. mrget code range that execuks the 6 c q  stasernent @ect of a statement. Thc Isey sutement 
effect is COR semantic effect of a statement; for an assigrment statement it  is the assignment 
operation, and for a GOTO statement it is the tramfer of control. 

Also, one has to keep mck  of the textual and semmtic positions of code.  For exmple, the 
textual position of T l 0  in [Figure 1@.2)] is juse IxfOPe T l 1  but its SemmtiC one is just kfoee 
T O 2. In (b3) T 1 O is deletd. T 02 implements its semantics and hence detemines where. The 
issues raised by source-target maps are quite complicatd. Pt suffices to say that the path metric 
codd be used in a measure of the distribution of mget code "fragments" for a @en smme 
code. Hence. one may e s h a t e  wheR a key  statement effect is located, perhaps  by obselwing 
how the f r a ~ e n t s  are cluste&, or ssess how syntactic md semantic positions of statemenrs 
may "migrate". 

In mmy uses of the path metric A, my path is dl mgkt if it uniquely determines the  relative 
execution order of the desired nodes.  Furthermore, measulring absolute distances md their 
attendant  compueaeional costs may be avoided if one is only interested in their relative execution 
order. Thus, a holem-based relational fgebra may be develloped over A and used more 
conveniently in debugger implementatiom. For instance, one has comparisons, based on A, such 
as: 

BEFCA, B) = A < B. i.e. A S B and A f B .  
, B) E B  6 A. 
, B) = A  = B. 

Also, code movements not perceived at source-code level may be ignored. For instance 
swapping TL3 and T l 4  produces code movements t o w y  within source statement S7 which 
may thus be ignored. 

Existing algorithms could be modified and used. Eikewise, implemenmtion structplpes ~ a t u ~ d l y  
available in some optimisation techniques may be adapted. For i m c e ,  the notion of basic 
bloch (Ah et al. [l]), as oppsed to individual mget instructions, is used to 8 fiint 
approximation of the  path metric in r e l a h A  compapisons. 

4. @ON@ILUSIOM 

M a y  optimisation techniques  eeorder instruction codes and so a debugger for unoptimised 
progrms oprates on false execution sequences.  Consequently, 1 developd a pph-based 
program mode1 on which code displacements are rneasured in a path metric spce [details in 
Appcndix A]. The rneasmments are then  used to monitor and mask out the effects of reordered 
codes. 1 then pinte8 out how the identification of textuf md semantic positions of codes 
during SOUrce-targeE maps could be located using the metnic. 

An advantage of the path metric approach is that results c m  be obtaineed af&er  approximate 
cakx"ns ,  dding flexibility to intepremions of code  displacements in it. Various 
interpretations of debug issues, besides source-mget maps, could be built over the path metxic 
or the associated relational algebra.  Thus, though the paper focused on reordered execution 
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sequences  of  instructions,  the  metric may also be used in  optimisation-induced datdvariable 
access (Le. assignments and  use)  pmblems,  including  relocation  of  variables  in  memory. 
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APPENDIX  A 

A DEFIMNG THE PATH  METRIC 

Here 1 show  how  the  path  metric was developed,  explaining the reasoning  behind it. One  wants 
to measure distances between  nodes on a  directed  path  and  handle the special  case where  they 
have no common path - that is, when  they  are on a nul1 path. Unfortunately,  a  conventional 
mathematical metric does not include information on the "path (or direction!)  of  measurement". 
As such, 1 adapt the conventional  metric space to a path mefric space so as to state my case 
formally; it identifies the paths  along  which  conventional metric measurements  are made. As 
one moves fmm one path to another,  relational  comparisons  based  on  the  metric  measurements 
should be preserved or ensured. 1 examine  acyclic  paths  $en  allow for cyclic  graphs. 
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A.X. Distances almg acyclic paths 

A conventional mathematical metric is given in  [Definition 11 below. To facilitate the 
discussion, the tem path is understood to denote a single path or a path specification [Section 
2.21: the former is a special case of the latter. Mso, the following  notation is adopted: 

For any A, B ,  C, Y, Z E M, 
. (P) denotes a path. P. 
a (me> oe {A, B, e) denotes a  path from A to C via B, in order. 
. (A+B+C) denotes a path thmugh the nodes A, B and C but in any order. 

stands for 6(A, 5)  + qB, C). 
conespond to the pair (r, 0; they a, component-Wise, pmjections of A. 

Definition 1: A met& space is a pair (Mg 8) whenr: 6 is a "distance  funcrion" defied on rhe set 
M, and satisfies the following for all X ,  Y, Z E M: 

I P 2 O); B is the set of peal nUrnb.cn. (1.1) 
&X,y)=Q e X = Y  (1.2) 

[synmmewny] ( 1 . 3  
[triangle inequality] (1.4) 

1: defiie a rnetric dong acyclic paths on a dipectd graph in tems of  the n m b r  of  arcs linking 
the two nodes. This nunmber depends on the acmal path used. This Ieads to [Definition 21 
Mow. Now, of the alternatives given by a path spcifncation [c$ Section 2.21 ody  one - 
which  usually denotes the desired execution path - is selected. Any relevant assertions ape 
made on nodes from the path, though the path specification must be precise  enough. In 
[Definition 31, I select the shortest non-null path, if theee is one, that contains the nodes 
specified. A shortest path is used because it gives a conceptudly simple and consistent  way (1 
think!) of irnplementingvisudising the rnetric. Besides, efficient dg~rithms exist for shortest 
path problems.  However, as explained in [Section 31 assertions  on paths are essentidly 
relational  and so the shortest pafh comtraint r n q  k relaxed. 

Definition 2: Each m in m execution path contribotes a link - the unit of measuw - to the 
distance berneen two nodes. If the distance, n, is obtained h m  links on a path, (P), we say p z  
is measured on (P). Two  nodes are compm&le if there exists a path linking them i.e. they lie 
on a path. Bthemise, they are inrompnroble (or indt?p@nndent). 

Let 82 be the n w k r  of links in a path, and 2 be larger thm my 82. Defme 
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A.2.  Distances over acyclic  paths 

Suppose that for optimisation purposes 1 need  a  path  specification  containing TO O and T l 5  
[Figure l(b.l)].  Let the path (TOO,TO6,T15) be  given  and  suppose it establishes the relative 
positions of T O O and T15. At  some later point in time 1 want to optimise T l 0  as in 
[Figure 1(b.2)]. The path (TOO,Tll,T15) thus becomes the better  choice.  One  should be able 
to switch over to the latter path  without invalidating earlier decisions on TO O and T15. 

In effect,  assertions over one acyclic path should cany over to other paths, if their premises are 
still valid. To this end, 1 define  a metric A that  takes into account the path along which it is 
measured. 1 cal1 it a path metric - and  from it define a  path metric space - since it mimics 
a  conventional  mathematical metric [space]. A is given in [Definition 41 and it identifies valid 
distances (Eqns  2.1 - 2.2) as well as how they could be added or compared (Eqns 2.3, 2.4). 

Definition  3: Let 6, be 6 measured on an acyclic  path (e). Let 0, be the  null  path  and ( P )  = 
a((AB+CD)). Define A to have the following properties  and  operations: 
A(A,B) E {(r,l) l r = i$(A,B) and 1 = (AB)] (2.1) 
V(r& r = ~  w f = 0, (2.2) 

[partial order] (2.4) 

A.3.  Defining  a  path  metric  space 

1 want to characterise  nodes as points in a path mevic space, (M, A\,@. The main motivation 
for (M, A, 6) is to be able to assess the position (or displacement) of an instruction code on an 
execution path. In this way,  a debugger may be able to identify the correct code even after 
multiple displacements. Thus, things are very  much like in a conventional  metric,  except that 
we take  the  precaution of identifying the paths used, or mapping prior measurements [or 
assumptions] ont0 the same  path. 

Definition 4 A path metric space is the tuple (M,A,6) where 6 = (6, I e are paths in the graph} 
and A is the path metric function. 6,’s are identically defmed distance functions, but applied to 
separate paths in the graph. Let A, B ,  C, D E M. Let P be the set of paths on M and B the set 
of  real  numbers. A satisfies the following for all paths. 

A(A, B)  E ((r,  i )  I r E R, r 2 O, and 1 E P ) (3.1) 
A(A, B )  = (O, l) A E B  (3.2) 

A(A, B )  = 1 (6,(A,B), (AB)) if CL(@)) = e and e f 0, 
(3.3) 
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Note that B depends on (e) md hence A, since the value of B is obtained h m  rneasurements 
dong (e). Also, fmrn Eqn. 3.4 and the acyclic  nature of G(M), relational cornparisons are 
preserved across paths in a given G(M). 

&ion 1: (M,A,S) is a path metric space,  given 6 and A in & f i n i t i ~ n ~  3 and 4. 

Prost The 6e's are identical to some distance function 4, as explained  earlier. One ha.$ to show 
that A satisfies equations 3.1 to 3.4. Equations 3.1 to 3.3 are trivial to prove. 6nly Q ~ a t i ~ n  

en the inequdity holds, @ven that each r. ,  i = A B ,  BC, AC is obtained using 
8, P rnetRc  function, on the path ~ ( ( ~ ~ ~ ) .  If a((")) = then thcre is no path h m  A to 
C thmu@ B.  Therefofe, A(A$) or A(B,C) or both are q u d  to (7, BP). Frorn A-addition  and 
given that T 2 &(AC)), the inequality  holds. [1 

A.4. ~1~~~~~ for cycelic graphs 

In a cyclic graph. the distance betwcxn two nodes, A and B, which lie on a cycle may lx 
measured .hm A to B or from B to A. This is undesirable  because the relative  execution order 
of nodes is no longer unique.  Thus, in [Figure 3(ii)], the distance (AB) is either 2 via (ACB) or 
1 through (BA). Besides, paths may becorne infinite,  through loop unraveIlimg,  and hence 
invalidate 6. Some resaictions thus  becorne necesSapgr, and their nature depends on whether the 
gmph is a reducible flow graph or na. 
A reducible  flow graph (IWG), G, is one whose f o w a d  edges fom an acyclic gmph in which 
every  node cm be reached from the initial [Le. SM] node of G. Mss, its back edges cornsist 
only of edges whose head dominates th& tail: that is, all cornputations that reach each tdl must 
first pass through its head (See A h  et al. [l]). 

J, 

1 

Two valid paths 
behveen A and B 

Two valid paths into loop 
from Start Node 

(ii) 
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If  measurements on two points, A and B,  are such  that A precedes B in any computational 
sequence  from the start node (i.e. A dominates B), then A can be used on reducible  flow  graphs 
(RFGs). Clearly, since all nodes are reached  from the start node via acyclic paths,  a RFG may 
be perceived as an acyclic graph obtained by  notionally severing loops at their  back  edges, 

Unfortunately, in the presence of loops, relative code movements  may  become  ambiguous or 
invalidated in a debugging context.  Consider ? (i). In each iteration of the loop,  the  instruction, 
A, is executed before B. However, B is seen as executed before A across iterations (Le. across 
back  edges). This is the case if a  debugger  stopped  the program at C but the user  expects 
execution to reach A through (CBA). This may be corrected for in a  debugger by  knowing the 
"iteration  number" in which the instructions are found. Such additional  information  from  the 
computational  procedure  used is termed  a deteminant (c$ Shu [7]). It may be seen as an 
amibute of  the  path. 
Non-reducible flow graphs (NRFGs) typically  contain  multi-entry loop(s) [? (ii)]. The current 
loop entry may be used as a  determinant in any  measurements.  Potentially, this implies n 
measurements for an  n-entry loop! Formnately, NRFGs are rare - even in unstructured 
programs. They are rarer still, because of structured  programming.  Besides,  many  conventional 
optimisations  will not take place  in  their  presence. 
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