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APPROCHE INTER-ACTIVE 

L'ECO-RESOLUTION 
DE  LA  RESOLUTION  DE  PROBLEMES: 

DELAYE C. 1-2, FERBER J. 2,JACOPIN E. 

RESUME 

L'éCo-résolution offre une nouvelle manière  d'aborder  la  résolution 
de  problèmes. Alors que  les  techniques  classiques  tentent  de 
résoudre  les problèmes globalement, en effectuant une exploration 
de  l'espace des  états gouvernée par  des  heuristiques, l'éco-résolution 
est  fondée  sur  un  mécanisme  d'interactions  entre  agents,  la 
résolution  étant  obtenue  par un ensemble de  satisfactions  locales  de 
ces  agents.  Ses principes reposent sur la définition d'un ensemble de 
comportements  spécifiques  appartenant à plusieurs  "espèces" 
d'agents (réactions de satisfaction, de fuite ou d'aggression). 

Le système ECO 1 se compose  de deux parties: d'une  part le noyau qui 
décrit  l'interaction  de  ces  comportements à partir  d'une définition 
abstraite  de ces agents,  cette  partie  étant  indépendante  de  toute 
application,  et  d'autre  part,  la définition d'un  ensemble  d'espèces 
d'éco-agents,  dépendants  du  domaine,  qui  héritent des propriétés de 
ces  agents  abstraits, et particularisent le modèle pour  une 
application  donnée. 

AN  INTERACTIVE  APPROACH TO PROBLEM-SOLVING : 
ECO-PROBLEM  SOLVING 

1. INTRODUCTION 

The  classical  multiagent  paradigm involves the decomposition of a 
problem in order for a population of agents  to elaborate  a  solution 
and  to  carry  out  this  solution. We address  the  problem of 
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constructing  the  solution  with a population of agents il$]. This is 
Distributed Problem Solving. 

Our  agents  are  actor-based  and follow Gul  Agha's mode1 of 
continuations [Il. They are  integrated in an eco-system [6,7] where 
they  possess very simple  behaviors.  But  our  aim is neither  the 
simulation of an environment such  as  the prey-predator [5] nor  the 
simulation of a behavior Ils]. Our  approach  also  differs  from 
connectionism;  our  agents  are  not  statically  linked  together  and 
their  behaviors  are  independant  one  another.  Msreover, their 
actions  are  not  based  on  stochastic  functions j131. Mso, our  system 
differs from the Imowledge-based agent approach. 

Our sys-tem is twofold: (1) a domain  independant kernel where  the 
eco-behaviors  are  described, (2) a domain  dependant  application 
where the domain  actions  are coded. "Te used it to solve classical AI 
problems (cg. blocks world, hanoï towers, n-puzzle, n queens,  etc ...) 
[4,8]; in the goal of solving  problems involving agents'  action 
selection we propose to  extend  our model.  For this purpose, we 
choose  Roach's non linear problem [ 11,161 where a robot faces an 
action  selection  problem.  Section 2 describes the  underlying model 
for our eco-agents,  along  with  Roach's non linear problem. A forma1 
study of an eco-agent is proposed and  the completeness of our  system 
is presented.  Then,  section 3 presents  thr  suntime  for  Roach's 
problem. 

Our  system makes wide use of continuations.  Consequently,  agent's 
actions are serialized through  the process of continuations. In order 
to solve Roach's non  linear problem, we need  to  extend the  notion of 
continuation in an actor-based  system.  The limits of the 
continuation model are expressed in section 4, and  solutions are 
prsvided in section 5. 

This  section  presents the mode1 of Our very simple agents. Our agent 
are actos-based. We first present  this model and  describe  agents 
kmowledge and behaviors. Then, we modelize Our agents  and  make a 
brief study of the  completeness of a system using such agents. AI1 
this  section is presented  with  the  support of a problem  whose 
solution is presented in the  last  subsection. Figure 1 represents this 
problem.  This prob'lem is called Roach's non  linear  problem. We 
chose  this problem because it has been newly analysed as a non 
linear problem [ 111, it is not an usual  blocks world problem and 
although it is simple, it provides a good  workbench for Our purpose. 
In  this problem, a robot is at place 1 in the initial situation  and must 
reach place 4 near  the sink. The door is closed in both  the initial and 
final situation. 
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Initial State Final State 

Figure 1: Roach's non linear  problem 

2.1 Knowledge and  behaviors 

In  this section, we describe the mode1 chosen for Our agent. An eco- 
agent is actor-based [l]. It has some local knowledge of its own 
environment and  has behaviors  to modify its local knowledge. 
Local  knowledge. Independently of the domain, an agent knows: 

1. Its satisfaction state; it is true when  the agent has reached its 
goal, othenvise it is false and  the  agent is seeking  for its 
#satisfaction. 

2. Its dependancies.  Dependancies are agents. We  cal1 master 
an owner of some  dependancies, and slave the  agents  that  are 
the dependencies. An agent which is a dependency is a master 
for its own dependencies, and so forth. Slaves will reach  their 
satisfaction  state only after their  master's one has  been 
reached. Differences between the initial situation  and  the final 
situation define the  master-slave  relationship. For instance, 
in the problem described in Figure 1, the robot has to  change 
its position from place 1 to place 4, near  the sink. This  makes 
the robot as the slave of the sink. 

3. Its  jailers.  Jailers  are  agents  that prevent other  agents from 
acting. For instance, in the  case of Figure 1, the door prevents 
the robot from reaching  the  sink, therefore, the door is a jailer 
for the robot. As soon as the robot will have open  the door, the 
door will not  be a jailer  any longer. 

Depending on  the domain, an agent may have more knowledge about 
its environment. For instance,  the robot also  knows its position in 
the environment. 
Behaviors. Agent's behaviors  are  independent of the application 
domain.  Three  distinct  behaviors are available for an  eco-agent: 

1. The will to  be  satisfied.  This will corresponds  to  the 
description of the  agent's goal in the final state of a problem. In 
Our example, the robot must reach the  sink. Consequently, it 
get  the will to be near  the  sink. An action  (reaching its 
satisfaction) is associated with the will to be satisfied. 



2. The will to be free. The idea is that  the agent must be free 
before any  acting. Therefore, the agent has  the wfl to  be free 
each time  it must act;  i.e. before doing its satisfaction,  and 
before fleeing. 

3. The obligation to flee. If an agent  prevents  another  agent 
from  acting, then  this agent must flee. For instance, the door 
prevents the robot from reaching its satisfaction state. So, the 
door must flee. 

The finite slate automaton 

I n  this  section we propose to fonmalke an  eco-agent as a finite state 
automaton.  This formalization is easily  obtained.  First,  it i3 easy to 
derive the internal  sta.te of an ecs-agent from the behaviors it c m  
have. This  internal  state is a boolean  triple (s,f,l) where s is the 
satisfaction  state, f is the fleeing state  and 1 the  liberty  state. 
Providîng that  an agent  cannot be both in the  state of fleeing and in 
the state. of satisfaction,  triples (1,1 ,x) where x is either O or 1, cannot 
&st. The  starting  state is (O,O,O) and  the final states  are all the 
possible states. Eaeh behavior is an action on the  internal  state; 
application cases are defined through a transition  function whose 
diagram is represented in Figure 2. 

The finite state  automaton  brings  up cornparison with sthes  worb. 
Fimt, it is clear that  this model describes  situated  actions [17], but 
also, it is actor-based  and then is different from Agre's system, Pengi 
12%. 

We present a brief study of the completeness of a system having the 
properties described in the previous subsectisns. 

I n  classical  planning  systems 13,191, the final  situation is described 
through a set of propositions. These propositions  are asserted by the 
posteonditions of a course of actions.  This  course of actions  reaches 
the  final  situation from the initial situation: it solves the problem. 
In eco-problem solving, the final situation is described through a set 
of satisfaction.  Hence,  agents must  interact in order to reach the 
satisfactions  corresponding  to the description of the final  situation. 

A truth criterion for eeo-problem solvinp. A sathfation is Qsserted 
in the  frnal  situation iSf) $ it is asserted in thefhal situation or if it 
has been asserted in a previous situation (Sp) and there is no 
situation (Sb) behoeen  situation iSjj and  situation (Sp) such that the 
agent hctsJed. For each  situation (Sb) where a satisfred  agent m u t  
flee there must be a situation (Sa) between situation (Sb) and 
situation (SB such that the satisfaction of the fleeing agent is 
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asserted. For each  situation  where an agent  receives  the  obligation 
toJee and is able  to  reach  its  satisfaction state, then  this  agent will 
reach its satisfaction  state. 

Figure 2: The  transition  diagram  of the finite state automaton 

’ This truth criterion clearly descends  from  Chapman’s [3]; using his 
terrninology, situation Sp is an establisher, situation  Sb is a 
clobberer and  situation Sa is a white  knight. But Our modal truth 
criterion is adapted  to a multiagent  environment.  First,  this 
criterion  does  not  talk  about  propositions (i.e. post-conditions) but 
about  States determined by agent‘s behaviours (i.e. the  satisfaction 
state  and  the fleeing state).  Second,  agents  are  acting from  local 
interactions  and  no global data  bases  [such as the  usual  add or delete 
lists)  about  the  environment  are  used.  Hence a situation Sa 
(Declobbering by white knight in Chapman’s terminology) is easy  to 
create: an agent  that  should be satisfied in situation Sf receives the 
will to  get  satisfaction  each  time it flees,  although  Chapman’s 
TWEAK 131 and Wilkins’s SIPE [19] do not use a white knight. 
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3.TWE RUNTIME 

Now, we are going to describe- the solution fosund by  our  system.  The 
robot has to go ta place 4, near the si&, anel the door must be  closed. 
First the robot  tries  dkectly  to go near the sink. But the door is 
closed. So the robot  tells the door to open; as a consequence, the door 
as& the robot  to move near it in order to  open it. Thus, the robot 
moves near the door and  open it. As soon the door is open, the robot 
is free to reach its satisfaction (i.e. to be in place 4, near the shk);  so 
the robot moves near  the sink, leaving the door open. There, the door 
calls  back  the  robot so as to be closed. Finally, after moving bac% 
and closing the door. the robot is free to retsurn to  the sinEr. 

The final state is reached.  But  the robot  did make a pretty  useless 
return  trip  to  the door. The problem appears as soon as the robot is 
free,  when  the  robot is in place 2 and the door open. There,  the 
problem is due to the continuation process. 

We can notice that using the idea of serialking the goals [P2] koing 
from  place 1 to place 2, then  to place 3 then  to place 4) leads to  the 
good planning of the tasb.  But it is an undesirable  solution  because 
it also needs a meta-control to find the good serialization of tasks. 
So the problem would only be  displaced  from  task-planning  to 
control-planning. 

The purpose of this section is to explain why the robot makes an 
undesirable  return  to  the  door  and  then  acts again towards its 
satisfaction,  near  the sink. We will explain  the limits of this 
approach and the different solutions in the following subsections. 

4.1 Unneeded ~ ~ ~ ~ ~ n ~ i ~ l i ~ a ~ i o m  with continuations 

This  undesirable  return is the  result of the  programmation  with 
continuations.  Indeed, each new continuation is considered  only 
when the  actor  twhich owns it has finished its current  computation. 
So, if we examine precisely the  trace of the execution of the  program, 
we see that  there is very few active actors  but that each of them 
handles a long queue of continuations. 

As in Our system each continuation may correspond to  the execution 
of one task, it means that we can't change the planning of tasks as 
soon as they  appear in a queue of continuations. As a consequence, a 
queue of continuations reflects the  scheduling of a succession of 
tas& at the instant of its creation;  henceforth the scheduling of the 
tasks in the queue ds fixed. 
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As a result,  the  satisfaction of the robot to  reach  the sink is in the 
queue of continuations.  The  satisfaction of the door is only taken in 
charge  when the robot has first satisfied its goal to  be  near  the sink 
as it is specified in the  continuations. There is no way to avoid it 
even if  we put priorities  between tasks like "always execute  first  the 
tasks with  the door as receiver" because it'is impossible to  break  the 
queue of continuations. 

It is important  to  note that  this "Continuation problem" seems  to  be 
one of the major  drawback of programming with actors. 

4.2 Task versus eco-action  duration 
We must now  focus  on  another  problem. I n  the  current 
implementation, we have  made  no difference between  behaviors of 
eco-agents and  real  physical  execution of these  behaviors in the 
world of the robot. In  fact, going from one  location to  another is not 
an atomic task: it may  take a long time for the robot to move, 
conversely, the  intention l o  move is instantaneous 191. But in Our 
system,  consuming  one  step of any  queue of continuations  takes 
exactly the  same  time  whatever  action (e.g.  moving or  getting  the 
intention  to move) it recovers. 

In Our example, the "DoGoal" of the door can't  be  consumed before 
the satisfaction of the robot. We must insist that even if we use real- 
time slice  for Our scheduling of continuations  instead of a round- 
robin, the  result would not  change. In this  case,  the time to  consume 
a continuation would be  proportional  to  the  time of computing its 
code. It would have  no  relationship  with  the  duration of the 
execution of the task in the real world. 

This also  leads  the robot to fail to  immediately close the door: the 
first goal of the robot is to get  near  the sink, s o  it does it before any 
other consideration. As soon as the door is open, the robot is free so 
it satisfies itself. 

5.SOLUTIONS 

In  order  to solve Our problem we want  the  robot  to  have two 
simultaneous abilities: (1) to go from one  point  to another; (2) to care 
of  al1 messages that it receives. An ideal solution  would be to  make 
an agent  that  contains two parts: one for displacement and one  for 
listening.  The  'listening  part  would  interrupt  the  work of 
displacement as soon as a more  important task must be realized. 
The  importance of a task is associated  with  its  temporal  cost in the 
context of the global succession of tasks. 

In order t o  avoid an increase of complexity, we have  implemented a 
simpler  system  that do not  use  continuous  parallelism of the two 



tasks but is an incremental  version  where an agent  reads its 
mailbox at some  interval. 

Ml the  actions occuring in the real world will be incremental in 
order to allow each  agent  to read its mailbox and  act in the  same 
time.  It  results in similar implementatioms  for the  eco-actions 
interacting with the real world: DoFlee and DoSatisfaction. In  the 
next paragraphs Ive will  only  develop the code of DoSatisfaction but 
the code of DsFlee is similar. 

5.1.1 An incremental DoSatisfaction 

We now introduee a new Dosatisfaction that moves the robot for 
only a small  distance  instead of realizing an instantanesus 
satisfaction (going  from place 3 to place 4 at the  speed of changing an 
actor's field). The new DoSatisfaction calls itself recursively until 
the  robot  has  reached  the sink. At every cycle (when a new 
DoSatisfaction is executed) the robot reads its mailbox. When this 
one is not empty, it takes  the messages into  account. 

For  the  implementation, it results in a DoSatisfaction(agemt's 
position in x,agent's position in y) that  sends the  message 
DoSatisfaction(a~ent's position in x + dar, agent's position in y + dy) 
udess there  are  messages in the mailbox; dar and dy are given by a 
&remely simple path  planner which calculates the next  increment 
towards the goal. In  this  case,  the robot executes these messages---if 
needed---and  then  sends  the  normal  Continuation 
I4oSatisfaetion(x+~,y+d3v) as soon as d l  the  messages received have 
been  taken  into  account. Mere are  the  outlines of functions 
Satisfled?, Iwcr ~ ~ ~ ~ S ~ t ~ ~ ~ ~ ~ t ~ ~ ~  and 9408 

r-. 

1 .  

( f u n c t i o n   S a t i s f i a d ?   ( s e l f )  
( r e t u r n  (1s s e l f ' s  goal reached ? ) ) )  

( f u n c t i o n   I n e ~ e m @ n t S a t p 9 f a c t i o w   ( s e l f )  
( L e t  t h e   c u r r e n t   s e l f ' s   p o s i t i o n   b e   n e a r e r  t o  
s e l f ' s  goal p o s i t i o n ) )  

(Carry   ou t  the c u r r e n t   c o n t i n u a t i o n  ?cent) 
E l s e  
(When the   ma i lbox   con ta ins  a message,   take 
i t ) )  
( I n e r e m e n t S a t i s f a c t i o n   s e l f )  
(Dosatisfaction s e l f   ? c o n s t r a i n t   ? c o n t )  ) 

c a r e  of 

1 )  
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We have  introduced a local mailbox. This mailbox may  be a common 
one like in blackboards  but it is more  useful  to use local mailbox for 
each  agents. By this way, eco-agents have reached real agents  status. 

The solving of the precedent example is now biased in the  sense that 
only one  message  may  be in the mailbox (the need of the door to be 
closed]. In  real  problems,  multiple  messages  may be  sent  and  the 
order in which they  are executed is a real task planning. 

Another problem is that it may  be  important  to  plan al1 he tasks to 
go to  the sink. An example is the  robot+sink+key problem that is 
identical  to  Roach's except that  the robot needs a key to close the 
door. Here, we have to  plan  the execution of the task to  search  the 
key simultaneously with using  the fact that we  will further have to 
reach  the sink. 

5.2 A step  forward  dynamical  planning 

I n  a more  general problem solver, we must  add  the goal of going from 
the position of the robot to  the sink to  the  content of the mailbox. 
But as soon as we allow this, we need a more powerful planning  to 
know how to merge the  tasks in the mailbox with the task of going to 
the sink. Here is an outline of a new function DoSatisfaction that 
handles  the problem: 

(If self is Satisfied? t h e n  
Carry o u t  t h e  c u r r e n t   c o n t i n u a t i o n   ? c o n t )  
Else 
(IncrementSatisfaction se l f )  
(When the   ma i lbox   con ta ins ,  a message 
(add (DoSatisfaction self  ? c o n s t r a i n t   ? c o n t )  
t o  t h e  mailbox) 
( t a k e  care of m a i l b o x ) ) ) )  

5.3 Tasks  as  eco-agents 

Reorganizing the  tasks in the mailbox do not  seem  to be of a  real 
interest  because it is only an  other rewriting of the  same old 
problems. We  will see now that we may  consider  tasks  not only as 
first-class objects but also as eco-agents (we have shown, in [SI, that 
in blocks world, blocks are  eco-agents). 

5.3.1 Plunging the tasks in blocks world 

Figure 3 illustrates Our description.We may  consider  that  the 
constrains between tasks are  not very different from clobberers in 
the world of blocks; i.e. blocks on top of others. 



Mso,  the  temporal  constraints  between  tasks  are  similar  to  the 
spatial  constrains in blocks  world.  Consequently, we propose .to 
introduce  the task of going from one place to  another as a block. 
Thus, t a b g  a distance-block off a tower is similar for the robot to 
movie along the  same  distance. 

On moving  from one place to another,  the robot needs to suppress  the 
csrresponding  distance in the block world representation.  The loci 
are also  represented by a block. m e n  a locus-bloek is on top of a 
tower, it indicates  that  the robot is on the locus corresponding to the 
block. The task of opening and closing the door are  indicated  by 
blocks that dynamically  goes on the  top of the  tower,  the  robot 
cannot do anything  without  suppressing  this  block (emrecuting the 
corresponding task). 

1s is very important  to  note  that  this technique is nothing ePse than 
composing a "big" eco-agent with "smaller" eco-agents that  handle 
the tasks of the "big" eco-agent. 

I n  this (extended) abstract, we have  presented a multiagent  model 
involving the  notion of eco-agent. I t s  description and its 
formalization  (finite state  automatsn,  completeness) has been 
studied. Using the example of Robot and Sink, we have s h o m  that a 
actor-based  system  have  some  limitations that we have solved by 
two means:  incremental  actions  and tasks as eco-agents in the 
blocks world. 

6.2 Perspectives 

We have not pointed out  the  fact  that our blocks world may  be a 
dynamie one. Therefore, the blocks  may be pushed dynamically on 
the  top of the tower. It means  that we may consider situations where 
the tasks of an agent  may  dynamically  be  changed.  In this 
representation,  the  breakdown of a tDwer  of blocks means a total 
replanning. I n  order to exploit this caracteristic we are  currently 
implementing the Misachieving Baby example [151 that  leads us to a 
more  dynamical  problem  where  tasks  must  constantly be 
reorganjzed from the beginning. 

Another  extension will be  to give new dimensions to blocks world: 
the weight of a block may  be compared to  the temporal cost of a task. 
We may also  consider  more  elaborated  constrains between tasks 
using geometric blocks that may interleave together. 
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Figure 3 : The  robot problem revisited  through  blocks world 
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