
Eco-systèmes et sociétés 46 1

APPROCHE INTER-ACTIVE

L'ECO-RESOLUTION
DE LA RESOLUTION DE PROBLEMES:

DELAYE C. 1-2, FERBER J. 2,JACOPIN E.

RESUME

L'éCo-résolution offre une nouvelle manière d'aborder la résolution
de problèmes. Alors que les techniques classiques tentent de
résoudre les problèmes globalement, en effectuant une exploration
de l'espace des états gouvernée par des heuristiques, l'éco-résolution
est fondée sur un mécanisme d'interactions entre agents, la
résolution étant obtenue par un ensemble de satisfactions locales de
ces agents. Ses principes reposent sur la définition d'un ensemble de
comportements spécifiques appartenant à plusieurs "espèces"
d'agents (réactions de satisfaction, de fuite ou d'aggression).

Le système ECO 1 se compose de deux parties: d'une part le noyau qui
décrit l'interaction de ces comportements à partir d'une définition
abstraite de ces agents, cette partie étant indépendante de toute
application, et d'autre part, la définition d'un ensemble d'espèces
d'éco-agents, dépendants du domaine, qui héritent des propriétés de
ces agents abstraits, et particularisent le modèle pour une
application donnée.

AN INTERACTIVE APPROACH TO PROBLEM-SOLVING :
ECO-PROBLEM SOLVING

1. INTRODUCTION

The classical multiagent paradigm involves the decomposition of a
problem in order for a population of agents to elaborate a solution
and to carry out this solution. We address the problem of

ONERA, DMI/IA, 29 Av. Division Leclerc, BP 72, 93322 Chatillon Cedex
LAFORIA, Université Paris 6, T46-00, 4 Place Jussieu, 75252 Paris Cedex 05

462

constructing the solution with a population of agents il$]. This is
Distributed Problem Solving.

Our agents are actor-based and follow Gul Agha's mode1 of
continuations [Il. They are integrated in an eco-system [6,7] where
they possess very simple behaviors. But our aim is neither the
simulation of an environment such as the prey-predator [5] nor the
simulation of a behavior Ils]. Our approach also differs from
connectionism; our agents are not statically linked together and
their behaviors are independant one another. Msreover, their
actions are not based on stochastic functions j131. Mso, our system
differs from the Imowledge-based agent approach.

Our sys-tem is twofold: (1) a domain independant kernel where the
eco-behaviors are described, (2) a domain dependant application
where the domain actions are coded. "Te used it to solve classical AI
problems (cg. blocks world, hanoï towers, n-puzzle, n queens, etc ...)
[4,8]; in the goal of solving problems involving agents' action
selection we propose to extend our model. For this purpose, we
choose Roach's non linear problem [11,161 where a robot faces an
action selection problem. Section 2 describes the underlying model
for our eco-agents, along with Roach's non linear problem. A forma1
study of an eco-agent is proposed and the completeness of our system
is presented. Then, section 3 presents thr suntime for Roach's
problem.

Our system makes wide use of continuations. Consequently, agent's
actions are serialized through the process of continuations. In order
to solve Roach's non linear problem, we need to extend the notion of
continuation in an actor-based system. The limits of the
continuation model are expressed in section 4, and solutions are
prsvided in section 5.

This section presents the mode1 of Our very simple agents. Our agent
are actos-based. We first present this model and describe agents
kmowledge and behaviors. Then, we modelize Our agents and make a
brief study of the completeness of a system using such agents. AI1
this section is presented with the support of a problem whose
solution is presented in the last subsection. Figure 1 represents this
problem. This prob'lem is called Roach's non linear problem. We
chose this problem because it has been newly analysed as a non
linear problem [111, it is not an usual blocks world problem and
although it is simple, it provides a good workbench for Our purpose.
In this problem, a robot is at place 1 in the initial situation and must
reach place 4 near the sink. The door is closed in both the initial and
final situation.

Eco-systèmes et sociétés 463

Initial State Final State

Figure 1: Roach's non linear problem

2.1 Knowledge and behaviors

In this section, we describe the mode1 chosen for Our agent. An eco-
agent is actor-based [l]. It has some local knowledge of its own
environment and has behaviors to modify its local knowledge.
Local knowledge. Independently of the domain, an agent knows:

1. Its satisfaction state; it is true when the agent has reached its
goal, othenvise it is false and the agent is seeking for its
#satisfaction.

2. Its dependancies. Dependancies are agents. We cal1 master
an owner of some dependancies, and slave the agents that are
the dependencies. An agent which is a dependency is a master
for its own dependencies, and so forth. Slaves will reach their
satisfaction state only after their master's one has been
reached. Differences between the initial situation and the final
situation define the master-slave relationship. For instance,
in the problem described in Figure 1, the robot has to change
its position from place 1 to place 4, near the sink. This makes
the robot as the slave of the sink.

3. Its jailers. Jailers are agents that prevent other agents from
acting. For instance, in the case of Figure 1, the door prevents
the robot from reaching the sink, therefore, the door is a jailer
for the robot. As soon as the robot will have open the door, the
door will not be a jailer any longer.

Depending on the domain, an agent may have more knowledge about
its environment. For instance, the robot also knows its position in
the environment.
Behaviors. Agent's behaviors are independent of the application
domain. Three distinct behaviors are available for an eco-agent:

1. The will to be satisfied. This will corresponds to the
description of the agent's goal in the final state of a problem. In
Our example, the robot must reach the sink. Consequently, it
get the will to be near the sink. An action (reaching its
satisfaction) is associated with the will to be satisfied.

2. The will to be free. The idea is that the agent must be free
before any acting. Therefore, the agent has the wfl to be free
each time it must act; i.e. before doing its satisfaction, and
before fleeing.

3. The obligation to flee. If an agent prevents another agent
from acting, then this agent must flee. For instance, the door
prevents the robot from reaching its satisfaction state. So, the
door must flee.

The finite slate automaton

I n this section we propose to fonmalke an eco-agent as a finite state
automaton. This formalization is easily obtained. First, it i3 easy to
derive the internal sta.te of an ecs-agent from the behaviors it c m
have. This internal state is a boolean triple (s,f,l) where s is the
satisfaction state, f is the fleeing state and 1 the liberty state.
Providîng that an agent cannot be both in the state of fleeing and in
the state. of satisfaction, triples (1,1 ,x) where x is either O or 1, cannot
&st. The starting state is (O,O,O) and the final states are all the
possible states. Eaeh behavior is an action on the internal state;
application cases are defined through a transition function whose
diagram is represented in Figure 2.

The finite state automaton brings up cornparison with sthes worb.
Fimt, it is clear that this model describes situated actions [17], but
also, it is actor-based and then is different from Agre's system, Pengi
12%.

We present a brief study of the completeness of a system having the
properties described in the previous subsectisns.

I n classical planning systems 13,191, the final situation is described
through a set of propositions. These propositions are asserted by the
posteonditions of a course of actions. This course of actions reaches
the final situation from the initial situation: it solves the problem.
In eco-problem solving, the final situation is described through a set
of satisfaction. Hence, agents must interact in order to reach the
satisfactions corresponding to the description of the final situation.

A truth criterion for eeo-problem solvinp. A sathfation is Qsserted
in the frnal situation iSf) $ it is asserted in thefhal situation or if it
has been asserted in a previous situation (Sp) and there is no
situation (Sb) behoeen situation iSjj and situation (Sp) such that the
agent hctsJed. For each situation (Sb) where a satisfred agent m u t
flee there must be a situation (Sa) between situation (Sb) and
situation (SB such that the satisfaction of the fleeing agent is

Eco-systèmes et sociétés 465

asserted. For each situation where an agent receives the obligation
toJee and is able to reach its satisfaction state, then this agent will
reach its satisfaction state.

Figure 2: The transition diagram of the finite state automaton

’ This truth criterion clearly descends from Chapman’s [3]; using his
terrninology, situation Sp is an establisher, situation Sb is a
clobberer and situation Sa is a white knight. But Our modal truth
criterion is adapted to a multiagent environment. First, this
criterion does not talk about propositions (i.e. post-conditions) but
about States determined by agent‘s behaviours (i.e. the satisfaction
state and the fleeing state). Second, agents are acting from local
interactions and no global data bases [such as the usual add or delete
lists) about the environment are used. Hence a situation Sa
(Declobbering by white knight in Chapman’s terminology) is easy to
create: an agent that should be satisfied in situation Sf receives the
will to get satisfaction each time it flees, although Chapman’s
TWEAK 131 and Wilkins’s SIPE [19] do not use a white knight.

466

3.TWE RUNTIME

Now, we are going to describe- the solution fosund by our system. The
robot has to go ta place 4, near the si&, anel the door must be closed.
First the robot tries dkectly to go near the sink. But the door is
closed. So the robot tells the door to open; as a consequence, the door
as& the robot to move near it in order to open it. Thus, the robot
moves near the door and open it. As soon the door is open, the robot
is free to reach its satisfaction (i.e. to be in place 4, near the shk); so
the robot moves near the sink, leaving the door open. There, the door
calls back the robot so as to be closed. Finally, after moving bac%
and closing the door. the robot is free to retsurn to the sinEr.

The final state is reached. But the robot did make a pretty useless
return trip to the door. The problem appears as soon as the robot is
free, when the robot is in place 2 and the door open. There, the
problem is due to the continuation process.

We can notice that using the idea of serialking the goals [P2] koing
from place 1 to place 2, then to place 3 then to place 4) leads to the
good planning of the tasb. But it is an undesirable solution because
it also needs a meta-control to find the good serialization of tasks.
So the problem would only be displaced from task-planning to
control-planning.

The purpose of this section is to explain why the robot makes an
undesirable return to the door and then acts again towards its
satisfaction, near the sink. We will explain the limits of this
approach and the different solutions in the following subsections.

4.1 Unneeded ~ ~ ~ ~ ~ n ~ i ~ l i ~ a ~ i o m with continuations

This undesirable return is the result of the programmation with
continuations. Indeed, each new continuation is considered only
when the actor twhich owns it has finished its current computation.
So, if we examine precisely the trace of the execution of the program,
we see that there is very few active actors but that each of them
handles a long queue of continuations.

As in Our system each continuation may correspond to the execution
of one task, it means that we can't change the planning of tasks as
soon as they appear in a queue of continuations. As a consequence, a
queue of continuations reflects the scheduling of a succession of
tas& at the instant of its creation; henceforth the scheduling of the
tasks in the queue ds fixed.

Eco-syst&mes et sociétés 467

As a result, the satisfaction of the robot to reach the sink is in the
queue of continuations. The satisfaction of the door is only taken in
charge when the robot has first satisfied its goal to be near the sink
as it is specified in the continuations. There is no way to avoid it
even if we put priorities between tasks like "always execute first the
tasks with the door as receiver" because it'is impossible to break the
queue of continuations.

It is important to note that this "Continuation problem" seems to be
one of the major drawback of programming with actors.

4.2 Task versus eco-action duration
We must now focus on another problem. I n the current
implementation, we have made no difference between behaviors of
eco-agents and real physical execution of these behaviors in the
world of the robot. In fact, going from one location to another is not
an atomic task: it may take a long time for the robot to move,
conversely, the intention l o move is instantaneous 191. But in Our
system, consuming one step of any queue of continuations takes
exactly the same time whatever action (e.g. moving or getting the
intention to move) it recovers.

In Our example, the "DoGoal" of the door can't be consumed before
the satisfaction of the robot. We must insist that even if we use real-
time slice for Our scheduling of continuations instead of a round-
robin, the result would not change. In this case, the time to consume
a continuation would be proportional to the time of computing its
code. It would have no relationship with the duration of the
execution of the task in the real world.

This also leads the robot to fail to immediately close the door: the
first goal of the robot is to get near the sink, s o it does it before any
other consideration. As soon as the door is open, the robot is free so
it satisfies itself.

5.SOLUTIONS

In order to solve Our problem we want the robot to have two
simultaneous abilities: (1) to go from one point to another; (2) to care
of al1 messages that it receives. An ideal solution would be to make
an agent that contains two parts: one for displacement and one for
listening. The 'listening part would interrupt the work of
displacement as soon as a more important task must be realized.
The importance of a task is associated with its temporal cost in the
context of the global succession of tasks.

In order t o avoid an increase of complexity, we have implemented a
simpler system that do not use continuous parallelism of the two

tasks but is an incremental version where an agent reads its
mailbox at some interval.

Ml the actions occuring in the real world will be incremental in
order to allow each agent to read its mailbox and act in the same
time. It results in similar implementatioms for the eco-actions
interacting with the real world: DoFlee and DoSatisfaction. In the
next paragraphs Ive will only develop the code of DoSatisfaction but
the code of DsFlee is similar.

5.1.1 An incremental DoSatisfaction

We now introduee a new Dosatisfaction that moves the robot for
only a small distance instead of realizing an instantanesus
satisfaction (going from place 3 to place 4 at the speed of changing an
actor's field). The new DoSatisfaction calls itself recursively until
the robot has reached the sink. At every cycle (when a new
DoSatisfaction is executed) the robot reads its mailbox. When this
one is not empty, it takes the messages into account.

For the implementation, it results in a DoSatisfaction(agemt's
position in x,agent's position in y) that sends the message
DoSatisfaction(a~ent's position in x + dar, agent's position in y + dy)
udess there are messages in the mailbox; dar and dy are given by a
&remely simple path planner which calculates the next increment
towards the goal. In this case, the robot executes these messages---if
needed---and then sends the normal Continuation
I4oSatisfaetion(x+~,y+d3v) as soon as d l the messages received have
been taken into account. Mere are the outlines of functions
Satisfled?, Iwcr ~ ~ ~ ~ S ~ t ~ ~ ~ ~ ~ t ~ ~ ~ and 9408

r-.

1 .

(f u n c t i o n S a t i s f i a d ? (s e l f)
(r e t u r n (1s s e l f ' s goal reached ?)))

(f u n c t i o n I n e ~ e m @ n t S a t p 9 f a c t i o w (s e l f)
(L e t t h e c u r r e n t s e l f ' s p o s i t i o n b e n e a r e r t o
s e l f ' s goal p o s i t i o n))

(Carry ou t the c u r r e n t c o n t i n u a t i o n ?cent)
E l s e
(When the ma i lbox con ta ins a message, take
i t))
(I n e r e m e n t S a t i s f a c t i o n s e l f)
(Dosatisfaction s e l f ? c o n s t r a i n t ? c o n t))

c a r e of

1)

Eco-systèmes et sOeiét& 469

We have introduced a local mailbox. This mailbox may be a common
one like in blackboards but it is more useful to use local mailbox for
each agents. By this way, eco-agents have reached real agents status.

The solving of the precedent example is now biased in the sense that
only one message may be in the mailbox (the need of the door to be
closed]. In real problems, multiple messages may be sent and the
order in which they are executed is a real task planning.

Another problem is that it may be important to plan al1 he tasks to
go to the sink. An example is the robot+sink+key problem that is
identical to Roach's except that the robot needs a key to close the
door. Here, we have to plan the execution of the task to search the
key simultaneously with using the fact that we will further have to
reach the sink.

5.2 A step forward dynamical planning

I n a more general problem solver, we must add the goal of going from
the position of the robot to the sink to the content of the mailbox.
But as soon as we allow this, we need a more powerful planning to
know how to merge the tasks in the mailbox with the task of going to
the sink. Here is an outline of a new function DoSatisfaction that
handles the problem:

(If self is Satisfied? t h e n
Carry o u t t h e c u r r e n t c o n t i n u a t i o n ? c o n t)
Else
(IncrementSatisfaction se l f)
(When the ma i lbox con ta ins , a message
(add (DoSatisfaction self ? c o n s t r a i n t ? c o n t)
t o t h e mailbox)
(t a k e care of m a i l b o x))))

5.3 Tasks as eco-agents

Reorganizing the tasks in the mailbox do not seem to be of a real
interest because it is only an other rewriting of the same old
problems. We will see now that we may consider tasks not only as
first-class objects but also as eco-agents (we have shown, in [SI, that
in blocks world, blocks are eco-agents).

5.3.1 Plunging the tasks in blocks world

Figure 3 illustrates Our description.We may consider that the
constrains between tasks are not very different from clobberers in
the world of blocks; i.e. blocks on top of others.

Mso, the temporal constraints between tasks are similar to the
spatial constrains in blocks world. Consequently, we propose .to
introduce the task of going from one place to another as a block.
Thus, t a b g a distance-block off a tower is similar for the robot to
movie along the same distance.

On moving from one place to another, the robot needs to suppress the
csrresponding distance in the block world representation. The loci
are also represented by a block. m e n a locus-bloek is on top of a
tower, it indicates that the robot is on the locus corresponding to the
block. The task of opening and closing the door are indicated by
blocks that dynamically goes on the top of the tower, the robot
cannot do anything without suppressing this block (emrecuting the
corresponding task).

1s is very important to note that this technique is nothing ePse than
composing a "big" eco-agent with "smaller" eco-agents that handle
the tasks of the "big" eco-agent.

I n this (extended) abstract, we have presented a multiagent model
involving the notion of eco-agent. I t s description and its
formalization (finite state automatsn, completeness) has been
studied. Using the example of Robot and Sink, we have s h o m that a
actor-based system have some limitations that we have solved by
two means: incremental actions and tasks as eco-agents in the
blocks world.

6.2 Perspectives

We have not pointed out the fact that our blocks world may be a
dynamie one. Therefore, the blocks may be pushed dynamically on
the top of the tower. It means that we may consider situations where
the tasks of an agent may dynamically be changed. In this
representation, the breakdown of a tDwer of blocks means a total
replanning. I n order to exploit this caracteristic we are currently
implementing the Misachieving Baby example [151 that leads us to a
more dynamical problem where tasks must constantly be
reorganjzed from the beginning.

Another extension will be to give new dimensions to blocks world:
the weight of a block may be compared to the temporal cost of a task.
We may also consider more elaborated constrains between tasks
using geometric blocks that may interleave together.

Eco-systèmes et sociétés 47 1

......
\ There is a

dependances ' new task:
between
distances and \ 'n"B!EyL be
loci.

~ Thedistancas dij are
destroyed as soon as the
robot goes from place i l

~

i to place j

There is a
- lol

I
new task: I
the door
needs to be /
closed (CL)

1
I
'f

The door is closed. The
robot satisfies itseif going

l to the sink

Figure 3 : The robot problem revisited through blocks world

REFERENCES

[Il Gu1 Agha, Actors - A mode1 of Concurrent Computation for Distributed
Systems, MIT Press (1986).

[21 Philip Agre & David Chapman, Pengk An implementation of the îheory of
actiuity, in: Proceedings ofAAAI-87 (1987), pp. 268-272.

[31 David Chapman, Planning for Conjunctiue Goals, Artificial Intelligence
32 (1987), pp. 333-377.

[4] Alexis Drogoul & Christophe Dubreuil, Clussical AI problems and Eco-
problem soluing, LAFOFU.4 working paper, LAFOFU.4 1990.

[5] E. Durfee, T. Montgomery, M I " : A ,Flexible testbed for intelligent
Coordination Experiments, Proceedings of the 9th Workshop on
Distributed Artificial Intelligence (1989), pp. 25-40.

[G] Jacques Ferber, Objets et agents: Une étude des structures de
représentation et de communication en Intelligence Arttfiielle,
Thèse de Doctorat d'état, Université Pierre et Marie Curie, 492
pages, June 1989. (In french).

47%

[7] Jacques Ferber, Eco-Problem Soluing: How to solue a problem by
interactions, in: Proceedings of the 9th Workshop on Distributed
Mificial Intelligence (1989), pp. 113-128.

[SI Jacques Ferber & Eric Jacopin, A Multi Agent Satisfaction Planner for
Building Plans as Side Effects, LAFOFU Report 07/90, February
1990.

[9] Jean Marie Hoc, Psychologie cognitive de la planification, Presses
Universitaires de Grenoble (1987).

[l O] Bernardo Huberman, The ecslqgy of computation, Elsevier Sciences
Publication, North Holland (1 988).

[11 David Joslin 8r John Roach, A Theoritical Analysis of Conjunctiue Goal
Problem, ktificial Intelligence 41 (1989/90). pp 97-106.

[13] Patti Maes, The dynamics of Action Selectwn, Ap memo 89-09, Al W,
Vrije Universiteit Brussel (1 989).

[14] Mamin Minsky, The Society of Mind, Basic Books (1986).

[15] Marcel Schoppers, Uniuersal plans for reactive robots in unpredictable
environment, in: Proceeding of IJCAI-87 (1987), pp. 1039-1046.

[16] Laurent Sikiossy & John Dreussi, A Hierarchy driuen robot planner
which generates its own procedures, in: Proceedings of the 3rd
IJCAI, Stmfohd, CA (1973), pp 423-430.

[17] Lucy A. Suchman, Plans and siiuafed Actions, The problem of human- 1

machine communication, Cambridge University Press (1987).

[18] LUC Steels, N memo 89-07, AI M, Vrije Universiteit Brussel (1989).

1191 B. Wilkins, Ractical Planning - Extending the classical AI paradigm,
Morgan Kaufman (1 988).

