QUATERNARY STATE OF STRESS IN THE NORTHERN ANDES AND
THE RESTRAINING BEND MODEL FOR THE ECUADORIAN ANDES

Frédéric EGO (1), Michel SEBRIRER (1), Alain LAVENU (2), Hugo YEPEZ (3), Arturo EGUEZ (3)

(1) URA 1369 CNRS, bât 509, Université de Paris Sud, 91405 Orsay cedex, France.
(2) ORSTOM, 213 rue La Fayette, 75480 Paris cedex10, and, LGMBS, UPPA, 64000 Pau, France.
(3) Escuela Politecnica Nacional, Quito, Ecuador.

Résumé : L’inversion des mécanismes au foyer superficiels des Andes septentrionales, et l’analyse
néotectonique des Andes d’Equateur, montrent un champ de contrainte homogène (σ1 ± E-W). Celui-ci induit
un mouvement dextre sur les failles N30-35°E et du raccourcissement sur les failles N-S, (relais compressif
nord équatorial). Les vitesses de déplacement des failles dextres majeures sont calculées et discutées.

Key Words : Sismotectonics, State of Stress, Quaternary, Andes, Ecuador, Kinematics.

INTRODUCTION

The subduction of the Nazca Plate beneath South America results from a N80°E trending
convergence (Fig. 1). This convergence is thus oblique along the N50°E, 1500-km long northern Andes.
This obliquity is accommodated in the upper plate by NNE trending, active dextral faults. In Ecuador, two
major active strike-slip faults are known, (1) The Pallatanga Fault (PF), that is located in the Cordillera
Occidental of southern Ecuador, is well studied (Soulas, 1988; Winter, 1990; Soulas et al., 1991; Winter et
al., 1993). (2) The Rio Chingual-la Sofia Fault (CSF), that is located in the Cordillera Real (CR) of
northern Ecuador (Soulas et al., 1988; 1991; Tibaldi & Ferrari, 1992), is still poorly known. In addition,
several Quaternary, N-S striking folds and reverse faults have been reported in northern Ecuador (Winter,
1990; Ego et al., 1993); They are interpreted as a restraining bend between the PF and the CSF (Ego et al.,
1993). In order to address this problem, we have analyzed the stress pattern in northern Andes inverting
shallow focal mechanism data. Then, we calculated slip rates on the major strike-slip and reverse faults.

INVERSION OF FOCAL MECHANISMS

In the literature, 113 shallow focal mechanisms, registered by world seismic networks, are available
(e.g., Pennington 1981; CMTS by Dziewonski 1981-1992 and USGS catalog 1977-1988). They are mainly
distributed along the Andean subduction zone and in the Sub-Andean region; in contrast, few events are
located in the Andean mountains. We have defined 8 zones, each one corresponding to a specific structural
province. Then, data inversion (same method as Carey-Gaithardis & Mercier, 1987) was performed in each
zone in order to calculate its mean state of stress (Fig. 2). The most significant result is that the state of
stress is quite homogeneous in northern Andes, σ1 trending roughly E-W, except nearby the Caribbean.

CSF SLIP RATE DETERMINATION AND IAV SHORTENING ESTIMATE

In order to constrain the CSF slip rate, a detailed fault mapping was performed using LANDSAT
imagery coupled with aerial photo analysis and field control. Numerous dextral offsets are seen along the 70
km long, N35°E striking trace of the CSF in Ecuador. The rio Chingual, a major river of the CR, exhibits a
dextral offset ranging between 7.5km and 10.5km. Other streams of minor importance show offsets between
50m and 500m. All these offset streams, that are from different ages, allow us to conclude that the fault has
been active in a dextral sense for a long time (>1My). These offsets could be used to calculate the slip rate of
the fault; however, lacking of precise stream ages, we determined the CSF slip rate using the Soche lava
Figure 1: Geodynamic setting and major structures in northern Andes and restraining bend model for the northern Ecuadorian Andes. CSF: Rio Chingual-la Sofia Fault, CPFS: Cauca-Patia Fault System, IAV: Inter-Andean Valley and PF: Pallatanga Fault.
Figure 2: State of stress in northern Andes calculated by inversion from focal solutions. Due to few data, only a test has been performed for zone III. Solid black arrows: σ_1 orientation.
flow dated at 9670 yr BP (Hall & Beate, 1991). Since this lava flow exhibits an offset ranging between 60m and 70m, and assuming a 5% error on the age, the "long term" slip rate is 7 ± 1 mm/yr. In contrast, the N30°E trending PF has a slip rate of 4 ± 1 mm/yr (Winter 1990; Winter et al 1993). The marked difference in slip rate between PF and CSF suggests a northward increase in dextral slip rate along northern Andes. Assuming that the whole strike-slip motion of the N30°E striking PF is transmitted northward to the N-S striking restraining bend, we can estimate the order of the IAV shortening rate. This simple geometrical pattern yields an E-W shortening of 2 ± 1 mm/yr. Conversely, if the whole 7 ± 1 mm/yr slip rate of the CSF would be transferred southward to the restraining bend, its shortening rate would be thus 4 ± 1 mm/yr. This theoretical calculation shows that there is a difference of 2 mm/yr of E-W shortening between the northern and southern ending points of the Ecuadorian restraining bend.

CONCLUSION

During the Quaternary period, northern Andes are submitted to an homogeneous state of stress. Moreover, the N-S striking Ecuadorian IAV is submitted to an E-W compression and the motion of the two NNE-striking, major dextral fault systems (PF and CSF), located North and South of the IAV, also agree with this regional state of stress. Slip rate calculations on the PF and CSF suggest a northward increase in dextral slip along Ecuadorian Andes. This increase should be the consequence of a northward increase in convergence obliquity. Indeed, the obliquity between the trench normal and the convergence is ±30° in Ecuador (from Guayaquil to Esmeraldas) while it is ±45°E in northernmost Ecuador-southern Colombia (from Esmeraldas to Buenaventura). Taking into account the 78 mm/yr convergence rate and the convergence obliquities, there is 39 mm/yr of dextral slip, parallel to the trench, to accommodate in Ecuador while this amounts to 60 mm/yr in northernmost Ecuador-southern Colombia. In fact, the subduction slip is actually oblique (see zone IV on Fig. 2) and consequently accommodates most of the parallel to the trench component of convergence. A simple calculation shows that the subduction slip accommodates approximately 75-90% of the parallel to the trench component of convergence. The remaining 10-25% are accommodated by the upper plate dextral faults so that the theoretical dextral slips are: 4-10 mm/yr in Ecuador and 6-13 mm/yr in northernmost Ecuador-southern Colombia, respectively. These theoretical values are of the same order than the PF and CSF calculated slip rates showing that other major dextral faults are unlikely. Finally, the 2 mm/yr excess in shortening rate existing to the North of the restraining bend should correspond to the CFS southward damping on the Reventador reverse fault zone.

REFERENCES

