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Abstract 

We present a method of grouping edge elements upon  the  relation of smoothed continuity. This method 
is based upon the optimization of a quality function of curvature  and  edge intensity, from a local to a 
global  leuel. It is implemented with a network of locally-connected pmessing elements. This method 
was first designed to deal with dot images  and then was  applied to the problem of  road extraction in 
satellite images. The extension to satellite images has been  achieved  by means of constraints fmm 
low level vision algorithms and a dynamic exploitation of results of the grouping  process. This method 
copes  with a  comphx combinatorial problem  allowing an efficient and pamllel solution to be found. 
Experimental results on synthesis and  natural satellite images show the validity of the appmach  and 
its possible incorporation into geneml computer vision systems. 

1 Introduction 

Since 1923, psycho-visual experiments [13] have  shown that human perception is driven by grouping 
phenomena of image primitives in more  complex  forms. These groupings result from very general global 
relations such as symmetry, continuation, similarity, object-background separation, etc. Perceptual 
organization is not only the result of local computations but also of a global perception of a scene. 
Perceptual grouping, and more generally, Gestalt psychology  says that perception is made as a whole. 

In image analysis, Lowe [5] has used  some of these processes to show that they were  useful to prune 
the search space of the interpretation. In particular, he has shown that  the complexity of the relations 
between subparts of the grouping can improve the saliency of a grouping. Much  work in  this field 
of investigation has been carried out. It mainly  belongs to two different techniques: algorithmic 
techniques [4], [7] [12] and optimization techniques [9], [3], [lO]. In this  paper, we are interested in  a 
technique of optimization. 

Problems of perceptual organization are often encountered with contour segmentation of images. First, 
the resulting contours are discontinuous and secondly,  some of them have no corresponding object 
in  the image.  Causes of these problems are numerous: weak strength of the edge,  noise, shadows, 
texture, possible overlaps, etc. Within  this framework, we have tried to  imitate  the grouping processes 



of human vision for the cont.inuity and closure relations. Several  smoothness and continuity functions 
have been tested [8], [ll] to deal with this problem. Sha’ashua [lO]  has  shown that it was possible to 
group together contour elements according ta a smoothness and continuity criterion. This technique 
consists in looking for a smooth and continuous path among a subset of all the possible paths  in the 
image. In this  paper, we use the technique of recursive optimization developed by Sha’ashua and 
Ullman, to  which  we make some important modifications. First, Our method can deal with dot images 
instead of segment images, i.e. no orientation information from edge detection is available. Second, 
Our optimization algorithm is more general  and more efficient,  especially  because of its ability to take 
into account multiple points. This feature is especidy interesting for the search 01 open shapes (for 
example : lines in  satellite images ). Third, Our quality criterion introduces a notion of Co-circularity 
computed with a meaSure of the second  order derivative of the curmture. We show that this point 
can considerably improve .the strength of our method. We then show  how to take constraints from 
low level vision: estimated  orientation, corner points ratio primitive on background density, et.c. into 
account. This enables us to deal with images the noise of which  is not white as well as real edge 
detection images. Finally, we apply this technique to real satellite images  using dynamic information 
extraction from the network based on  contour chah primitives. 

This paper  is divided into seven parts. Psychological results on the human visual syst.em are sum- 
marized in section 2.1. The techniques of exploration and evaluation of the  paths and t,he way the 
quality function is made recursive are describsd in section 3. The optimization algorithm of the quality 
function with a network of locally-connected  processing elements is presented in section 4. Details of 
the implementation are given in section 5. Precise results obtained on synthetic and real images are 
presented in section 6. 

2 Previsus wsrk 

2.1 Perceptud Brganiaation : a psychologicd point of view 

Since 1923, grouping phenomena of image primitives into more  cornplex shapes without prior knowle- 
dge of the scene, have been demonstrated in  the human visual system. These groupings are  a result of a 
structuring of information on the basis of general relations such as continuation, symmetry, similarity, 
object-background separation,  etc. These experiments are at the origin of the psychology of the shape 
cded  “Gestalt Psychology”. 

The principal argument of “‘Gestaltists* can  be presented in this way : a  retinal  image  is composed  of a 
set of “levels o f  b~ightness~’ points, carrying no information about the object to which they belong. The 
capacity to  see different objects results from a structuring of the information by the brain. Numerous 
simple examples demonstrate the validity of these assumptions : a human eye will see with evidence 
Co-lineu or Co-circular line segments on a background of segments of random position  and orientation. 

For “Gestdtists”, visual perception is made as a whole: the human eye perceives scenes globdy 
rather than a~ a sum of subparts. Here, too, demonstrations of this phenomenon are abundant : the 
perception of an  object or of its contours  can  cha.nge  according to whether we look at a scene  globally 
or partidy. 

What role can perceptual organization play in human vision? 
Experimental psychology  gives  elements of the answers. In experimental psychology, Lowe [SI, shows 
an example, where two drawings of line segments, representing a bicycle, are proposed to two groups 
of severd persons. In the first drawing, all the possibilities of groupings have been removed. It is 
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extremely difficult to see the bicycle  and the recognition time is quite long. In the second drawing, the 
“wheel” grouping remains possible  and the recognition time is greatly reduced. This experiment shows 
that perceptual organization is a way to simplify the interpretation process.  Moreover, perceptual 
organization is an essential process for vision and scene interpretation. 

2.2 Perceptual Organization  and  Computer Vision 

2.2.1 Marr’s work 

The  idea of using perceptual organization techniques in computer vision is not a recent phenomenon. 
In 1976, Marr [Marr 761 proposed the idea of “primal sketch” which should contain not only edge 
processing information but also sets of groupings of image primitives in curves and lines. The main 
problem is that no implementation was proposed here and the use of perceptual organization in 
cornputer vision became popular later. 

2.2.2 Lowe’s work 

Lowe [5], introduces a formalism to describe the saliency of a grouping in terms of probabilistic 
properties of the association of its components. He cluster groupings into two classes: accidental 
and causal. Each grouping carries statistical information represented by its probability of accidental 
occurrence, measuring its saliency.  He  uses perceptual organization to interpret monocular 3D scenes. 
In an image, from a  certain point of view, accidental groupings generated by accidental positions 
of the objects of the scene (groupings between primitives belonging to different objects)  and causal 
groupings (groupings between primitives belonging to  the same object) co-exist. A grouping, the 
probability of accidental occurrence of which is s m d ,  is very  significant at the scene  level. Relations 
which are of great significance are those which remain invariant over a wide range of viewpoints, for 
example : co-linearity, symmetry, proximity, etc. 

2.3 Parent and Zucker’s  work 

This work has been carried out within the framework of curve detection in noisy images [15], [8]. 
The problem dealt with here is perceptual organization for the continuation relation. Their main 
contribution is in the defmition of quality functions taking into account the saliency of curves as the 
human eye  would  do. These functions use co-circularity, curvature, derivative of curvature, grey levels, 
etc. 

2.4 Hérault’s work 

Perceptual organization is [3] tackled by a global approach of combinatorial optimization. Hérault 
uses a quality function based  on  Co-circularity  defined by Parent  and Zucker for the qualification of 
the saliency of curves. Co-circularity is calculated with contour information and the orientation of 
edge points. The approach here is essentially global and  the optimization is achieved by the methods 
of annealing and mean field  annealing. 
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Sha'ashua [ll] [10] has developed an original approach of optimization from a 1ocd to a global lev- 
el. He shows that recursive quality functions based on curvature and grey  levels  of a curve cari be 
built.  The optimiaation method is iterative,  and  the the quality function becomes more global as the 
iterations grow. Sha'ashua defines a deterministic optimization method, from a local to a global level 
implemented with a network of locally connected processing  elements.  Bis method deds tvith segment 
images on which orientations are linown. 

As we are interested here in an optimization technique, we have  deiined a quality function for the 
perceptual grouping of continuation. This function is built with severd terms or expressions that c m  
deal with the curve features we consider : smoothed continuity, Co-drculaity. We first find a global 
term combining the strength of  edges and curvature. This term is defined  recursively from a local 
to a global level which is necessary €or globd optimization. It combines both image information and 
curve information. We then find local terms carrying curve information (Co-circularity ) or image 
information when it  is avdlable (for example, edge orientation or corner points ). These terms can be 
seen as local constrdnts  in the optimization process. The image constrdnts force the curves do respect 
certain  structures (tangents) as the curve constrdnts act on the shape of the curves  themselves (co- 
circularity). The sum of dl these terms gives a criterion which is maximum for a long and straight 
(or circula)  path of high intensity. 

3.1 Definition of the global term 

Since we want to define a quality criterion based on smoothed continuity, Ive combine curvature and 
edge intensity. The total curvature of a path ( y ) gives us local curvature terms which are going to 
be used in  the quality criterion. 

and, in discrete terms : 

where Ag is the number of pixels of the path,  and a mesure of curvature between three 
consecutive pixels dong  the path ( seen as a parametrized curve). 

More predsely : 

where 8 represents the angle between i - 1 and i + 1 through i: 8 = 2 ~ -  zl,z.a+l, and A S  
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the distance between the two  pixels i -  1 et i +  1 (by i). Thus, we have O 5 f,-l,i+, 5 1, and 
f,-,,,+, = O if e = B, f ,-,, i+, = 1 if 8 = O. 

Let u, be the grey level of the pixel i of a path. In order to e d u a t e  the “quality” of the  path, we 
define the first global term of the quality function depending on ui and f i - l , i+ l .  

The quality factor of the curve entering on the left at i i s  dehed as : 

where p is an  attenuation term ( O < p < 1 ). Similarly, we define a  quality factor of the right 
portion of the eurve entering at i, F. ( i ). 

We then define a bi-lateral quality function at i as a linear combination of first order terms (u,-, , 
ui+l ) and  lateral quality functions ( F, ( i ) and Fr ( i ) ). 

F(i) = - 1) (0,-1 + o..+,) f,-,,,+, 
4 (1 - a) (Fr (4 + Fr (9) f,-,,i+, 

where LL is  a weighting factor taking its values  between O and 1. This definition allows the quality 
function to be  less sensitive to  the local influence of noise, for small values of a. 

With this definition, F ( i ) c m  be rewritten as a SM of first order terms and bigger ones, weighted 
respectively by the factors CY and ( 1 - a ) : 

1 fLl,i+l 

The first order term  is a term which depends on the local grey  level of the curve. Otherwise, the other 
terms are representative of a long distance mesure of the quality of the curve. The factor p defines 
the way in which long distance portions of curves  influence the pixel i. 

We  now  define the global quality function of a path as the s u m  of the local quality functions ( F ( i ) ) 
for all the pixels of the path. 

3.2 Recursive computation of the global  quality  criterion 

The function we have defined  can  be  recursively computed by a progressive lengthening of the path. 
We will first look at the 1-D case then at  the 2-D case. 
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3.8 1-D ca5e 

We first limit ourselves to parametrized cuves. We will  see in a later subsection how to derive this 
calculation in the tmo-dimensiond case. The quality function at length n is defined as the s u m  of 
the n first terms or F, (resp. F, 1. This number n designates the length of the portion of the 
considered path. 

I us-1 for n = O 

F,(n) (i) = 
for n # O 

k=m+l 

Such functions c m  also be written with recurring series depending on the step n and t,he position _ _  
dong  the path. 

We d e h e  Fr in the same way. 

3.4 2-D 

In the more general case of two dimensions, we must take into account dl the possible paths at a given L 

pixel. 

Let : 
P be a pixel, 
V ( P ) a neighboring system and 
N = C a r d ( V ( P ) )  thesiaeof V ( P ) .  

For such a pixel with  its neighboring system, there are two pixels (belonging to V ( P ) ) which defm 
tmo paths entering P. Moreover, N ( N - 1 1 possible pairs of pivels exist (in V ( P ) ), under 
the constraint that we must have two distinct entering paths for a pair of pixels. ,- ~1 
This 2-D case differs from the previous  one ( 1-D), in that numerous  possible paths c m  “cross” a 
same pixel. In order to  globdy optimize the  qudity function over the image, we have to select one or 
several paths with masrimal quality functions. Locally, for each  pixel P, we must compute the best ’ 
pathr crossing it. Therefore, for each path entering P ,  me look for another well-defined entering path 
such that  the local quality function is maximal for this pair of pixels. Therefore we have ta  select 
N pairs of pixels from among N ( N  - 1) possible  ones. 

For that calculation, we also need the informat,ion of exiting paths ( a  path crosses a pixel). We 
construct a binary connection matrix, deiîning the N paths crossing each pixel.  Each  pixel has its 
associated connection mztrix  (see equation 3) .  

Let B, Q, Q be three pixels,  such that ( Q, 0 ) E V ( P )2, Q entering P and 4 leaving P dong 
a path. 
If i and O are their two associated directions seen  from P, we define : 
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F; ( P ) the quality function entering P dong  the direction i . 
Prec( i, P ) the function, which  gives,  for a pixel P and an input direction i, the pixel Q 
entering P along i .  

Su"( O ,  Q ) the function which  gives the pixel P, such that Q enters P along O. 

i , the mirror orientation of i : if Q enters P along i, P leaves Q along i ( r i s  the  output 
seen from Q dong the considered path). 

so : 
Q = Prec( i, P ) 
0 = SU"( O, P )  P = Suce( T, Q )  

These functions are easy to construct and their definition  does not make any use of quality functions ; 
they simply link directions to pixels. 

On the contrary, we have to define  two other functions which  give, for a pixel P and a exiting 
direction (resp.  entering),  a correct entering direction (resp.  exiting). These functions use the 
quality functions at step n and play a role in the computation of the quality functions at step n + 1 
(section 3.1 deals with these points in  detail).  The aim is to associate the best exiting direction with 
a given entering direction and  inversely,  using the current quality functions. These functions make an 
implicit use of the connection matrices. 

Let eziting and entering be those functions, such that : 

O = eziting ( i, P ) : a function which  gives, for a pixel P and an entering direction i, the 
exiting one along the path crossing. 

i = entering ( O, P ) : a function which  gives, for P and an exiting direction O , the entering 
direction dong  the path crossing. 

In 2-D, we obtain : 

with : 

e' = entering ( i, Q ) (e' and I are seen from Q ). 

Experiments have shown that connecting inputs together results in less sensitivity to noise than just 
connecting inputs to outputs (input paths corne from a long distance as output paths are infiuenced 
by the local noise). In this sense, we optimize a two-sided quality function made of two lateral entering 
contnbutions. In two  dimensions, the first global term is deilned as : 
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where and O represent another entering path : this means that we use the entering quality functions 
in P from the direction o .  

3.5 Use of more global information 

In certain cases of very  noisy  images or images contdning non-white  noise, it is possible t o  take into 
account more global grey  level information. In formula 2, we replace a gaussian mean of grey level in 
the direction of inputs instead ofjust  the grey level of the dosed pixels : uQ and uQ becomes CQ and 
(see fig : 2.3 and 3.3). This point d o m  the grouping process to connect large holes and  to be  less 
sensitive to  the noise. 

3.6 htrsduetisn sf constraints 

3.6.1 Local  co-circularity constra.int 

We define a criterion of local co-circulasity based on the second derivative of the orientation in regaxd 
to the curvilinear coordinates ( d20/ds2 ) of the curve. Due to numerical approximation, we prefer to 
“derive” the local curvature terms ( f,,? ) ; we obtain B locd 1-D parmetric term defined as : 

where j - 2 ,  . . . , j +  1 represent four consecutive pixels dong a curve and As represents the distance 
dong  the curve between j - 2 and j + 1 . A symmetricd criterion is derived by taking the mean of 
two terms “ kc ” around the reference pixel j. 

In the 2-D case, the pixels are defined by the use of the function input ,  

3.6.2 Local orientation constraint 

Up ‘CO now, we have only considered dot images where no orientation information is avdable. We 
want to extend our method to segment or edge images with a known orientation of edge points. Let 
p,, be the orientation af an edge at a given  pixel ,“ of the image and 8, the  orientation of the 
tangent of a curve crossing at P .  The local orientation constraint c m  be expressed by : 

3.7 Csmplete qudity funetion 

We define the complete quality function as a linear combination of the first term of the global quality 
function and the preceding constrdnts. 
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Where 6 and < ( 6 ,  ( E [O, 1 J ) are coefficients  weighting the different constraints. 

4 Optimiaation of the quality  function 

Most  of the problems occurring in perceptual organization topics are solved  by optimization of an 
energy function. The proposed techniques are often global (Hopfield networks, some  Markov  process- 
es). We propose here a local method which  is  based on the use of locally-connected networks which 
globally optimize the quality function. As this function is not convex, we optimize it in several stages, 
from a local to a global level. Each stage corresponds t o  an order of the global nature of the paths 
crossing  one  pixel. 

The optimization is implemented by a unifom, locally-connected processing element network, with 
one  processing  element per pixel.  At  each iteration, the network optimizes the quality functions, 
the level of global nature of which  increases with the  length of the portion of path considered (this 
portion grows with the  iterations).  With  that aim in mind, at each step  and at each pixel, Ive connect 
entering paths in order t o  maximize the global quality function. This mechanism makes the global 
nature level of quality functions increase dong  the iterations. Section 4.1 renders the computation of 
the connections explicit. 

4.1 Computation of the connections 

The connection matrices are binary square matrices, of size N x N, the lines of which represent 
the entering pixels and  the columns the exiting pixels. The connections are computated in two steps : 
inputs toward outputs then outputs toward inputs. 

4.1.1 Connecting inputs toward outputs 

For each pixel P and each entering Q, we look  for an exiting pixel 0 which  maximizes the quality 
function at step n in ( P ) : ~22 ( P ) 

Let “(”1 ( P ) be the connection matrix for a given  pixel P at  step n . Its elements are of the 
following  form : 

One can notice that  the connection inputs toward outputs is not symmetrical : for an entering direction 
i and a pixel P, exactly one exiting direction exists, output ( i, P ) the quality function of which 
is maximum but t h  converse i s  false. In fact, for a given exiting direction O, there are two  possible 
cases : several entering directions may exist and a corresponding input does not exist. 
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4.1.2 Connecting outputs  toward  inputs 

We are going to define here the entering function ( i = entering ( O,  P ) which  gives, for a given 
output direction O and a pixel P? a corresponding entering direction i. 

Case OF multiple input.s : 

In the case  of multiple inputs, we have to mdlae a choice  between L possible inputs : we define the 
entering function, such that  the quality function, in P with this output O is masrimal at the input 
il taken among the L possible inputs. 

More formally : 

We have: 0 = Suce( O ,  P ) 
let : E (g) = {Km E V (P)\{Q) 1 C$:,Q (Pl = 1} 
and : L = Card( E ( 9 )  ) 

Ive can now define the function entering : il = enteTing (O ,  P )  such that K I  is the entering neighbor 
in p dong direction il ( 1”;1 = Prec( il, P )) ). 

Case of no input : 

In this case, a given output Q has no corresponding input, we can still define  such a correspondence: 

8 We compute the global maxima of the quality function FgA ( P ) independently of any output. 
This computation leads us to two symmetric solutions giving two pairs ( I’, 2 ) and ( 2, Y ) 
corresponding to the two directions y and z reepectively. 

LI1 

e We define the function entering as : 

y if F:~(P) > ~ J ( P )  

z otherwise 
entering (O, P) = 

4.2.1 Optimkat ion 

For each value of step n, the network curies out two tasks : 

e It updates the quality functions ( see equation 1 on the basis of the connections. 

Q It updates the connections with the help of the current qudity function. 

Through this  propagation of the  data in the network, the future connections will  be calculated with 
more and more global information. 
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4.2.2 Selecting  the  best  paths 

Along the iterations, the connections are locdy organized in such a way that some salient paths, 
distributed  throughout  the net-tvork,  can  emerge. We must now find these paths and select some of 
the best or just  the optimal one. To achieve this, a recursive  following algorithm explores these paths 
and globally evaluates them. 

For a given pixel, we want to avoid the exploration of directions which  do not seem promising, so 
we have to choose one direction from among the neighborhood V ( P ). In order to initialize this 
algorithm, we use the heuristic which  consists in selecting the direction maximizing the local quality 
function. 

We present here the general algorithm of optimization and selection : 

Algorithm : 

Initialization of quality functions and  connections at step O ( n  = O ) .  

Iterations : 
For each pixel, 

Update of the quality function. 

For each pixel, 
Local optimization of the quality function : computation of the connections. 

Following  and  selecting  the best path. 

In the case of synthetic images, a simple following algorithm works ( since we have one path per pixel, 
we choose the one having the maximum quality). It is not the same situation when  we have to deal 
with complex real images which may contain  more than one object and several interesting groupings, 
as is the case of road extraction in satellite images.  Here, we have to select several groupings of 
which some are sub-maxima [l]. In this case, we must use another kind of information to retrieve the 
interesting groupings : contour  chains ( obtained by an “edge  following” algorithm in 8-connexity ). 

We use the following algorithm: 
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Algorit h m  : 

B Computation of the quality function of each contour Chain 
( a  contour chah is a portion of a path). 

B Thresholding of the chdns with respect to their quality, 
( a  chah  included in a. larger structure has a strong qudity ). 

B The remaining  chains are put in a stack. 

B For eaeh ekain in the stack : follow-up  of their extremes up t o  another c h a h  

B If the new chah passes  coherence tests  (orientation,  junction point 
T hen : 

e Fusion of the two chains. 
e The stack is updated. 

4.8 Convergence 

In the 1-D case, the convergence of the series F(”)( j )  is obvious, because it is a monotonic series 
bounded by a geometric  series generated by the factor p < 1. In the 2-D case, the problem is more 
complex because connections move as the iterations increase and the series calculated here are non- 
monotonic. We  verify experimentally on several images that  the values of the  puameters p and 01 do 
not have a strong influence on the convergence of the algorithm and on the results. Generally, for values 
of p less t h m  1, “convergence” to a good solution is quite well ensured ( two consecutive solutions are 
quite similar). Therefore, we notice that for very noisy input images convergence sometimes becomes 
difficult ; the network oscillate between severd different salient solutions. 

The 8-connexity does not supply enough sampling an.gles to d o w  the precise computation 19 the 
curvature of d. path  to t a h  place. ‘Mie use a system of 16 neighbors : 8 coming from the 8-connexity9 ‘~ 

and 8 neighbors defined  by the moves of a ltnight in a chess game. ( see Figure 1 ). This neighborhood 
offers an intermediate  structure between the s m d  8-neighborhood and bigger  ones and  it does not 
provide a high level of algorithmic complexity (dimension of Fiso = 16 x 16 ). 

We present here several results of groupings on synthetic images ( fig : 2.1,  2.2, 2.3, 4.1 )1 and dso on 
a natural  satellite image (fig : 5.1  5.2). Synthetic images (fig: 2.1, 2.2, 2.3, 80 x 80 ) represent an 
ellipse  where 40% of the pixels have been  removed  by white noise. Pixels of white noise have then been 
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Figure 1: Neighboring systern 

added to these images at : 5% , 10% and 20% on the global image. The image (fig : 4.1, 100 x 100 ) 
represents a smoothed noisy hand drawing with a shape which is more complicated than  that of a 
drcle or an ellipse. We show with real images how Our method is able to deal with the problem of 
road extraction  (more generally, line extraction)  in satellite images ( fig : 5.1, 5.2). These two images 
( 70 x 130 ) have been extracted from a larger one ( 512 x 512 ). The image ( fig : 5.2) shows the result 
of line extraction [14] on the image (fig : 5.1 ) (The holes in the lines are due to the  fact  that images 
have been processed and thresholded globally).  The results obtained both on synthetic and  natural 
images demonstrate  the  strength of the method and its possible  use  for natural scene interpretation. 

7 Conclusion 

We have presented an optimization method from a local to a global level for the perceptual organi- 
zation of continuation. Our results show that these recursive optimization methods are well adapted 
to  the problem of perceptual organization for the relations of continuation and  dosure. For human 
perception, groupings are made according to a global criterion. One of the  attractive features here 
is that we implement a technique of global optimization with exclusive local computations. For this 
reason, Our method represents a small computational complexity. This optimization method - from 
a local to a global level - is naturally implemented with a network of locally-connected processing 
elements. On the one hand, it allows a complex combinatorial problem to be  solved  efficiently and, 
on the  other hand, the algorithms are simple and c m  easily be implemented in parallel. 

The quality of the results obtained on different types of images demonstrates the attractiveness of the 
method. The study of real images shows that  it is necessary to take into account constraints from 
image processing (computed before perceptual grouping). For example : the image orientation of 
contours, corner detection, as well as a new kind of information: contour chains which give a dynamic 
aspect in the search for groupings. 

In the future, we are going to work on the introduction of new constraints in the quality function: 
corner points, constraints coming from a multi-scale analysis, etc. 
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Figure 2: 

Initial  images: 2.1 : 5%, 2.2:  10% et 2.3: 20% of noise on the global images and 40% of noise  on 
the .ellipses. 

Figure 3: 

Results:  The  images 3.1, 3.2, 3.3 are the groupings found on images 2.1, 2.2, 2.3. For the  image 
2.3, grey levels of neighboring pixels  have been  replaced  by gaussian  directionnal  smoothings in the 
directions of the considered neighbors in the quality functions. 

Figure 4 

Image 4.1 is a  hand drawing. 
Image 4.2 presents  the  result of grouping of image 4.1. 
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Figure 5: 

Image 5.1 : An satellite image. 
Image 5.2, presents a result of line deteetion  on  image 5.1, this image is the input to  the  prouping 
pTocess. 

Figure 6: 

Rémlts: Image 6.1 pwsents the rcsult of gmuping of image 5.2. 
Fzuo principal  gmupings have been eztmcted automatically by the "fobpollowing" algorithm. 

- 186 - 


