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Abstract 

Recently, we have shown that  the differential properties of the surfaces repre- 
sented by  3D volumic  images can be recovered using their partial derivatives. 
For instance, the crest lines can be characterized by the first, second and third 
partial derivatives of the grey  level function I (e ,  y,z). In this  paper, we show 
that : 

0 the computation of the  partial derivatives of an image can be improved 
using recursive filters which approximate the Gaussian filter, 

0 a multi-scale approach solves many of the instability problems arising from 
the computation of the  partial derivatives, 

O we illustrate the previous point for the crest line extraction (a crest point 
is a zero-crossing of the derivative of the maximum curvature along the 
maximum curvature direction). 

We present experimental results of crest point extraction on synthetic and 3-D 
medical data. 
keywords : volumic 30 medical images, surface modelling,  curvatures, crest 
Mnes, multi-scale  derivation, recursive filtering. 

1 Introduction 
Volumic 3D images  are now widely distributed  in  the medical field [8, 18, 7, 11. They 
are  produced  from various  modalities such as Magnetic Resonance Imagery  (MRI), 
Computed  Tomography  Imagery (CT), Nuclear  Medicine Imagery (KMI) or Cltrasound 
Imagery  (USI).  Such data  are  represented by a discrete 3D grey level function I ( i , j ,  k )  
where the  high-contrast  points (3D edge  points)  correspond to  the  discrete  trace of the 
surfaces of the  geometrical  structures  [13,12, 211. A motivating issue is then  to  extract 
typical  features of these surfaces. The most natural way is to look for differentid 
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Euclidean surface invariants such as : curvatures, crest lines, parabolic  lines, umbilic 
points ... [lO, 16, 151, [17, 9, 11, 2, 19, 141. R.ecently, we have shown that  the differential 
properties of a surface defined by an iso-contour in a 3D image can  be recovered from 
the  partial derivatives of the corresponding grey level function Ill]. In [11] crest lines 
are extraeted using first, second and  third order partial derivatives provided by  3D 
Deriche filters [12, 131. The critical point of this approach also studied in [19] is the 
stability of expressions including second and third order partial  derivatives  such as the 
“extremality criterion” defined in [ll, 191. 

In this paper we propose recursive 3D filters to improve the  computation of par- 
tial derivatives and also a multi-scale approach to Lxtract the zero-crossings of the 
extremality criterion. 

In Section II, we point out  that derivative filters coming from  isotropic  (rotation 
invariant) smoothing filters should be used to ensure the Euclidean invariance of the 
curvatures.  Then we derive an  dgorithm  to compute  first, second and  third order par- 
tial derivatives of a 3 0  volumic image. These derivatives are used to obtain curvatures 
invariant by rigid motion (Euclidean  invariant). 

Section III deals with the computation of the curvatures of the surfaces  traced 
by the iso-contours (3D edge points) from the  partial derivatives of the image (for 
instance provided by the previous method).  This section recalls the main results of the 
reference [ll] and shows the problems induced by a single scde filtering. 

In Section IV, we propose to use different widths of filters to  compute  the curvatures. 
This  leads to  a multi-scale curvature computation scheme where the scale is the width 
of the filters. We apply this principle to track the zero-crossings of the derivative of 
the maximum curvature points dong  the maximum curvature  direction  (extremality 
criterion) which correspond to the crest points. The zero-crossings coming from the 
different scales are merged using a valuated adjacency graph. We propose  some simple 
and efficient strategies to  extract  stable zero-crossings from this graph. 

In Section V we present  experimental results obtained on synthetic  and real data 
(CT and MR 3D images). We show that Our approach combining a multi-scale scheme 
and also the use of better filters provides reliable crest lines  even for noisy data. 

mputation of the partial ~ ~ ~ ~ ~ a t ~ ~ ~ ~  of 8 
image using h e a r  fiPters : a innation of the 

n and of its derivat s using recursive 

Recently R. Deriche has introduced recursive filters to approximate the Gaussian filter 
and its derivative [5 ] .  First of d l ,  we show the advantage of using such  filters t o  compute 
differential Euclidean invariants. We recall the main results reported in [5] .  Then, we 
extend Deriche’s  work to 3D and  to  the computation of third order derivatives. We  also 
show  how to normalize these filters in order to obtain coherent values for first, second 
and third order derivatives. Finally we develop an efficient algorithm t o  compute  the 
partial derivatives of a 3D image. 

Let I ( z ,g , z )  be  a 3D image. 
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We are looking for the  partial derivatives of I(x,  y, z )  : an(J(x>Y,z)).  n = m + p + q  

that we represent using the subscript notation : Izmyprq (we will write only the variables, 
the power of which is not zero, for instance I ,I~o~o becomes J z ) .  

If f (x ,  y, z )  is the impulse response of a smoothing filter, the restored image Ir is 
equal to 1 * f ,  where * is the convolution product. Classically, using the properties of 
the convolution product we obtain 

axmaypazq . 

a n I r  a n v *  f )  - anf ) 
I * (axmaypazq axmaypazq axmaypazq 

- - - 

Then  the impulse response of the filter which computes IzmypzP is anf 
axmaypazq’ 

We develop a popular scheme which reduces the search of derivative filters of any 
order to  the search of a smoothing filter [3, 5 ,  4, 61. The question is now : what are 
the  suitable properties for Our smoothing impulse response if  we are  interested  in the 
computation of Euclidean differential invariants ? The response is  well-known and is 
that  the impulse response of the smoothing filter should be isotropic. 

Figure 1 shows the interest of using an isotropic filter when computing the  partial 
derivatives; we compare the curvatures at  the edges  of a smoothed square  and those 
of the image of this square when applying a 45 degree-rotation. The derivatives are 
successively computed  with the (anisotropic) Deriche filter and with the approximation 
of the (isotropic) Gaussian filter. 

Curvature values using 

an anisotropic filter (Deriche filter) 

0.29  0.29 
0.45 - 

an isotropic filter (approximated Gaussian filter) 

0.29  0.29 
0.27 

Figure 1: Comparison between curvatures from Gaussian  and Deriche filters 

The previous result clearly shows the  great interest of computing the partial deriva- 
tives of an image using filters derived from an isotropic smoothing  impulse response. 
Otherwise we can obtain  gradient [12], Laplacian or curvatures [ll] which are not in- 
variant by a rigid motion. On  the other hand, we also take interest in using separable 
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recursive filters in order t o  obtain a reasonable computational  cost. A way to join 
these two antagonist points is to use the recursive approximation of the Gaussian filter 
(the only separable non trivial  smoothing filter) introduced by R. Deriche in t.he recent 
reference [5]. 

1% use the main result of the reference [5]. The 1D Gaussian smoothing filter is 
given  by : 

2 
g(z) = e - G  

Using Prony's method,  the positive and negative part of g and of its normaliaed deriva- 
tives of first and second order can be approximated (with a norrnaliaed square error of 
about t2 = 10-6) by a 4th order Recursive operator (IIR)(see  Appendix A) : 

Therefore, the 1D Gaussian filter and its first and second order derivatives can 
be recursively implemented. Using the separability property, we derive directly the 
recursive filters to  compute  the first and second order derivatives of a 2D image. 

Using the separability of the filters we extend directly the previous scheme to  the 
3D case. Following the notations of Section II this amounts to  setting : 

We also extend this filtering scheme to  the  third order derivative case. We develop 
a set of recursive filters  approximating the Gaussian and its derivatives which can be 
used to compute the  first, second, and  third order derivatives of a 3D image. 

We stress that a very important point not carried out in [5] is the normalization of 
the filters which  allows to obtain coherent values  for the different derivatives. Here we 
use the scheme presented  in [Il]. 

The main stages of Our algorithm allowing to  extract crest lines in a 3D image are : 

1. Computation of the first, second and third order partial derivatives of the image 

I(z7 y9 .) ( ~ z " ~ y P ~ z q  7 m + p + q  = 3) using the recursive filters defined in Section 
2 for a given value of cr ; 

2. Extraction of the 3D edge points using the first order partial derivatives (gradient) 
of I (see section 3.2) ; 

3. For each point of the 3D edge map, computation of : 

a the two principal curvatures  and the corresponding principal  curvature di- 
rections using the formulas of [ll] ; 
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0 the extremality criterion (derivative of the maximum curvature along the 
corresponding principal direction) using the formulas of [ll]. 

4. Building of a  extremality criterion image CU(q y, z )  such as at each edge point 
(x, y, z ) ,  C,(z, y, z )  is set to  the value of the extremality criterion and to O oth- 
erwise ; 

5. Determination of an image Z,(a, y, z )  set  to 1 at each edge point being a zero- 
crossing of the extremality criterion and  to O otherwise. 

The  last stage of this algorithm consists of finding the zero-crossings of a function 
defined on the discrete trace of a surface (traced by the 3D edge points) which  is a 
difficult task in itself. So far, we have only implemented simple strategies to  extract 
these zero-crossings. But, in order to  be solved properly, this delicate problem needs 
more attention. An interesting solution can be found in [19]. 

Therefore, the final output of  Our algorithm is an image 2, representing the set 
of edge points which are zero-crossings of the extremality criterion. Each value of cr 
defines an image 2, representing the crest line for the scale defined by cr. 

4 Multi-scale approach to extract  crest  lines  in 3D 
volumic  images 

The use of the filters presented in section 2 yields to obtain  curvatures invariant by 
a rigid motion which was not exactly the case with the filters presented in [ll]. This 
improves the quality of the results, but  it  may not  be enough to provide good results in 
noisy data. As we have seen in the previous section the result of  Our algorithms is an 
image 2, where the zero-crossing of the extremality criterion are marked. 2, defines 
the crest lines for the scale defined by cr (see section 2). Generally, we see that : 

0 for simple data, we can obtain good results using a single value for cr but we do 
not know how to find this value ; 

0 for more complex data  the suitable value for cr varies depending on the  area of 
the 3D image ; 

0 for noisy data, only the crest lines that can be  seen using different scales define 
reliable features. 

Therefore, similar to  the edge detection [20] and  to  the crest line extraction  in depth 
maps [14], it is of great interest to use a multiscale approach. Moreover the recursive 
implementation of  Our filters makes it reasonable in terms of computational cost. 

In order to  merge the results  obtained at  different scales cri, i = 1, n we propose 
a practical  and efficient data  structure  that we  will  cal1 the Multi-scale Adjacency 
Graph : Gu,,,, *,... un. Gu,,, ,... On is a valuated graph built as follows : 

1. each node of is attached  to a point (il j, k )  such that for at least one 
scale crm we have Z,, (il j, k )  = 1 ; 

2. the features attached  to each node are : 
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(a) the coordinates of the corresponding 3D point ((i:j, k)) ; 
(b)  the values of the scales for  which this point is a  crest  point (al1 the oi, such 

that Z,+(il j ,  k) = 1) ; 
(c) the differential characteristics extracted for al1 the scales : principal curva- 

tures  and principal curvatures directions, value of the extremality  criterion. 

3. we define an edge joining two nodes of Gu,,,,,.., if and only if the two corre- 
sponding  points are adjacent for the  2bconnectivity ; 

Therefore GuI,u2,...un represents .the results of the crest  points  extract.ion for the different 
scales and  their  spatial relationships. This  data  structure is particularly efficient when 
the stability of the crest point locations through different scales îs a good selection 
criterion. Our experiments performed on real a.nd synthetic  data show that generally 
the position of the reliable crest points remdn  the  same for different values of the scale 
a (Le. the shifts of the crest  points are less than one pixel). 

For instance, the following simple  pruning strategy for the  graph Gul,~2,..,u,, can be 
used : 

1. select al1 nodes corresponding to points which are crest  points for at least a given 
number of scales ; 

2. select the connected  components having at  least a given number of nodes  (this 
threshold  corresponds to  the minimal number of points of a crest line). 

We come up  with the following algorithm : 

1. Computation of the zero-crossings of the  extremality criterion for a given set of 
scales : 01> C F ~ ,  ... a,, ; the result. is a set of images a,,, Zu2...Zun (see section 3.5) ; 

2. building of the multi-scale graph Gu,,,,,...,, (see section 4.2) ; 

3. pruning of G,,,,,,~.., to  select reliable crest  points. 

We present  experimental  results  obtained on synthetic  and real data from the imple- 
mentation of the algorithms described in the previous section 

We have tested Our method on two 3D X-ray scanner  images of the same skull taken 
at two different positions. In that case, Ive have chosen to  extract only the  extrema 
of the maximum curvature in the maximum curvature direction. The stability of the 
results we obtain for a single scale illustrates the  rotation invariance of  Our computation 
of the  curvatures  and of the extremality criterion' (see section  2).  We also show that 
the multiscale scheme allows to remove many  spurious  crest  points.  We notice that  the 
result obtdned by thresholding the maximum curvature is acceptable for some scales 
but depends completely on the threshold. On the  other  hand  the results provided by 
the zero-crossing of the extremality crit.erion may seem worse for some scales but do 
not  depend on any  threshold. 

We point out  that  the size of the convolution mask for a direct  implementation of a 
3D Gaussian of variance CT' is ( 8 ~ ) ~  (for a = 4 we obtain 8192 !). The use of recursive 
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filters of order 4 reduces this  computational cost to about 100 operations per point 
for any value of o. Of course, the previous remark applies also for the derivatives of 
the gaussian filter. Therefore, even  for a single space scheme, the recursive filtering 
appears as a  crucial tool. 

Those  results show that  the multi-scale approach is much more efficient if  we extract 
the zero-crossings of the extremality criterion instead of the high maximum curvature 
points. The  smoothing removes many spurious points in the results coming from the 
high maximum curvature point extraction, but makes the crest lines thicker. On the 
contrary, the lines coming from the detection of the zero-crossings of the extremality 
criterion are  still precise if (T is set to a high value, even if some points are removed. 
We  now show the images of the zero-crossings of the extremality criterion computed 
on the entire skull, for the positions A and B and for some values of (T. 

6 Conclusion 
We have presented a multi-scale approach to  extract crest lines of the surfaces rep- 
resented by 3D volumic images. Compared to  the method described in [ll] we  have 
developed the following points : 

0 we show the  great theoretical  interest  in using filters derived from an isotropic 
smoothing  filter to compute  partial derivatives of an image ; 

O we propose to use recursive filters approximating the Gaussian  and its derivatives 
to obtain differential characteristics invariant by rigid motion ; 

0 in order to improve the stability of the computation of the differential character- 
istics (curvatures, derivative of the curvature) we use a multi-scale approach. 

Moreover, we present  experimental results on synthetic  and real data. We stress 
that  the same  sketch could be used to  extract other differential singularities such as : 
parabolic lines, umbilic points ... Besides, this methodology could also be used in 2-D 
images like interior scenes, to  extract corners for instance. 

References 
[l] Nicholas  Ayache. Cornputer vision applied to 3d medical images : Results, trends and future 

challenges. INRIA Report  research,  September  1993. 

[2] J. Koenderink B. Romeny, L. Florack. Invariant third order properties of isophotes: T-junction 
detection. In PTOC. 7th Scandinavien Conference  on  Image  Analysis,  Aalborg,  August  1991. 

[3] John Canny. A computational approach to edge detection. IEEE Transactions on Pattern 
Analysis and Machine Intelligence,  PAMI-8(6):679-698,  November  1986. 

[4] R.  Deriche. Fast algorithms for low  level vision. IEEE Transactions on Pattern Analysis  and 
machine Intelligence, 1989. 

[?il R.  Deriche. Recursively Implementing the Gaussian and Its Derivatives. In PTOC. Second Inter- 
national Conference On Image  Processing,  pages 263-267, Singapore, September 7-11 1992. A 
longer  version is INRIA Research Report RR-1893. 

[6] Rachid Deriche. Using Canny’s criteria to derive a recursively implemented optimal edge detector. 
InternationaE Journal of Cornputer vision, pages 167-187,  1987. 

- 309 - 



Figure 2: Cross sections of two X-scanner images of the  same skull with .two different 
positions A and B (sizes of the image : 192.128.151 for the position A and 220.128.148 
for the position B). Up : cross sections corresponding to position A, bottom : cross 
sections corresponding to position B. 
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Figure 3: Cross sections of the 3D edge map corresponding to  the previous figure). 
Up : cross sections corresponding to position A, bottom : cross sections corresponding 
to position B. 



Figure 4: Perpective view of the 3D edge map for the position A 

Figure 5:  From left to right perpective views of : the maximum  curvature, the high 
maximum curvature points, the zero-crossings of the extremality criterion : cross sec- 
tions  corresponding to position A; u is set  to 1 ; for this figure and the two following 
ones we only show the upper part of the skull. 

Figure 6: From left to right perpective views of : the maximum  curvature, the high 
maximum curvature points, the zero-crossings of the extremality criterion : cross sec- 
tions  corresponding to position A; O is set to  3. 
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Figure 7: From left to right perpective views of : the maximum  curvature, the high 
maximum curvature points, the zero-crossings of the extremality criterion : cross sec- 
tions corresponding to position A; u is set to 5. 
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Figure 8: D is set to  1 

Figure 9: u is set to  3 
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Figure 10: O is set to 5 
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Figure 11: 5 is set to 7 
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Figure 13: Up : perspective views corresponding to  the positions A (left) and B (right) 
where the grey level  is set to  the number of scales such that  the point is a crest point ; 
middle : perspective views corresponding to  the positions A (left) and B (right) where 
only the points which are  crest  points for at least 4 scales are  marked; bottom :per- 
spective views corresponding to  the positions A (left) and B (right)  where only the 
points which are crest points  for at least 5 scales are marked. 
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