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Abstract 

We discuss the use of algebraic  specifications  for the description of the 
requirements of concurrent and real time systems. The underlying  logic is the 
usual Many-Sorted First Order Predicate Calculus  with  Equality without any 
concurrent features. In order to  express  dynamic  and real time properties, 
we specify  a data type, the role of which is to mode1 time. This discussion 
is motivated by Our specification of the  “Transit Node” system. 

1 Introduction 

The first  sta.ge of forma1  system  development consists of writing a repuirement 
specification. It is a document  that expresses abstractly  properties of a system 
to  be  developed.  Consequently,  specification  techniques used  for this  aim  should 
provide  great expressive  power. Abstract  data  type specifications  based  on  first 
order  logic are widely  recognized as  such. However, the  commonly-held  opinion 
is that  it is  impossible  to express  concurrent  and  real time  properties  using  this 
technique. This  leads to the development of more specialized  techniques on  top 
of algebraic  specifications. In [l] these  are referred to as algebraic specifications of 
concurrency. 

The  aim of the  Transit Node  case study presented in  this pa.per  is to  show 
that concurrent and  real-time  systems ca.n be specified in a satisfactory way in 
the  framework of “pure” a1gebra.ic specifications  based on classical  Many-sorted 
First  Order Logic with  Equality.  This  may  be achieved  by  specifying an  abstract 
data  type,  the rôle of which  is to represent  time. It is then possible to  test  the 
elapsed time  and therefore  express  real time  properties. We are  also  able  to express 
concurrent  properties. In order to Say that two  actions a and at must  synchronize, 

- 401 - 



we write ‘dt a(t) -++- a‘(t). Both  actions  are  represented by predieates a ,  a’ : Tirne 
on the  sort Tirne. 

This  paper is  organized as follows. Section 2 provides the informal specifica.tion 
of the  Transit Node  system.  In  Section 3 we comment  on  an algkbmic specification 
of‘this system.  Section 4 is a discussion of the conformity of the presented algehra.ic 
specification with  the  informal specification. The last  section is devoted to some 
conclusions and perspectives of this worlr. 

This case study was defined in  the  RACE project, 2039 (SPECS : Specification 
Environment  for  Communication  Software). It consists of a simple  transit node 
where messages arrive,  are  routed,  and lea.ve the node. 

The informal  specification r a d s  as fol10ws:~ 

Clause 9 The s y s t e m  -lo be speczjied consisls of a. tran.sid node tuidIl: one Control 
Port-In, o n e  Control  Port-But, N Daka Port,s-In, N Data  Ports-But, M R.out,es 
through.. (The limits of  N and M are  not  specified.) 

Clause 2 (a) Ea.ch por t  a’s scrialized. (b) Al1 ports  are conmurent t o  al1 others. 
T h e  ports should be specified  as  separa.de,  concurrent  entities. ( c )  Messages a.rrioe 
f r o m  the environ9ne1~t only d e n  a Port,-In i s  able t o  t rea t   them.  

Clause 3 The node is ‘ya,ir”. Al1 messages are  equally  likely 20 be treated, whert. 
a selection nmst be m a d e ,  

Clause 4 and al1 da ta  messages will even2z~ally  transit th,€ node, or become fmrlty.  

Clause 5 Initial State : one Control  Port-In, o n €  Control  Port-Out. 

Clause 6 The Control  Port-In accepts  and  treats 2he fo1lowin.g dlrree m.essa.ges: 

(a) Add-Data-Port-In-&-Out(n) : gives t h e  n o d e  knowledge of a n e w  Port-In(n) 
a.nd a new Port-But(n). The n o d e s  sta.rts t o  accept and  treail messa.ges sent  
t o  t h e  Port-In, as indicaied below o n  Data Port.-In. 

(b) Add-Route(m),(n(i), n(j) ...) : gives t he  node knowledge ofa route associating 
route m with Data-Port-But,(n(i),n(j), ...). 

( c )  Send-Faults : rozltes some messages i a  thefau.l ty  collection, i f a n y ,  t o  Control 
Port-Out. The order an whick .the f au l t y  nLessa.ges  a.re transm.if ted a’s not  
specified. 

We present a slightly rnodified version of this specification with respect to the original one 
wllere some requirements turn  out  to be inconsistent. 
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Clause 7 A Data Port-In accepts  and  treats  only  messages of the   t ype  
Itoute(m).Data. 
(a) T h e  Port-In routes   the  message,   un.changed,   to   any  one  (nondeterminate)  of 
t h e  opelL Data Ports-Out associated  with  route m a t   t he   t ime  of arriural. If there 
i s  no  such  port   the  message  becomes  fa.ulty.  (b) (Note   lhat   a  Data  Port-Out is 
serialized - t he   message   has   t o  be buffered  until  the Data  Port-Out can  process 
it). ( c )  The  message  becomes  a   faul ty   message if i t s   t rans i t   t ime   through  the   node  
('rom initial  receipt  by  a Data Port-In t o   t r a n s m i s s i o n  by  a Data Port-Out) i s  
greater th an^ a   constant   t ime T. 

Clause 8 Data Ports-Out and Control  Port-Out accept  messages of any   i ype   and  
will t ransmi t   t he   message   ou t  of the  node.  Messages  may  leaue  the  node in a n y  
order. 

Clause 9 Al1 faulty  messages  are  eveniually  placed il1 the   faul ty   col lect ion  where 
t h e y   s t a y   u n t i l  a Send-Faults cornnaald  message  causes  thenz t o  be routed do Control 
Port-Out. 

Clause 10 Faulty  messages  are (a) messages   on   the  Control  Port-In fha t   are   no t  
one of the  three  commands  l is tedl  (b) rrlessages o n  a Data Port-In that   indicate  
an   unknown   rou te ,  or ( c )  messages   whose   t rans i t   t ime   through  the  node i s  greater 
t h a n  T. 

Clause 11 (a) Messages  that   exceed  the  transi t   t ime of T beconle faul iy   as   soon 
a s   t h e   t i m e  T as exceeded. (b) N is permissible for a fau l t y   message   t o   no t  be 
r o u t e d   t o  Control  Port-Out by  a Send-Faults comnzand  (because,  for  exam.ple, it 
h m  jus t   become  fau l ty ,  but has  not  yet   been  placed in the  faulty  collection),  ( c )  but 
a11 faul ty   messages  must euentually be s e n t   t o  Control  Port-Out wi th  a  succession 
of Send-Faults commands.  

Clause 12 II m a y  be assumed  that  a source of t ime   ( t ime-o f -day   o r  a  signal  each 
t ime   i n t e rva l )  i s  auailable in the  en.vironntent  and  need  not be modeled  with IlLe 
specification. 

2.1 Modifications  and  Additional  Assumptions 

For the sake of simplicity, Our formal specification will not  completely confom 
to the illforlnal  requirements, precisely in the following points: 

1. Al1 data  ports  are  closed in. the  beginning if there i s  0n.e. This dif fers front 
Clause 5 .  

2. The  buf fer ing is unspecified  although  data  messages  cannot  disappear  inside 
of t he  TN. Th i s   s l i gh t l y   d i f f e r s   f o rm  C lause  7b. 
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We also consider the following additional  wsumptions: 

Assurnption 1 The reception and the decodi?tg of any  message  m.ay f a k e  some 
time which a's smaller than the constant T. 

Assunnption 2 The information carried b y  a control  message is always  correct. 
This means that a control message may not atlernpt t o  open a non-etisten,t port, 
define a non-existent rouie or associate a non-existent por t  to a route. 

Assurnption 3 The routing information carried by a data message is always cor- 
rect. 

Assunnption 4 A messqe cannot arrdve twice at the TN. In fact, nothing is as- 
sumed about equality of messages. Thus in th,e m.odels ofthis specification, differen.t 
occarrences of a message are represented b y  differcnt messages. An a.dditiorta1 ubs- 
traction. nmg be gained using an observational equa.lity  which 1:s not a congrue~~e  as 
in 153. This would allow t o  identify iwo messages which arrive a.t different ilestants 

Assumption 5 Al1 routes are empty in the beginning if there is one. 

lbssumption 6 Both control port-in and con-lrol port-out are always  open,. 

Assunnption 7 Any  transmission of a correct data  message wiIl end  before t h e  
iota1 -Ira&! time of the message  through t h e  TN becom.es  greater ihan. a constant 
T. 

In  this section .uve describe our forma1 specification of the  Transit Node. This 
is  written  in  the PLUSS specification 1a.nguage [3]. Note that al1 free va.riablee ' 7  

occurring  in axioms are considered as implicitly  universdly  quantified. 

3.1 Speeifying Time 

As mentioned  in  int\roduction, i t  appears  essential to have a mode1 of t,ime 
on  the  top of which our specification could be built. For this  reason, we provide 
a. specification of time which describes the models we a.re interested  in.  Note t,ha.t 
this is not required by the informa1  specification. 

According to  @lause 12, a source of time is  available in  the  environment.  This 
leads  us to  the simplification that  each  component if the TN is  evolving  in the 
saine  global  time. Consequently, we try  to describe a class of linear  models of time 
which includes both discrete and dense  models,  with or without a.n initial  instmt. 
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spec : TlME 
sort : Tirne 
operations : 

predicates : 

axioms : 

- + - : Time  Time -+ Tirne 

<, 5 : Tirne  Time 

Tt < t, 
(t < t’ A t’ < t“) +- t < t”, 
t s t ’  w (t<t ’Vt=t ’ ) ,  
t 5 t‘ v t’ 5 t, 
t + t‘ = t’ + t, 
(t + t’) + t” = t + (t’ + t”), 
t < t’ w t + t” < t’ + t” 
where : t, t’, t” : Time 

end TIME. 
L 

spec : TIME-WITH-T 

sort : Time 
operations : 

end TIME-WITH-T. 

use : TlME 

T : + Tirne 

Figure 1: Time 

We argue that  the specification of the  time of Figure 1 is abstract enough in the 
sense that  it describes the  models we are  interested  in. The  time is defined by means 
of an ordering and a sum.  The 4 first axioms define a strict  total ordering  and the 
associated  non-strict  ordering. The  sum is defined as an associative-commutative 
operation growing in each of its  arguments. I t  is possible to  slightly  modify this 
specification in  order to deal  only  with dense time.  This  may be achieved by adding 
the axiom: 

t/t t/t” 3t’ t < t” j (t < t’ A t’ < t“) 
It also easy to  restrict to models  with  an  initial  instant by introducing a constant 
O :-+ Time and  adding  the  axioms O 5 t and t + O = t. 

Notice that in  the framework of total a.lgebras, specification TlME lias only infi- 
nite models. This is due to  the fact that  the  sum is a growing and  total  operation. 
A slightly more abstract specificakion, inciuding both finite a.nd infinite  models, 
would be obtained  in  the framework of partial algebras which has  not been used 
here for sake of simplicity. 

As specified in TIME-WITH-T (see Figure 1) module TlME is enriched with  the 
consta.nt T stipulated  in Clauses 7c,  10c et Ila. 

The problem of specifying time is tackled here as an example. A deeper study 
of this  point is necessary. 
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In  order to define data  ports  and  routes, we introduce in  module CONST (see 
Figure 2) constants Cu et M which express t8he number of data ports a.nd routes. 

spec : ROUTE-INDEX 

sort : Route 
operations : 

axioms : 

use : CONST 

route-num : Route + Nat 

rn < M 3r route-nurn(r) = rn, 
route-nurn(r) = route-nurn(r’) + r = r‘ 
where : r,  r’: Route; rn: Nat 

route-num, M, Nat 
forgets : 

end ROUTE-INDEX. 

spec : PORT-IMDEX 

sort : Port 
operations : 

axiorns : 

use : CONST 

port-num : Port 4 Nat 

n < N + 3p  port-nurn(p) = n, 
port-num(p) = port-nurn(p‘) + p = p’ 
where : p, p’: Port ; n: Nat 

port-num, N, Nat 
forgets : 

end PORT-INDEX. 

Figure 3: Data  ports  as a set of cardinality N 

spec : CONST 
use : NAT 

N : - Nat 
M : ---+ Nat 

0 < N, 
0“ 

end CONST. 

operations : 

axioms : 

Figure 2: R,outes as a set of cardinality M 

Sort Route is defined as a set of cardinality M. For this ailn we consider a.n 
operation route-num : Route -+ N a t  defined as an injective map whose range is 
the  segment [O, M - 11. Due to the hiera.rchic constraints  and “forpets” clause, 
specification ROUTEINDEX has only  one class of isomorphic models. Da.ta port,§ 

are specified in  an analogous way (see Figure 3). Wowever it is important  to notice 
tllat  in  our specification a data  port represents a pair of ports: a data port-in 
and a data  port-out. Due to  Clause 6a such a pair needs not  to  be represented 

- 406 - 



by two separate  entities since Our specification preserves the independence of the 
reception and transmission of messages at  an  arbitrary given instant. 

3.3 Control Messages 

Specification  module CTRL (see Figure 4) defines control messages and their 
a.rrivals to  the T N .  Predicates is-add-port, is-add-route, is-send-faults define dif- 
ferent  kinds of control messages stipulated  in  Clause 6 .  According to Axioms 1-3, 

spec : CTRL 

sort : Ctrl 
operations : 

use : TIME-WITH-T 

arrivai, reception : Ctrl Time 

is-add-port, is-add-route, is-send-fauits, is-unrecognized : Ctrl 
is-entering : Ctrl Tirne 

predicates : 

axiorns : 
1 : -(is-add-port(c) A is-add-route(c)), 
2 : -(is-add-port(c) A is-send-faults(c)), 
3 : -(is-add-route(c) A is-send-faults(c)), 
4 : unrecognized(c)  -(is-add-port(c) V is-add-route(c) V is-send-faults(c)), 
5 : arrival(c) 5 reception(c), 
6 : is-entering(c, t) A issntering(c’, t) + c = c’, 
7 : is-entering(c, t) arrival(c) 5 t A t  5 reception(c) 

where : c, c’ : Ctrl; t, t’ : Time; 
end CTRL. 

Figure 4: Control  mesmges 

any  control  message  can have at most one of those 3 types. If none of the above 
predicates  is  satisfied,  the message is unrecognized (see Axiom 4). 

Predicate is-entering defines the activity of the control  port-in. An atomic 
formula is-entering(c, t) is given the following meaning: at  time t, the control port- 
in is busy due to the reception of the control message c. For this  aim, each control 
1nessa.ge c is provided  with the insta.nt of its arriva1 to  the TN (arrival(c)) and 
the  instant when it is  completely received by the T N  and decoded (reception(c)). 
According to Axiom 7, the control  port-in is occupied by the control  message c 
between the  instants arrival(c) and reception(c). The  mutual exclusion (see Clause 
2a) on the control  port-in  is expressed by Axiom 6. Note that a.rriva.ls of da.ta 
messages are specified in  an analogous way. 
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3.4 Opening 

Specification module OPENING-PORT (see Figure 5) tells  us how control mes- 

spec : OPENING-PORT-INDEX 
use : PORT,  CTRL 

operations : 
port : Ctrl --t Port 

predicates : 
is-open : Port Time 

Vp Vt (is-open(p, t) J 3c (reception(e) 5 t A is-add-port(c) A port(c) = p)) 
where : p : Port; t : Tirne; 

axioms : 

enel OPENING-PORT. 

Figure 5: Action of control messages on  data  ports 

sages act  on data ports. 
Operation port associates a data  port  with each control  message. The  entry 

of a control message c of type is-ad$-port into  the T N  causes the opening of the 
port psrt(e). Once more, the use of partial algebras would be  more convenient (but 
more  complicated),  since the operation port needs not  to  be defined on mesmges, 
the  type of which is not is-add-port. 

The only  axiom of this  module  states  that a data  port is open if a.nd only if 
a  control message has  ordered  its opening. It follows from  the above that  no  data 
port is  open before the reception of a control message. In  particular, unlilse in 
Clause 5 but according to our modification (see Section 2.1), at the initia,l state, 
if tdlere is  one, al1 data  ports  are closed. 

3.5 Defining 

According to Clause 6b a route is defined by associating a. set of d a h  
ports  with  it. For this  reason, we introduce a specification of sets of data  ports 
SET-OF-PORTS. The  latter is obtained ae an instance of the generic  specification 
SET (assumed well known). The  parameter ELEM is instantiated by the specifica- 
tion PORT-INDEX via  the  signature  morphism Elam H Port. The resulting  sort 
Set is  renamed  into Ports. 

Specification module DEFININ@-ROUTE (see Figure 7) describes how control 
messages act on  routes. Two additional  operatiold associate a route (def-rsute(c)) 
and a set of data  ports (ports(c)) with  each  control messa.ge c. Operation 

20nce again, these operations  could  more usefully be partial, which the total algebra  frame- 
work does not allow. 
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spec : SET-OF-PORTS 
as : SET(ELEM H PORT-INDEX by Elem H Port) 
renaming : Set into Ports 

end SET-OF-PORTS. 

Figure 6: Sets of data  ports as an instance of the generic SET by PORT-INDEX 

associated-ports(r, t) returns a set of data  ports associated  with a route r a.t time 
t. 

At  the reception of a control  message of type is-add-route, the  route 
def-route(c) has  the  set ports(c) associated with  it.  This is  guaranteed by Axiom2. 
Furthermore the set of data  ports  associated  with a route can  change at an  instant 
t’ with  respect to  an earlier instant t only if a control message of type is-add-route 
associates another  set of data  ports  to  this  route at an  instant  bounded by t and 
t’. That is the meaning of Axiom 3. 

According to Axionl 1 the  set of data  ports associated  with a route  is  empty 
before receiving a control  message that defines this  route.  In  particular, at  the 
initial  state, if there  is  one,  ail  routes  are  empty.  This  is  in  conformance  with Our 
Assurnption 5. 

spec : DEFINING-ROUTE 
use : ROUTE-INDEX,  CTRL,  SET-OF-PORTS 

def-route : Ctrl  4 Route 
ports : Ctrl --t Ports 
associated-ports, open-ports : Route T h e  --+ Ports 

1 : (Vc ((def-route(c) A route(c) = r) +- t < reception(c))) 

2 : is-add-route(c) A def-route(c) = r 

3 : (t < t’ A associated-ports(r, t) # pts A associated-portslr, t’) = pts 

operations : 

axioms : 

+- associated-ports(r, t) = 0, 

+ associated-ports(r, reception(c)) = ports(c), 

+ 3c (t < reception(c) A reception(c) 5 t’ A is-add-route(c) A 
def-route(c) = r A ports(c) = pts)), 

4 : p E open-ports(r, t) u (p E associated-ports(r, t) A is-open(p, t)) 
wllere : t, t’ : Tirne;  c : Ctrl;  r : Route;  p : Port;  pts : Ports 

end DEFINING-ROUTE. 

Figure 7: Action of control messa.ges on  routes 
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Fimlly we introduce an operation open-ports which yields the set of open 
ports  among those which are associated to tthe rout,e. This  operation will be used 
for routing as described in Clause 7s. 

3.6 Arrivals of Data Messages 

Arriva.ls of data messages (see Figure 8) a.re specified similarly to a.rrivals of 
control messages. Each data message m is  provided  with the  instant of it.s arrival 
to  the TN (arrival(m)), the  instant when it  is completely received by the  TN 
and  the  routing  information i5 decoded (recsption(m)), the  data  port on which it 
arrives (entry(m)) and  the  route (route(m)) it has to  be  routed  to. The predicate 

spec : DATA-ARRIVAL 

sort : D a t a  
operatious : 

use : OPENINCLPORT, ROUTE-INDEX 

arrival, reception : D a t a  --+ Time 
entry : Data --+ Port 
route : Data -+ Route 

is-entering : D a t a  Port  Time 
predicates : 

axioms : 
1 : arrival(m) 5 reception(m) A reception(m) < arrival(rn) + T, 
2 : is-entering(m, p, t) A is-entering(m', p, t) + m = m', 
3 : arrival(m) = t + is-open(entry(m), t), 
4 : is-entering(m, p, t) arrival(m) 5 t A t 4 reception(rn) A entry(m) = p, 

wllere : m, rn' : Data; p : Port; t : Time; 
end DATA-ARRIVAL. 

Figure 8: Arriva1 of data messages 

is-entering defines the occupation of data ports-in. The axioms axe analogous to  
t.hose of the specification CTRL except  Axiom 3 which,  according to  Clause 2e, 
stdes   that  a data message may  not  arrive  to a closed data  port. 

1: 

3.7 Transit of Messages 

Specification  module TRANSIT (see Figures 9 and 10) describes different sta.ges 
of lifecycle of messages inside the T N  and  their  transmission outside of the T N .  
Tllese  stages  are  represented by the  predicates  introduced in  this  module.  Our 
understanding of the informa1  specification  leads  us to consider the following stages 
of the lîfecycle of data messages: 
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0 Messa.ge m is  been receiving by data port-in p  (is-entering(m,  p, -)).3 

0 At  the  reception  instant reception(m) the T N  detects  whether it can  be rou- 
ted to a port of its route route(m). It consists of checking whether  there is an 
open  port  associated  with  the  route (open-ports(route(m),  reception(m)) # 
0). If such a port  exists,  the message turns  to  the waiting state 
(is-waiting-inside(m, -)). It  corresponds to  the  situation when the message 
is not  “too old” or has  not been  yet  detected as such. 

0 If no suc11 port exists at  the reception time,  the message  is put  to  the fa.ulty 
collection (is-in-fc(m,  reception(m))). 

0 A  waiting  message (is-waiting-inside(m, -)) which will not become “too old” 
before the  end of its  transmission  outside (i.e. whose transit  time  through  the 
TN will not exceed the  constant T) is routed to  the one  among  those  data 
ports-out which  have  been  associated  with its  route at its reception  insta.nt 
and were open at that  instant.  This is the  beginning of the transmission  on 
the  data  port-out (is-leaving(m,  p,-)). 

0 A  waiting  message (is-waiting-inside(m, -)) is  moved to  the  faulty collection 
(is-in-fc(m,-)) after  being  detected as “too  old”. 

0 From  the  faulty collection a message moves at  some  moment  to  the 
control  port-out  after  after  the reception of a send-faults  control mes- 
sage. This is the beginning of the transmission on  the control  port-out 
(is-leaving-on-ctrl(m, -)). 

0 At  some  moment  any tra.nsmission  ends and  the  transmitted messa.ge is 
already  outside  the TN.  Notice that  this is  represented  by  the  fact that  no 
atolnic  formula  built  from  predicates is-entering,  is-waiting-inside,  is-in-fc, 
is-leaving or is-leaving-on-ctrl holds  for the message. 

A  control  message  passes  through the following States: 

O Message c is been receiving by the control  port-in (is-entering(c, -)). 

O At  the  reception  instant reception(c) the TN detects  whether  the message is 
incorrect (is-unrecognized(c)). 

O After  being interpreted, a correct  control  message  disappears  inside of the 
TN . 

0 An  incorrect  control messa.ge is put  to  the  faulty collection at  the reception 
time (is-in-fc(rn,  reception(m))). 

0 Forln the  faulty collection a control  message moves as  any  data message at 
tllis  stage. 
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spec : TRANSIT 
use : DEFININ@-ROUTE, DATA-ARRIVAL 

is-waiting-inside, is-in_.fc, is-leaving-on-ctrl : Data  Time 
is-in-fc, is-laaving-on-etrl : Ctrl  Time 
is-leaving : Data  Port  Time 

predicates : 

axioms : 
1 : is-waiting-inside(s, t) A is-waitinginside(m, t") A t  < t" + 

((t 5 t' A t' 5 t") + is-\.Yei~ing-inside(m, t')), 
2 : is-in-fc(rn, t) A is-in-fc(rn, t") A t < t" + ((t 5 t' A t' 5 t") + is-in-.fc(m, t')) 
3 : is-in-fc(c, t) A is-in-fc(e, t") A t  < t" =+ ((t 5 t' A t' 5 t") + is-in-fc(c, t')), 
4 : is-leaving-on_etrl(m, t) A is-leaving-on-ctrl(m, t") A t  < t" j 

5 : is_Ieaving-on-etrI(e, t) A is_Ieaving-on-ctrI(e, t") A t < t" + 

6 : is-leaving(m, p, t )  A is-ieaving(m, p, t") A t < t" + 
7 : t < reception(m) + (-kwaiting-inside(m, t) A Tis-in-fc(rn, t)), 
8 : t < reception(c) j lis-in-fc(c,t), 
9 : is-waiting-inside(m,t) A is-in-.fc(m, t') j t < t', 
10 : is-in-.fc(m, t) A is-Ieavingsn-ctrI(m,.t') + t < t', 
11 : is-in-fc(c, t) A is-Ieaving-on_ctrI(e, t') + t < t', 
12 : is-waiting-inside(m, t) A is-Ieaving(m, p, t') + t < t', 

((t 5 t' A t' 5 t") + is-Ieaving-on-ctrI(mn, t')), 

((t 5 t' A t' 5 t") + is-Ieavin~-on_ctrI(c, t')), 

((t 5 t ' A t '  5 t") + is-Ieaving(rn, pl t')), 

~ ~~ 

Figure 9: Interna1 flow and tra.nsmission of messages (part 1) 

This is specified as follows 

1. Continuity and uniqueness 
Any message can  be  in a given state only once. This  means  that, 
for a given message,  predicates is-waiting-inside,  is-in&  is-leaving and 
is-leaving-on-ctrl can  hold  on  one time interval  only. This is guaranteed 
by Axioms 1-6. 

2. Succession of stages: some necessery conditions 
These  are  provided by Axioms 7-12 which describe minimal  assumptions on 
the precedence of different stages of messages' lifecycles. 

3. Waiting state 
Sufficient condition for reaching the waiting state is provided in Axiom 13. 

4. Transmission on data post-out 
Axiom 14 is a necessary condition for a data message to be put on a dat,a 

3 1 n  th& discussion we omit variables of sort Time which are replaced by an underscore. 
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13 : open-ports(route(rn),  reception(rn)) # 0 3 is-waiting-inside(rn, reception(rn)), 
14 : is-ieaving(rn, p, t) 3 p E open-ports(route(rn),  reception(rn)) A -is-in-fc(rn, t’)), 
15 : (is-waiting-inside(rn, t) A Vt’  -is-in-fc(rn, t’)) =+ 3’’ 3 p  is-leaving(rn,p, t”), 
16 : ishaving(rn, p, t) + 3 ’  (t < t’ A lis-ieaving(rn,  p,  t’)), 
17 : (open-ports(route(rn),  reception(rn)) # 0 A is-in-fc(m, t)) j arrival(rn) + T < t ,  
18 : open-ports(route(rn),  reception(rn)) = 0 j is-in-fc(rn, reception(rn)), 
19 : (is-waiting-inside(rn,t) A arrivai(rn) 3. T < t) +- 3t’ (t < t‘ A is-in-fc(rn, t‘)), 
20 : is-leaving-on-ctrl(rn, t) j 3c (arrivai(c) < t A is-in-fc(rn, reception(c))), 
21 : (is-in-fc(rn, reception(c)) A is-send-faults(c)) j 

22 : is-Ieaving-on-ctrI(rn, t) 3 3t’ (t < t’ A lis-ieaving-on-ctrI(rn, t’)), 
23 : unrecognized(c)  is-in-fc(c,  reception(c)), 
24 : is-leaving-on-ctri(c, t) j 3c’  (arrival(c’) < t A is-in-fc(c, reception(c’))), 
25 : (is-in-fc(c, reception(c’)) A is-send-faults(c’)) j 

26 : is-ieaving-on-ctri(c, t) 3t’ (t < t’ A -is-kaving-on-ctrI(c, t’)), 
27 : is-ieaving(rn, p, t) A is-leaving(rn’, p, t) + rn = rn’, 
28 : is_leaving-on_ctrl(rn, t) A is-leaving_on-ctrl(rn‘, t) j rn = rn’, 
29 : is-ieaving-on-ctri(c, t) A is-leaving-on-ctri(c’, t) =3 c = c’, 
30 : -(is_ieaving-on-ctrl(rn, t) A is-leaving-on-ctrl(c, t)), 
31 : l(is-ieaving-on-ctrl(m, t) A 3p is-kaving(rn, p, t’)), 
32 : (is-leaving(rn, p, t) A ideaving(rn, p’, t’)) j p = p’ 

elid TRANSIT. 

3t (reception(c) < t A is-leaving-on-ctri(rn, t)), 

3t (reception(c’) < t A is-Ieaving-on-ctri(c, t)), 

wllere : t ,   t’ : Tirne ; rn, rn’ : Data ; c,  c’ : Ctrl; p, pl: Port 

Figure 10:  Interna1 flow and tra.nsmission of messages (part 2) 

port-out.  A sufficient condition is stated  in  Axiom 15. Axiom  16  tells  us  that 
a data message cannot  occupy  a data  port-out for an infinite  time. 

5. Data  messages in the faulty collection 
Axiom  17 is a necessary  condition  for a data message with a correct  route 
to be put in the  faulty collection.  Sufficient  conditions are  stated  in  Axioms 
18 a.nd 19. Axiom 21  describes the  situation when a data messa.ge leaves the 
faulty collection and  enters  the  control  port-out. 

G. Transmission of faulty data  messages 
A necessary  condition is  provided by Axiom 20 and  the sufficient condition 
by Axiom 21. Axiom 22 tells us  that a data message cannot occupy a control 
port-out  during  an  infinite  time. 

7. Control  messages  in the faulty collection 
The necessary and sufficient condition for a control  message to  be  put  to  the 
faulty collection is  Axiom 23. 
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8. Transmission of faulky corltrol nlessages 
This is described by Axioms 24, 25 and 26 which are a.nalogous of Axioms 
20 and 21 for faulty data messages. 

9. Mutual exclusion on ports-out 
This is defined in Axioms 27-30. 

10. Axioms 31 and 32 describe the  fact  the a data. message ca,n be  sent  only 
through  one  port-out.  These a,re probably  redundant  with  respect to  the 
other  axioms. 

onformilgr of the pecification 

In  this  section we address the problenl of the conformity of Our fonna.1 spe- 
cification with respect to  the  informal  requirements of the  Transit Node systmn 
including  modifications and  assumptions  listed  in Section 2.1. 

It, is clear that, in  geneml, one ca.nnot know whether a forma.1 specification t,ruly 
describes the required  system. One  can only check tjhat  some essential properties 
of the system  are sa.tisfied by the  theory described by the  formal specifica.tion. This 
increases one’s confidence in  the  conformity of the formal specifktion  with respect .-% 

to  the informal  requirements. I n  the case of algebraic specifications this a.mounta 
tto proving that  the properties we are  interested in are  the logical consequences of 
t.he axioms of the specification. 

For the conformity of  Our TN specification we need t,o distinguish  between 
two lcinds of properties: necessity propedies and possibility p ~ o p e r t i e s . ~  In order t.o 
1na.lre clear the  distinction between them,  note  that,  any model of the specification 
represents a complete  scenario of the functioning of t8he TN.  This  leads to the 
following remarlrs: 

B The specification satisfies “P is possible” if and  only if t,here is at least  one 
model of the specification satisfying the property P. Consequent.ly, “P is 
possible9’ is a consequence of the specification if and only if the specification , 
augmented  with P is consistent. 

-a The specifica-tion satisfies “P is WXESSIITTJI’ if and only if P is a consequence 
(in  the usua.1 sense) of the specification. 

Note that refutational  theorem  proving  seems t o  be  suitable for testing t,he va.lidity 
of both kinds of properties. 

Possibility  properties will distinguished by the mention “it is possible that9’. 
For necessity properties we do not ma.ke a special  mention. Some properties will 

~ 

4Thus distinction corresponds with the usual nlodalities of temporal logics. It is not very 
surprising to rediscover them  in  the  context of the temporal properties Ive deal with. 
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be  shortened  using the predicate is-inside : D a t a T i m e ,  which reflects the  fact  that 
a. data messa.ge is inside the  TN: 

is-inside(rn, t) (is-waiting-inside(rn, t) V 3 p  is-leaving(rn,  p, t) V 
is-in-fc(m, t) V is-leaving-on-ctrl(m, t)) 

Another useful predicate, already-sent : D a t a T i m e ,  reflects the  fact  that a data 
message has  passed through  the TN: 

already-sent(rn, t) (reception(rn) < t A l is-inside(m, t)) 

We discuss below the conformity of Our forma1 specification  with each c h s e  
of the informa1 specification and we possibly state  the corresponding  property to 
be checked. 

1. This clause  is  obviously satisfied since a,ny mode1 of PORT-INDEX (resp. 
ROUTE-INDEX) is a set of cardinality N (resp. M). 

2a. According to Axioms CTRL(G), DATA-ARRIVAL(B), TRANSIT(27-30), two dis- 
tinct  messages cannot be on the  same  port at the  same  moment. 

2b. Here, we want to  check if arrivals and/or  departures of messages rnay  occur 
simultaneously.  For  instance,  in  order to know whether two da.ta  ports-in  can 
simultaneously receive mesmges we check that it is possible that 
3 t 3 rn 3 rn’ 3 p 3 p’ p # p’ A  is-entering(rn, p, t) A is-entering(rn’, p‘, t) 

2c. This clause is  exactly expressed by Axiom DATA-ARRIVAL(3). 

3. Even if the specification does not express any  priority between ports or at 
the level of messa.ge transit,  it is clear that fairness  properties  cannot  be 
treated  in  the  algebraic  and classical logic frameworks. 

4. We  check the following property 
V rn 3 t arrival(m) < t 

3 ( l ( 3 p  is-entering(rn,  p, t) V is-inside(rn, t)) V is-in-fc(rn, t)) 

8.  The problem of the  initial  state  has been deliberately left unspecified. We 
do not even specify that  the T N  has to have the beginning of its history. 
Moreover, Our modification (see Section 2.1) overrides this clause.  At the 
initial state, if there is  one, al1 data  ports  are closed (see Figure 5), al1 routes 
a.re enlpty (see Axiom DEFINING-ROUTE(~)) and  both control  port-in and 
control port-out  are  open (a.nd rema.in open). 

Ga. The reception of a control message c of type is-add-port ma.kes the da.ta. 
port port(c) open (see Figure 5). We may  additionally verify the property it 
is possible that 

p v t 3 t’ 3 rn (is-open(p,t) A t  5 t’) 3 is-entering(p,rn,t’) 
This would ensure that  an open data.  port-in 1na.y receive messa.ges. 

Gb. This clause corresponds to Axioms DEFINING-ROUTE(2, 3). 
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6c. This clause  corresponds to Axioms TRANSIT(21, 25). 

"a. Properties which  guarantee that faulty  messages are  those described in  the 
informa1  specification will be discussed in  the sequel. We state below a pro- 
perty  that ensures that a data message, that  is never faulty  during  its history, 
leaves the T N  through  an open data  port-out  wsociated  with  the  route of 
the message at the t h e  of its reception: 
(W lis- in-fc(m, t)) =+ 

3t' 3 p  (p E open-ports(rsute(m),  receptisn(m)) A is-leaving(m, p, t')) 

'Pb. Due the modifications (see Section 2.1) which overrides tAis cla.~~se, we read 
it: no data m e s s a g e  may disappear  intside the TN. This is s t akd  as follows: 

(is_leawing-sn_etPI(m, t') =+ t 5 t'))) +- is-inside(m, t) 
(reception(m) 5 t A (3t' ((3p is-lcaving(m, p, t') + t 5 t') V 

7c. We did not define a faulty  state. According to Clause 9 faulty messages are 
those  which go to  the  faulty collection. Consequently, this clause  corresponds 
to Axiorn TRAMSIT(~~) .  

8. The  fact  that ports-out  transmit  the message outside  the TN corresponds to  
the  formula 

(is-leaving(rn, p, t) V is_leaving-on-ctrl(m, t)) +- 3' already-sent(m, t') 

In order to  show that messa.ges can leave t.he T N  in  any order we ma.y  check 
that it is  possible  that 
3m 3m' (arrivaI(m) 5 arrival(m') A 3t (is-insida(m, t> A aIready-sent(m', t))) 

3m 3rd (arrival(m) 5 arrival(m') A 3t (is-inside(m', t) A alrsady-sent(m, t))) 
and  that it is  possible  that 

9. This clause  corresponds  Axioms TRANSIT(18,  19, 23). 

1Ua. Faulty control messages are precîsely those in  the  faulty collection. This 
clause  corresponds  therefore t o  Axiom TRANSIT(23). 

lQb&c. We did  not define a s faulty  state. According to @lause 9 faulty messages a.re 
those  which  go to  the faulty collection. Consequently  Axioms TRANSIT( 1 7 3 ,  
19) describe precisely properties  required by Clause 10b&c. 

11a. Due to  the  latter remarlc this  corresponds to Axiom TWANSIT(19). 

19b. For this clause Ive may check that it is possible that 
3m 3t (is-waiting_inside(m, t) A arrival(m) + T < t) 

l lc .  This  corresponds  to Axioms TRANSIT(21, 25). 

12. Nothing to  check. 

Of course the properties  stated above  should  be  proved. The use of a theorem 
prover would make  emier  this  task. 

L. 
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5 Conclusions 

SVe have  presented an algebraic  specification of the  Transit Node system. 
The underlying  formalism  is  Many-Sorted  First  Order Logic with Equa.lity. Con- 
sequently we do  not use techniques  devoted to  concurrency or rea.1 time.  The idea 
which has allowed us to overcome the  usual  limitations of “classical” algebraic  spe- 
cifications to express  concurrent  and  real time  properties was the use of a,n abstract 
da.ta  type which  make  explicit temporal  aspects  in  the  system specification. 

The  example of the TN seems to  be  representative for a la.rge class of concurrent 
a.nd real time systems which can  be  characterized as communicating processes ex- 
changing static  data.5 It shows that within classical many-sorted logic it is  possible 
to specify concurrent and real time  systems. Moreover this  kind of specifications 
lias the following advantages: 

0 Apa.rt from  modularity  aspects,  the  semantics is simple  and well known. It 
allow to express the  true concurrency (no  need of interleaving  semantics). 

On  the contrary to algebraic  specifications of concurrency, the  same for- 
nlalism  is used to  express data  type  and  static components  properties of a 
system as well as its  dynamic  behaviour. 

0 Proof  techniques which might  be used to  check the conformity of a forma.1 
specification with  the informa1 requirements  are well known and several  tools 
which support such proofs are  available or under  development. 

The  limits of this  approach  are  intrinsic to  first  order logic. It is  mainly the 
matter of the incompleteness of theories which would be useful for modeling  tem- 
poral  aspects. We also notice that classica.1 first  order logic seems to  be  too fine 
for specifying  simple  dynamic  aspects. For instance, in  order to  express that two 
actions a and a‘ (represented by two predicates  depending  on  time)  should succeed 
each other  one needs to write: 

(a(t) A a’(t‘)) + (t < t‘ A (t < t’ A t ‘  < t” =+ (a(t’) V a’(t’)))) 
a(t) =+ 3t’ a’(t’) 

This  might  be avoided in  an  approach which includes a logic of time interva.ls, for 
instance  in  the  style of [4]. We believe that,  more  generally, the use of partial  order 
builtin  to  the semantics would make  temporal causalities between actions easier 
to express, especially in  the  contexts of recent  results  in resolution-style theorem 
proving.  Among recent advances in  this  area we may cite [2] where authors  provide 
a refutationally  complete  set of inference rules  which besides the  usual rules  such 
t,llat  ordered  resolution,  ordered  paramodulation or superposition  include a new 
rule  called chaining for  dealing  with transitive  relations.  Taking these  results  into 
account, Our future work will include  some  experiments  with the  system  “Saturate” 

5This class does  not  include  systems in which a process may be sent  as a datum to another 
process. 
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[ G ]  implementing  those  techniques.  This  tool is currently  under  development a.t 
Universitat  Politècnica  de  Catalunya  (Barcelona). 

We did not discuss in  this  paper  modularity issues. However, a careful look 
a.t the  structure of Our specification  leads to  remarlc that dependencies between 
modules reflect the  temporal  causality between different kinds of events. For ins- 
tance, since no data  may  arrive  to a closed port,  module DATAARRIVAL uses 
lnodule OPEMIN@-PORTS which in  turn uses module CTRL beca.use cont.ro1 mes- 
sages cause port  opening. 
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