
Concurrency and Real-time Specification with
Many-Sorted Logic and Abstract Data Types: an

Example

Teodor Knapik
IREMIA, Université de la Réunion

BP 7151
97715 SAINT DENIS Messag. Cedex 9 France

e-mail: knapikauniv-reunion.fr

Abstract

We discuss the use of algebraic specifications for the description of the
requirements of concurrent and real time systems. The underlying logic is the
usual Many-Sorted First Order Predicate Calculus with Equality without any
concurrent features. In order to express dynamic and real time properties,
we specify a data type, the role of which is to mode1 time. This discussion
is motivated by Our specification of the “Transit Node” system.

1 Introduction

The first sta.ge of forma1 system development consists of writing a repuirement
specification. It is a document that expresses abstractly properties of a system
to be developed. Consequently, specification techniques used for this aim should
provide great expressive power. Abstract data type specifications based on first
order logic are widely recognized as such. However, the commonly-held opinion
is that it is impossible to express concurrent and real time properties using this
technique. This leads to the development of more specialized techniques on top
of algebraic specifications. In [l] these are referred to as algebraic specifications of
concurrency.

The aim of the Transit Node case study presented in this pa.per is to show
that concurrent and real-time systems ca.n be specified in a satisfactory way in
the framework of “pure” a1gebra.ic specifications based on classical Many-sorted
First Order Logic with Equality. This may be achieved by specifying an abstract
data type, the rôle of which is to represent time. It is then possible to test the
elapsed time and therefore express real time properties. We are also able to express
concurrent properties. In order to Say that two actions a and at must synchronize,

- 401 -

we write ‘dt a(t) -++- a‘(t). Both actions are represented by predieates a , a’ : Tirne
on the sort Tirne.

This paper is organized as follows. Section 2 provides the informal specifica.tion
of the Transit Node system. In Section 3 we comment on an algkbmic specification
of‘this system. Section 4 is a discussion of the conformity of the presented algehra.ic
specification with the informal specification. The last section is devoted to some
conclusions and perspectives of this worlr.

This case study was defined in the RACE project, 2039 (SPECS : Specification
Environment for Communication Software). It consists of a simple transit node
where messages arrive, are routed, and lea.ve the node.

The informal specification r a d s as fol10ws:~

Clause 9 The s y s t e m -lo be speczjied consisls of a. tran.sid node tuidIl: one Control
Port-In, o n e Control Port-But, N Daka Port,s-In, N Data Ports-But, M R.out,es
through.. (The limits of N and M are not specified.)

Clause 2 (a) Ea.ch por t a’s scrialized. (b) Al1 ports are conmurent t o al1 others.
T h e ports should be specified as separa.de, concurrent entities. (c) Messages a.rrioe
f r o m the environ9ne1~t only d e n a Port,-In i s able t o t rea t them.

Clause 3 The node is ‘ya,ir”. Al1 messages are equally likely 20 be treated, whert.
a selection nmst be m a d e ,

Clause 4 and al1 da ta messages will even2z~ally transit th,€ node, or become fmrlty.

Clause 5 Initial State : one Control Port-In, o n € Control Port-Out.

Clause 6 The Control Port-In accepts and treats 2he fo1lowin.g dlrree m.essa.ges:

(a) Add-Data-Port-In-&-Out(n) : gives t h e n o d e knowledge of a n e w Port-In(n)
a.nd a new Port-But(n). The n o d e s sta.rts t o accept and treail messa.ges sent
t o t h e Port-In, as indicaied below o n Data Port.-In.

(b) Add-Route(m),(n(i), n(j) ...) : gives t he node knowledge ofa route associating
route m with Data-Port-But,(n(i),n(j), ...).

(c) Send-Faults : rozltes some messages i a thefau.l ty collection, i f a n y , t o Control
Port-Out. The order an whick .the f au l t y nLessa.ges a.re transm.if ted a’s not
specified.

We present a slightly rnodified version of this specification with respect to the original one
wllere some requirements turn out to be inconsistent.

- 402 -

Clause 7 A Data Port-In accepts and treats only messages of the t ype
Itoute(m).Data.
(a) T h e Port-In routes the message, un.changed, to any one (nondeterminate) of
t h e opelL Data Ports-Out associated with route m a t t he t ime of arriural. If there
i s no such port the message becomes fa.ulty. (b) (Note lhat a Data Port-Out is
serialized - t he message has t o be buffered until the Data Port-Out can process
it). (c) The message becomes a faul ty message if i t s t rans i t t ime through the node
('rom initial receipt by a Data Port-In t o t r a n s m i s s i o n by a Data Port-Out) i s
greater th an^ a constant t ime T.

Clause 8 Data Ports-Out and Control Port-Out accept messages of any i ype and
will t ransmi t t he message ou t of the node. Messages may leaue the node in a n y
order.

Clause 9 Al1 faulty messages are eveniually placed il1 the faul ty col lect ion where
t h e y s t a y u n t i l a Send-Faults cornnaald message causes thenz t o be routed do Control
Port-Out.

Clause 10 Faulty messages are (a) messages on the Control Port-In fha t are no t
one of the three commands l is tedl (b) rrlessages o n a Data Port-In that indicate
an unknown rou te , or (c) messages whose t rans i t t ime through the node i s greater
t h a n T.

Clause 11 (a) Messages that exceed the transi t t ime of T beconle faul iy as soon
a s t h e t i m e T as exceeded. (b) N is permissible for a fau l t y message t o no t be
r o u t e d t o Control Port-Out by a Send-Faults comnzand (because, for exam.ple, it
h m jus t become fau l ty , but has not yet been placed in the faulty collection), (c) but
a11 faul ty messages must euentually be s e n t t o Control Port-Out wi th a succession
of Send-Faults commands.

Clause 12 II m a y be assumed that a source of t ime (t ime-o f -day o r a signal each
t ime i n t e rva l) i s auailable in the en.vironntent and need not be modeled with IlLe
specification.

2.1 Modifications and Additional Assumptions

For the sake of simplicity, Our formal specification will not completely confom
to the illforlnal requirements, precisely in the following points:

1. Al1 data ports are closed in. the beginning if there i s 0n.e. This dif fers front
Clause 5 .

2. The buf fer ing is unspecified although data messages cannot disappear inside
of t he TN. Th i s s l i gh t l y d i f f e r s f o rm C lause 7b.

- 403 -

We also consider the following additional wsumptions:

Assurnption 1 The reception and the decodi?tg of any message m.ay f a k e some
time which a's smaller than the constant T.

Assunnption 2 The information carried b y a control message is always correct.
This means that a control message may not atlernpt t o open a non-etisten,t port,
define a non-existent rouie or associate a non-existent por t to a route.

Assurnption 3 The routing information carried by a data message is always cor-
rect.

Assunnption 4 A messqe cannot arrdve twice at the TN. In fact, nothing is as-
sumed about equality of messages. Thus in th,e m.odels ofthis specification, differen.t
occarrences of a message are represented b y differcnt messages. An a.dditiorta1 ubs-
traction. nmg be gained using an observational equa.lity which 1:s not a congrue~~e as
in 153. This would allow t o identify iwo messages which arrive a.t different ilestants

Assumption 5 Al1 routes are empty in the beginning if there is one.

lbssumption 6 Both control port-in and con-lrol port-out are always open,.

Assunnption 7 Any transmission of a correct data message wiIl end before t h e
iota1 -Ira&! time of the message through t h e TN becom.es greater ihan. a constant
T.

In this section .uve describe our forma1 specification of the Transit Node. This
is written in the PLUSS specification 1a.nguage [3]. Note that al1 free va.riablee ' 7

occurring in axioms are considered as implicitly universdly quantified.

3.1 Speeifying Time

As mentioned in int\roduction, i t appears essential to have a mode1 of t,ime
on the top of which our specification could be built. For this reason, we provide
a. specification of time which describes the models we a.re interested in. Note t,ha.t
this is not required by the informa1 specification.

According to @lause 12, a source of time is available in the environment. This
leads us to the simplification that each component if the TN is evolving in the
saine global time. Consequently, we try to describe a class of linear models of time
which includes both discrete and dense models, with or without a.n initial instmt.

- 404 -

spec : TlME
sort : Tirne
operations :

predicates :

axioms :

- + - : Time Time -+ Tirne

<, 5 : Tirne Time

Tt < t,
(t < t’ A t’ < t“) +- t < t”,
t s t ’ w (t<t ’Vt=t ’) ,
t 5 t‘ v t’ 5 t,
t + t‘ = t’ + t,
(t + t’) + t” = t + (t’ + t”),
t < t’ w t + t” < t’ + t”
where : t, t’, t” : Time

end TIME.
L

spec : TIME-WITH-T

sort : Time
operations :

end TIME-WITH-T.

use : TlME

T : + Tirne

Figure 1: Time

We argue that the specification of the time of Figure 1 is abstract enough in the
sense that it describes the models we are interested in. The time is defined by means
of an ordering and a sum. The 4 first axioms define a strict total ordering and the
associated non-strict ordering. The sum is defined as an associative-commutative
operation growing in each of its arguments. I t is possible to slightly modify this
specification in order to deal only with dense time. This may be achieved by adding
the axiom:

t/t t/t” 3t’ t < t” j (t < t’ A t’ < t“)
It also easy to restrict to models with an initial instant by introducing a constant
O :-+ Time and adding the axioms O 5 t and t + O = t.

Notice that in the framework of total a.lgebras, specification TlME lias only infi-
nite models. This is due to the fact that the sum is a growing and total operation.
A slightly more abstract specificakion, inciuding both finite a.nd infinite models,
would be obtained in the framework of partial algebras which has not been used
here for sake of simplicity.

As specified in TIME-WITH-T (see Figure 1) module TlME is enriched with the
consta.nt T stipulated in Clauses 7c, 10c et Ila.

The problem of specifying time is tackled here as an example. A deeper study
of this point is necessary.

- 405 -

In order to define data ports and routes, we introduce in module CONST (see
Figure 2) constants Cu et M which express t8he number of data ports a.nd routes.

spec : ROUTE-INDEX

sort : Route
operations :

axioms :

use : CONST

route-num : Route + Nat

rn < M 3r route-nurn(r) = rn,
route-nurn(r) = route-nurn(r’) + r = r‘
where : r, r’: Route; rn: Nat

route-num, M, Nat
forgets :

end ROUTE-INDEX.

spec : PORT-IMDEX

sort : Port
operations :

axiorns :

use : CONST

port-num : Port 4 Nat

n < N + 3p port-nurn(p) = n,
port-num(p) = port-nurn(p‘) + p = p’
where : p, p’: Port ; n: Nat

port-num, N, Nat
forgets :

end PORT-INDEX.

Figure 3: Data ports as a set of cardinality N

spec : CONST
use : NAT

N : - Nat
M : ---+ Nat

0 < N,
0“

end CONST.

operations :

axioms :

Figure 2: R,outes as a set of cardinality M

Sort Route is defined as a set of cardinality M. For this ailn we consider a.n
operation route-num : Route -+ N a t defined as an injective map whose range is
the segment [O, M - 11. Due to the hiera.rchic constraints and “forpets” clause,
specification ROUTEINDEX has only one class of isomorphic models. Da.ta port,§

are specified in an analogous way (see Figure 3). Wowever it is important to notice
tllat in our specification a data port represents a pair of ports: a data port-in
and a data port-out. Due to Clause 6a such a pair needs not to be represented

- 406 -

by two separate entities since Our specification preserves the independence of the
reception and transmission of messages at an arbitrary given instant.

3.3 Control Messages

Specification module CTRL (see Figure 4) defines control messages and their
a.rrivals to the T N . Predicates is-add-port, is-add-route, is-send-faults define dif-
ferent kinds of control messages stipulated in Clause 6 . According to Axioms 1-3,

spec : CTRL

sort : Ctrl
operations :

use : TIME-WITH-T

arrivai, reception : Ctrl Time

is-add-port, is-add-route, is-send-fauits, is-unrecognized : Ctrl
is-entering : Ctrl Tirne

predicates :

axiorns :
1 : -(is-add-port(c) A is-add-route(c)),
2 : -(is-add-port(c) A is-send-faults(c)),
3 : -(is-add-route(c) A is-send-faults(c)),
4 : unrecognized(c) -(is-add-port(c) V is-add-route(c) V is-send-faults(c)),
5 : arrival(c) 5 reception(c),
6 : is-entering(c, t) A issntering(c’, t) + c = c’,
7 : is-entering(c, t) arrival(c) 5 t A t 5 reception(c)

where : c, c’ : Ctrl; t, t’ : Time;
end CTRL.

Figure 4: Control mesmges

any control message can have at most one of those 3 types. If none of the above
predicates is satisfied, the message is unrecognized (see Axiom 4).

Predicate is-entering defines the activity of the control port-in. An atomic
formula is-entering(c, t) is given the following meaning: at time t, the control port-
in is busy due to the reception of the control message c. For this aim, each control
1nessa.ge c is provided with the insta.nt of its arriva1 to the TN (arrival(c)) and
the instant when it is completely received by the T N and decoded (reception(c)).
According to Axiom 7, the control port-in is occupied by the control message c
between the instants arrival(c) and reception(c). The mutual exclusion (see Clause
2a) on the control port-in is expressed by Axiom 6. Note that a.rriva.ls of da.ta
messages are specified in an analogous way.

- 407 -

3.4 Opening

Specification module OPENING-PORT (see Figure 5) tells us how control mes-

spec : OPENING-PORT-INDEX
use : PORT, CTRL

operations :
port : Ctrl --t Port

predicates :
is-open : Port Time

Vp Vt (is-open(p, t) J 3c (reception(e) 5 t A is-add-port(c) A port(c) = p))
where : p : Port; t : Tirne;

axioms :

enel OPENING-PORT.

Figure 5: Action of control messages on data ports

sages act on data ports.
Operation port associates a data port with each control message. The entry

of a control message c of type is-ad$-port into the T N causes the opening of the
port psrt(e). Once more, the use of partial algebras would be more convenient (but
more complicated), since the operation port needs not to be defined on mesmges,
the type of which is not is-add-port.

The only axiom of this module states that a data port is open if a.nd only if
a control message has ordered its opening. It follows from the above that no data
port is open before the reception of a control message. In particular, unlilse in
Clause 5 but according to our modification (see Section 2.1), at the initia,l state,
if tdlere is one, al1 data ports are closed.

3.5 Defining

According to Clause 6b a route is defined by associating a. set of d a h
ports with it. For this reason, we introduce a specification of sets of data ports
SET-OF-PORTS. The latter is obtained ae an instance of the generic specification
SET (assumed well known). The parameter ELEM is instantiated by the specifica-
tion PORT-INDEX via the signature morphism Elam H Port. The resulting sort
Set is renamed into Ports.

Specification module DEFININ@-ROUTE (see Figure 7) describes how control
messages act on routes. Two additional operatiold associate a route (def-rsute(c))
and a set of data ports (ports(c)) with each control messa.ge c. Operation

20nce again, these operations could more usefully be partial, which the total algebra frame-
work does not allow.

- 408 -

spec : SET-OF-PORTS
as : SET(ELEM H PORT-INDEX by Elem H Port)
renaming : Set into Ports

end SET-OF-PORTS.

Figure 6: Sets of data ports as an instance of the generic SET by PORT-INDEX

associated-ports(r, t) returns a set of data ports associated with a route r a.t time
t.

At the reception of a control message of type is-add-route, the route
def-route(c) has the set ports(c) associated with it. This is guaranteed by Axiom2.
Furthermore the set of data ports associated with a route can change at an instant
t’ with respect to an earlier instant t only if a control message of type is-add-route
associates another set of data ports to this route at an instant bounded by t and
t’. That is the meaning of Axiom 3.

According to Axionl 1 the set of data ports associated with a route is empty
before receiving a control message that defines this route. In particular, at the
initial state, if there is one, ail routes are empty. This is in conformance with Our
Assurnption 5.

spec : DEFINING-ROUTE
use : ROUTE-INDEX, CTRL, SET-OF-PORTS

def-route : Ctrl 4 Route
ports : Ctrl --t Ports
associated-ports, open-ports : Route T h e --+ Ports

1 : (Vc ((def-route(c) A route(c) = r) +- t < reception(c)))

2 : is-add-route(c) A def-route(c) = r

3 : (t < t’ A associated-ports(r, t) # pts A associated-portslr, t’) = pts

operations :

axioms :

+- associated-ports(r, t) = 0,

+ associated-ports(r, reception(c)) = ports(c),

+ 3c (t < reception(c) A reception(c) 5 t’ A is-add-route(c) A
def-route(c) = r A ports(c) = pts)),

4 : p E open-ports(r, t) u (p E associated-ports(r, t) A is-open(p, t))
wllere : t, t’ : Tirne; c : Ctrl; r : Route; p : Port; pts : Ports

end DEFINING-ROUTE.

Figure 7: Action of control messa.ges on routes

- 409 -

Fimlly we introduce an operation open-ports which yields the set of open
ports among those which are associated to tthe rout,e. This operation will be used
for routing as described in Clause 7s.

3.6 Arrivals of Data Messages

Arriva.ls of data messages (see Figure 8) a.re specified similarly to a.rrivals of
control messages. Each data message m is provided with the instant of it.s arrival
to the TN (arrival(m)), the instant when it is completely received by the TN
and the routing information i5 decoded (recsption(m)), the data port on which it
arrives (entry(m)) and the route (route(m)) it has to be routed to. The predicate

spec : DATA-ARRIVAL

sort : D a t a
operatious :

use : OPENINCLPORT, ROUTE-INDEX

arrival, reception : D a t a --+ Time
entry : Data --+ Port
route : Data -+ Route

is-entering : D a t a Port Time
predicates :

axioms :
1 : arrival(m) 5 reception(m) A reception(m) < arrival(rn) + T,
2 : is-entering(m, p, t) A is-entering(m', p, t) + m = m',
3 : arrival(m) = t + is-open(entry(m), t),
4 : is-entering(m, p, t) arrival(m) 5 t A t 4 reception(rn) A entry(m) = p,

wllere : m, rn' : Data; p : Port; t : Time;
end DATA-ARRIVAL.

Figure 8: Arriva1 of data messages

is-entering defines the occupation of data ports-in. The axioms axe analogous to
t.hose of the specification CTRL except Axiom 3 which, according to Clause 2e,
stdes that a data message may not arrive to a closed data port.

1:

3.7 Transit of Messages

Specification module TRANSIT (see Figures 9 and 10) describes different sta.ges
of lifecycle of messages inside the T N and their transmission outside of the T N .
Tllese stages are represented by the predicates introduced in this module. Our
understanding of the informa1 specification leads us to consider the following stages
of the lîfecycle of data messages:

- 410 -

0 Messa.ge m is been receiving by data port-in p (is-entering(m, p, -)).3

0 At the reception instant reception(m) the T N detects whether it can be rou-
ted to a port of its route route(m). It consists of checking whether there is an
open port associated with the route (open-ports(route(m), reception(m)) #
0). If such a port exists, the message turns to the waiting state
(is-waiting-inside(m, -)). It corresponds to the situation when the message
is not “too old” or has not been yet detected as such.

0 If no suc11 port exists at the reception time, the message is put to the fa.ulty
collection (is-in-fc(m, reception(m))).

0 A waiting message (is-waiting-inside(m, -)) which will not become “too old”
before the end of its transmission outside (i.e. whose transit time through the
TN will not exceed the constant T) is routed to the one among those data
ports-out which have been associated with its route at its reception insta.nt
and were open at that instant. This is the beginning of the transmission on
the data port-out (is-leaving(m, p,-)).

0 A waiting message (is-waiting-inside(m, -)) is moved to the faulty collection
(is-in-fc(m,-)) after being detected as “too old”.

0 From the faulty collection a message moves at some moment to the
control port-out after after the reception of a send-faults control mes-
sage. This is the beginning of the transmission on the control port-out
(is-leaving-on-ctrl(m, -)).

0 At some moment any tra.nsmission ends and the transmitted messa.ge is
already outside the TN. Notice that this is represented by the fact that no
atolnic formula built from predicates is-entering, is-waiting-inside, is-in-fc,
is-leaving or is-leaving-on-ctrl holds for the message.

A control message passes through the following States:

O Message c is been receiving by the control port-in (is-entering(c, -)).

O At the reception instant reception(c) the TN detects whether the message is
incorrect (is-unrecognized(c)).

O After being interpreted, a correct control message disappears inside of the
TN .

0 An incorrect control messa.ge is put to the faulty collection at the reception
time (is-in-fc(rn, reception(m))).

0 Forln the faulty collection a control message moves as any data message at
tllis stage.

- 411 -

spec : TRANSIT
use : DEFININ@-ROUTE, DATA-ARRIVAL

is-waiting-inside, is-in_.fc, is-leaving-on-ctrl : Data Time
is-in-fc, is-laaving-on-etrl : Ctrl Time
is-leaving : Data Port Time

predicates :

axioms :
1 : is-waiting-inside(s, t) A is-waitinginside(m, t") A t < t" +

((t 5 t' A t' 5 t") + is-\.Yei~ing-inside(m, t')),
2 : is-in-fc(rn, t) A is-in-fc(rn, t") A t < t" + ((t 5 t' A t' 5 t") + is-in-.fc(m, t'))
3 : is-in-fc(c, t) A is-in-fc(e, t") A t < t" =+ ((t 5 t' A t' 5 t") + is-in-fc(c, t')),
4 : is-leaving-on_etrl(m, t) A is-leaving-on-ctrl(m, t") A t < t" j

5 : is_Ieaving-on-etrI(e, t) A is_Ieaving-on-ctrI(e, t") A t < t" +

6 : is-leaving(m, p, t) A is-ieaving(m, p, t") A t < t" +
7 : t < reception(m) + (-kwaiting-inside(m, t) A Tis-in-fc(rn, t)),
8 : t < reception(c) j lis-in-fc(c,t),
9 : is-waiting-inside(m,t) A is-in-.fc(m, t') j t < t',
10 : is-in-.fc(m, t) A is-Ieavingsn-ctrI(m,.t') + t < t',
11 : is-in-fc(c, t) A is-Ieaving-on_ctrI(e, t') + t < t',
12 : is-waiting-inside(m, t) A is-Ieaving(m, p, t') + t < t',

((t 5 t' A t' 5 t") + is-Ieaving-on-ctrI(mn, t')),

((t 5 t' A t' 5 t") + is-Ieavin~-on_ctrI(c, t')),

((t 5 t ' A t ' 5 t") + is-Ieaving(rn, pl t')),

~ ~~

Figure 9: Interna1 flow and tra.nsmission of messages (part 1)

This is specified as follows

1. Continuity and uniqueness
Any message can be in a given state only once. This means that,
for a given message, predicates is-waiting-inside, is-in& is-leaving and
is-leaving-on-ctrl can hold on one time interval only. This is guaranteed
by Axioms 1-6.

2. Succession of stages: some necessery conditions
These are provided by Axioms 7-12 which describe minimal assumptions on
the precedence of different stages of messages' lifecycles.

3. Waiting state
Sufficient condition for reaching the waiting state is provided in Axiom 13.

4. Transmission on data post-out
Axiom 14 is a necessary condition for a data message to be put on a dat,a

3 1 n th& discussion we omit variables of sort Time which are replaced by an underscore.

- 412 -

13 : open-ports(route(rn), reception(rn)) # 0 3 is-waiting-inside(rn, reception(rn)),
14 : is-ieaving(rn, p, t) 3 p E open-ports(route(rn), reception(rn)) A -is-in-fc(rn, t’)),
15 : (is-waiting-inside(rn, t) A Vt’ -is-in-fc(rn, t’)) =+ 3’’ 3 p is-leaving(rn,p, t”),
16 : ishaving(rn, p, t) + 3 ’ (t < t’ A lis-ieaving(rn, p, t’)),
17 : (open-ports(route(rn), reception(rn)) # 0 A is-in-fc(m, t)) j arrival(rn) + T < t ,
18 : open-ports(route(rn), reception(rn)) = 0 j is-in-fc(rn, reception(rn)),
19 : (is-waiting-inside(rn,t) A arrivai(rn) 3. T < t) +- 3t’ (t < t‘ A is-in-fc(rn, t‘)),
20 : is-leaving-on-ctrl(rn, t) j 3c (arrivai(c) < t A is-in-fc(rn, reception(c))),
21 : (is-in-fc(rn, reception(c)) A is-send-faults(c)) j

22 : is-Ieaving-on-ctrI(rn, t) 3 3t’ (t < t’ A lis-ieaving-on-ctrI(rn, t’)),
23 : unrecognized(c) is-in-fc(c, reception(c)),
24 : is-leaving-on-ctri(c, t) j 3c’ (arrival(c’) < t A is-in-fc(c, reception(c’))),
25 : (is-in-fc(c, reception(c’)) A is-send-faults(c’)) j

26 : is-ieaving-on-ctri(c, t) 3t’ (t < t’ A -is-kaving-on-ctrI(c, t’)),
27 : is-ieaving(rn, p, t) A is-leaving(rn’, p, t) + rn = rn’,
28 : is_leaving-on_ctrl(rn, t) A is-leaving_on-ctrl(rn‘, t) j rn = rn’,
29 : is-ieaving-on-ctri(c, t) A is-leaving-on-ctri(c’, t) =3 c = c’,
30 : -(is_ieaving-on-ctrl(rn, t) A is-leaving-on-ctrl(c, t)),
31 : l(is-ieaving-on-ctrl(m, t) A 3p is-kaving(rn, p, t’)),
32 : (is-leaving(rn, p, t) A ideaving(rn, p’, t’)) j p = p’

elid TRANSIT.

3t (reception(c) < t A is-leaving-on-ctri(rn, t)),

3t (reception(c’) < t A is-Ieaving-on-ctri(c, t)),

wllere : t , t’ : Tirne ; rn, rn’ : Data ; c, c’ : Ctrl; p, pl: Port

Figure 10: Interna1 flow and tra.nsmission of messages (part 2)

port-out. A sufficient condition is stated in Axiom 15. Axiom 16 tells us that
a data message cannot occupy a data port-out for an infinite time.

5. Data messages in the faulty collection
Axiom 17 is a necessary condition for a data message with a correct route
to be put in the faulty collection. Sufficient conditions are stated in Axioms
18 a.nd 19. Axiom 21 describes the situation when a data messa.ge leaves the
faulty collection and enters the control port-out.

G. Transmission of faulty data messages
A necessary condition is provided by Axiom 20 and the sufficient condition
by Axiom 21. Axiom 22 tells us that a data message cannot occupy a control
port-out during an infinite time.

7. Control messages in the faulty collection
The necessary and sufficient condition for a control message to be put to the
faulty collection is Axiom 23.

- 413 -

8. Transmission of faulky corltrol nlessages
This is described by Axioms 24, 25 and 26 which are a.nalogous of Axioms
20 and 21 for faulty data messages.

9. Mutual exclusion on ports-out
This is defined in Axioms 27-30.

10. Axioms 31 and 32 describe the fact the a data. message ca,n be sent only
through one port-out. These a,re probably redundant with respect to the
other axioms.

onformilgr of the pecification

In this section we address the problenl of the conformity of Our fonna.1 spe-
cification with respect to the informal requirements of the Transit Node systmn
including modifications and assumptions listed in Section 2.1.

It, is clear that, in geneml, one ca.nnot know whether a forma.1 specification t,ruly
describes the required system. One can only check tjhat some essential properties
of the system are sa.tisfied by the theory described by the formal specifica.tion. This
increases one’s confidence in the conformity of the formal specifktion with respect .-%

to the informal requirements. I n the case of algebraic specifications this a.mounta
tto proving that the properties we are interested in are the logical consequences of
t.he axioms of the specification.

For the conformity of Our TN specification we need t,o distinguish between
two lcinds of properties: necessity propedies and possibility p ~ o p e r t i e s . ~ In order t.o
1na.lre clear the distinction between them, note that, any model of the specification
represents a complete scenario of the functioning of t8he TN. This leads to the
following remarlrs:

B The specification satisfies “P is possible” if and only if t,here is at least one
model of the specification satisfying the property P. Consequent.ly, “P is
possible9’ is a consequence of the specification if and only if the specification ,
augmented with P is consistent.

-a The specifica-tion satisfies “P is WXESSIITTJI’ if and only if P is a consequence
(in the usua.1 sense) of the specification.

Note that refutational theorem proving seems t o be suitable for testing t,he va.lidity
of both kinds of properties.

Possibility properties will distinguished by the mention “it is possible that9’.
For necessity properties we do not ma.ke a special mention. Some properties will

~

4Thus distinction corresponds with the usual nlodalities of temporal logics. It is not very
surprising to rediscover them in the context of the temporal properties Ive deal with.

- 414 -

be shortened using the predicate is-inside : D a t a T i m e , which reflects the fact that
a. data messa.ge is inside the TN:

is-inside(rn, t) (is-waiting-inside(rn, t) V 3 p is-leaving(rn, p, t) V
is-in-fc(m, t) V is-leaving-on-ctrl(m, t))

Another useful predicate, already-sent : D a t a T i m e , reflects the fact that a data
message has passed through the TN:

already-sent(rn, t) (reception(rn) < t A l is-inside(m, t))

We discuss below the conformity of Our forma1 specification with each c h s e
of the informa1 specification and we possibly state the corresponding property to
be checked.

1. This clause is obviously satisfied since a,ny mode1 of PORT-INDEX (resp.
ROUTE-INDEX) is a set of cardinality N (resp. M).

2a. According to Axioms CTRL(G), DATA-ARRIVAL(B), TRANSIT(27-30), two dis-
tinct messages cannot be on the same port at the same moment.

2b. Here, we want to check if arrivals and/or departures of messages rnay occur
simultaneously. For instance, in order to know whether two da.ta ports-in can
simultaneously receive mesmges we check that it is possible that
3 t 3 rn 3 rn’ 3 p 3 p’ p # p’ A is-entering(rn, p, t) A is-entering(rn’, p‘, t)

2c. This clause is exactly expressed by Axiom DATA-ARRIVAL(3).

3. Even if the specification does not express any priority between ports or at
the level of messa.ge transit, it is clear that fairness properties cannot be
treated in the algebraic and classical logic frameworks.

4. We check the following property
V rn 3 t arrival(m) < t

3 (l (3 p is-entering(rn, p, t) V is-inside(rn, t)) V is-in-fc(rn, t))

8. The problem of the initial state has been deliberately left unspecified. We
do not even specify that the T N has to have the beginning of its history.
Moreover, Our modification (see Section 2.1) overrides this clause. At the
initial state, if there is one, al1 data ports are closed (see Figure 5), al1 routes
a.re enlpty (see Axiom DEFINING-ROUTE(~)) and both control port-in and
control port-out are open (a.nd rema.in open).

Ga. The reception of a control message c of type is-add-port ma.kes the da.ta.
port port(c) open (see Figure 5). We may additionally verify the property it
is possible that

p v t 3 t’ 3 rn (is-open(p,t) A t 5 t’) 3 is-entering(p,rn,t’)
This would ensure that an open data. port-in 1na.y receive messa.ges.

Gb. This clause corresponds to Axioms DEFINING-ROUTE(2, 3).

- 415 -

6c. This clause corresponds to Axioms TRANSIT(21, 25).

"a. Properties which guarantee that faulty messages are those described in the
informa1 specification will be discussed in the sequel. We state below a pro-
perty that ensures that a data message, that is never faulty during its history,
leaves the T N through an open data port-out wsociated with the route of
the message at the t h e of its reception:
(W lis- in-fc(m, t)) =+

3t' 3 p (p E open-ports(rsute(m), receptisn(m)) A is-leaving(m, p, t'))

'Pb. Due the modifications (see Section 2.1) which overrides tAis cla.~~se, we read
it: no data m e s s a g e may disappear intside the TN. This is s t akd as follows:

(is_leawing-sn_etPI(m, t') =+ t 5 t'))) +- is-inside(m, t)
(reception(m) 5 t A (3t' ((3p is-lcaving(m, p, t') + t 5 t') V

7c. We did not define a faulty state. According to Clause 9 faulty messages are
those which go to the faulty collection. Consequently, this clause corresponds
to Axiorn TRAMSIT(~~) .

8. The fact that ports-out transmit the message outside the TN corresponds to
the formula

(is-leaving(rn, p, t) V is_leaving-on-ctrl(m, t)) +- 3' already-sent(m, t')

In order to show that messa.ges can leave t.he T N in any order we ma.y check
that it is possible that
3m 3m' (arrivaI(m) 5 arrival(m') A 3t (is-insida(m, t> A aIready-sent(m', t)))

3m 3rd (arrival(m) 5 arrival(m') A 3t (is-inside(m', t) A alrsady-sent(m, t)))
and that it is possible that

9. This clause corresponds Axioms TRANSIT(18, 19, 23).

1Ua. Faulty control messages are precîsely those in the faulty collection. This
clause corresponds therefore t o Axiom TRANSIT(23).

lQb&c. We did not define a s faulty state. According to @lause 9 faulty messages a.re
those which go to the faulty collection. Consequently Axioms TRANSIT(1 7 3 ,
19) describe precisely properties required by Clause 10b&c.

11a. Due to the latter remarlc this corresponds to Axiom TWANSIT(19).

19b. For this clause Ive may check that it is possible that
3m 3t (is-waiting_inside(m, t) A arrival(m) + T < t)

l lc . This corresponds to Axioms TRANSIT(21, 25).

12. Nothing to check.

Of course the properties stated above should be proved. The use of a theorem
prover would make emier this task.

L.

- 416 -

5 Conclusions

SVe have presented an algebraic specification of the Transit Node system.
The underlying formalism is Many-Sorted First Order Logic with Equa.lity. Con-
sequently we do not use techniques devoted to concurrency or rea.1 time. The idea
which has allowed us to overcome the usual limitations of “classical” algebraic spe-
cifications to express concurrent and real time properties was the use of a,n abstract
da.ta type which make explicit temporal aspects in the system specification.

The example of the TN seems to be representative for a la.rge class of concurrent
a.nd real time systems which can be characterized as communicating processes ex-
changing static data.5 It shows that within classical many-sorted logic it is possible
to specify concurrent and real time systems. Moreover this kind of specifications
lias the following advantages:

0 Apa.rt from modularity aspects, the semantics is simple and well known. It
allow to express the true concurrency (no need of interleaving semantics).

On the contrary to algebraic specifications of concurrency, the same for-
nlalism is used to express data type and static components properties of a
system as well as its dynamic behaviour.

0 Proof techniques which might be used to check the conformity of a forma.1
specification with the informa1 requirements are well known and several tools
which support such proofs are available or under development.

The limits of this approach are intrinsic to first order logic. It is mainly the
matter of the incompleteness of theories which would be useful for modeling tem-
poral aspects. We also notice that classica.1 first order logic seems to be too fine
for specifying simple dynamic aspects. For instance, in order to express that two
actions a and a‘ (represented by two predicates depending on time) should succeed
each other one needs to write:

(a(t) A a’(t‘)) + (t < t‘ A (t < t’ A t ‘ < t” =+ (a(t’) V a’(t’))))
a(t) =+ 3t’ a’(t’)

This might be avoided in an approach which includes a logic of time interva.ls, for
instance in the style of [4]. We believe that, more generally, the use of partial order
builtin to the semantics would make temporal causalities between actions easier
to express, especially in the contexts of recent results in resolution-style theorem
proving. Among recent advances in this area we may cite [2] where authors provide
a refutationally complete set of inference rules which besides the usual rules such
t,llat ordered resolution, ordered paramodulation or superposition include a new
rule called chaining for dealing with transitive relations. Taking these results into
account, Our future work will include some experiments with the system “Saturate”

5This class does not include systems in which a process may be sent as a datum to another
process.

- 417 -

[G] implementing those techniques. This tool is currently under development a.t
Universitat Politècnica de Catalunya (Barcelona).

We did not discuss in this paper modularity issues. However, a careful look
a.t the structure of Our specification leads to remarlc that dependencies between
modules reflect the temporal causality between different kinds of events. For ins-
tance, since no data may arrive to a closed port, module DATAARRIVAL uses
lnodule OPEMIN@-PORTS which in turn uses module CTRL beca.use cont.ro1 mes-
sages cause port opening.

Acknswledgmen'ts I gratefully acknowledge And6 Arnold, Michel Bidoit and David
Janin for stimulating discussions. This work is part,iaUy supported by CNRS GDR de
Programmation - Worlhing G ~ o u p VTT.

[l] E. Astesiano and G. Reggio. Algebraic Specification of Concurrency. In M. Bi-
doit and C. Choppy, editors, Recen.t Trends i n Data Type Specz.cation, LNCS
655, pages 1-39, Dourdan, Sept. 1991. Selected papers from the sth Workshop
on Specification of Abstract Data Types.

[a] L. Bachmair and H. Ganzinger. Rewrite Techniques for Tnnsitive R.elations.
Technical Report MPI-1-93-249, N1a.x-Pla.nck-Institut fiir Infornlatik, Saarbrii-
cken, Nov. 1993.

[3] M. Bidoit. Pluss, un 1a.ngage pour le développement de spécifications a.lg6-
briques modulaires. Thèse d'Etat, Université de Paris-Sud, 1989.

[4] J. Y. Halpern a,nd Y. Shoham. A Propositional Modal Logic of Time Intervals.
J. ACM, 38(4):935-962, 1991.

[SI T. Knapik. j'p&cifi;Jicadions algkbriqves obserzradio~llnelles m.adu/uires: un.r si-
n z a h p e fondke sur '2me relation de satisfaction observatiomelle. PhD thesis,
Université de Paris-Sud, Ma,r. 1993.

[G] P. Nivela and R. Nieuwenhuis. Saturation of First-order (Constra.ined) Clauses
witll the Saturate System. In C. Kirchner, editor, Rewri t ing Teclr.w%ques a n d
Applzcations, ENCS 690, pa.ges 446-451, Montreal, June 1993.

- 418 -

