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Abstract

We discuss the use of algebraic specifications for the description of the
requirements of concurrent and real time systems. The underlying logic is the
usual Many-Sorted First Order Predicate Calculus with Equality without any
concurrent features. In order to express dynamic and real time properties,
we specify a data type, the role of which is to model time. This discussion
is motivated by our specification of the “Transit Node” system.

1 Introduction

The first stage of formal system development cousists of writing a requirement
spectfication. It is a document that expresses abstractly properties of a system
to be developed. Consequently, specification techniques used for this aim should
provide great expressive power. Abstract data type specifications based on first
order logic are widely recognized as such. However, the commonly-held opinion
is that it is impossible to express concurrent and real time properties using this
technique. This leads to the development of more specialized techniques on top
of algebraic specifications. In [1] these are referred to as algebraic specifications of
concurrency.

The aim of the Transit Node case study presented in this paper is to show
that concurrent and real-time systems can be specified in a satisfactory way in
the framework of “pure” algebraic specifications based on classical Many-sorted
First Order Logic with Equality. This may be achieved by specifying an abstract
data type, the role of which is to represent time. It is then possible to test the
elapsed time and therefore express real time properties. We are also able to express
concurrent properties. In order to say that two actions a and a’ must synchronize,
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we write ¥t a(t) <> a’(t). Both actions are represented by predicates a,a’ : Time
on the sort Time.

This paper is organized as follows. Section 2 provides the informal specification
of the Transit Node system. In Section 3 we comment on an algebraic specification
of this system. Section 4 is a discussion of the conformity of the presented algebraic
specification with the informal specification. The last section is devoted to some
conclusions and perspectives of this work.

2 Informal Specification

This case study was defined in the RACE project 2039 (SPECS : Specification
Environment for Communication Software). It consists of a simple transit node
where messages arrive, are routed, and leave the node.

The informal specification reads as follows:!

Clause 1 The system {o be specified consisls of a transit node with: one Control
Port-In, one Control Port-Out, N Data Ports-In, N Data Ports-Out, M Routes
through. (The limits of N and M are not specified.)

Clause 2 (a) Fach port is serialized. (b) All ports are concurrent to all others.
The ports should be specified as separate, concurrent entities. (c) Messages arrive
from the environment only when a Port-In is able {o treat them.

Clause 3 The node is “fair”. All messages are equally likely 1o be treated, when
a selection must be made,

Clause 4 and all date messages will eventually transit the node, or become faulty.
Clause 5 Initial State : one Control Port-In, one Control Port-Out.

Clause 6 The Control Port-In accepts and treats the following three messages:

(a) Add-Data-Port-In-&-Out(n) : gives the node knowledge of a new Port-In(n)
and a new Port-Out(n). The nodes starts to accept and treat messages sent
1o ihe Port-In, as indicated below on Data Port-In.

(b) Add-Route(m),(n(i), n(j)...) : gives the node knowledge of a route associating
route m with Data~Port-Out(n(i),n(j),...)-

(c) Send-Faults : routes some mnessages in the faulty collection, if any, to Control
Port-Out. The order in which the faulty messages are transmitted is not
specified.

1We present a slightly modified version of this specification with respect to the original one
where some requirements turn out to be inconsistent.
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Clause 7 A Data Port-In accepts and treats only messages of the {iype
Route(m).Data.

(a) The Port-In routes the message, unchanged, to any one (nondeterminate) of
the open Data Ports-Out associated with route m at the time of arrival. If there
is no such port the message becomes faulty. (b) (Note that a Data Port-Out s
serialized — the message has lo be buffered until the Data Port-Out can process
it). (¢) The message becomes a faully message if ils transit time through the node
(from initial receipt by a Data Port-In to transmission by a Data Port-Out) is
greater than a constant time T.

Clause 8 Data Ports-Out and Control Port-Out accept messages of any type and
will transmitl the message out of the node. Messages may leave the node in any
order.

Clause 9 All faulty messages are eveniually placed in the faulty collection where
they stay until @ Send-Faults command message causes them to be routed to Control
Port-Out.

Clause 10 Faulty messages are (a) messages on the Control Port-In that are not
one of the three commands listed, (b) messages on a Data Port-In that indicate

an unknown route, or (¢) messages whose transit time through the node is greater
than T.

Clause 11 (a) Messages that ezceed the transit time of T become faully as soon
as the time T is exceeded. (b) It is permissible for a faulty message lo not be
routed to Control Port-Out by e Send-Faults commend (because, for ezample, it
has just become faulty, but has not yet been placed in the foulty collection), (c) but
all faulty messages must eventually be sent to Control Port-Out with a succession
of Send-Faults commands.

Clause 12 [t may be assumed that a source of time (time-of-day or a signal each
time interval) is available in the environment and need not be modeled with the
specificalion.

2.1 Modifications and Additional Assumptions

For the sake of simplicity, our formal specification will not completely conform
to the informal requirements, precisely in the following points:

1. All data ports are closed in the beginning if there is one. This differs from
Clause 5.

2. The buffering is unspecified although data messages cannot disappear inside
of the T'N. This slightly differs form Clause 7b.
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We also consider the following additional assumptions:

Assumption 1 The reception and the decoding of any message may take some
time which is smaller than the constant T.

Assumption 2 The information carried by a control message is always correct.
This means that a conirol message may not atltempl to open a non-existent port,
define a non-ezistent roule or associate a non-existent port to a route.

Assumption 3 The routing information carried by a date message is always cor-
rect.

Assumption 4 A message cannot arrive twice at the TN. In fact, nothing is as-
sumed aboul equalily of messages. Thus in the models of this specification, different
occurrences of a message are represented by different messages. An additional abs-
traction may be gained using an observational equality which is not a congruence as
in [5]. This would allow to identify two messages which arrive at different instants

Assumption 5 All routes are emply in the beginning if there is one.
Assumption 6 Both control pori-in and conirol port-out are always open.

Assumption T Any {ransmission of a correct data message will end before the
total transit time of the message through the TN becomes greater than a constant

T.

3 Formal Specification

In this section we describe our formal specification of the Transit Node. This
is written in the PLUSS specification language [3]. Note that all free variables
occurring in axioms are considered as implicitly universally quantified.

3.1 Specifying Time

As mentioned in introduction, it appears essential to have a model of time
on the top of which our specification could be built. For this reason, we provide
a specification of time which describes the models we are interested in. Note that
this is not required by the informal specification.

According to Clause 12, a source of time is available in the environment. This
leads us to the simplification that each component if the TN is evolving in the
same global time. Consequently, we try to describe a class of linear models of time
which includes both discrete and dense models, with or without an initial instant.
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spec : TIME
sort : Time
operations :
—+_: Time Time — Time
predicates :

<, < : Time Time spec : TIME_WITH_T
axioms : use : TIME

-t<t, sort : Time

t<t'At <ty =>t <t operations :

t<t <= (t<t'vi=t'), T:— Time

t<t'vt' <, end TIME_WITH_T.

t+t' =t +1t,

(t+t’)+t" =t+(t’+t"),
t<t <= t+t" <t/ +1t"
where : t,t',t" : Time

end TIME.

Figure 1: Time

We argue that the specification of the time of Figure 1 is abstract enough in the
sense that it describes the models we are interested in. The time is defined by means
of an ordering and a sum. The 4 first axioms define a strict total ordering and the
associated non-strict ordering. The sum is defined as an associative-commutative
operation growing in each of its arguments. It is possible to slightly modify this
specification in order to deal only with dense time. This may be achieved by adding
the axiom:

vevt” 3t i<t = <t At <t”)

It also easy to restrict to models with an initial instant by introducing a constant
0 :— Time and adding the axioms 0 <tand t+0="t.

. Notice that in the framework of total algebras, specification TIME has only infi-
nite models. This is due to the fact that the sum is a growing and total operation.
A slightly more abstract specification, including both finite and infinite models,
would be obtained in the framework of partial algebras which has not been used
here for sake of simplicity.

As specified in TIME_WITH_T (see Figure 1) module TIME is enriched with the
constant T stipulated in Clauses 7c, 10c et 11a.

The problem of specifying time is tackled here as an example. A deeper study
of this point is necessary.
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3.2 Data Ports and Routes

In order to define data ports and routes, we introduce in module CONST (see
Figure 2) constants N et M which express the number of data ports and routes.

spec : ROUTE_INDEX

use : CONST
sort : Route spec : CONST
i : NAT
operafions : opera’t;fles A
3 18 &
route_num : Route — Nat
. - ’ N — Nat
axioms : M : — Nat
m<M = 3rroute_num(r) =m, axioms :
route_num(r) = route_num({r’) = r=r "0'< N
where : 1, t': Route; m: Nat 0< M'
1 ts :
orgets end CONST.

route_num, M, Nat
end ROUTE_INDEX.

Figure 2: Routes as a set of cardinality M

Sort Route is defined as a set of cardinality M. For this aim we consider an
operation route_num : Route — Nat defined as an injective map whose range is
the segment [0, M — 1]. Due to the hierarchic constraints and “forgets” clause,
specification ROUTE_INDEX has only one class of isomorphic models. Data ports

spec : PORT_INDEX
use : CONST
sort : Port
operations :
port_num : Port — Nat
axioms :
a<N = 3pport_num(p)=n,
port_num(p) = port_num(p’) = p=p
where : p, p': Port ; n: Nat
forgets :
port_num, N, Nat
end PORT_INDEX.

!

Figure 3: Data ports as a set of cardinality N
are specified in an analogous way (see Figure 3). However it is important to notice

that in our specification a data port represents a pair of ports: a data port-in
and a data port-out. Due to Clause 6a such a pair needs not to be represented
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by two separate entities since our specification preserves the independence of the
reception and transmission of messages at an arbitrary given instant.

3.3 Control Messages

Specification module CTRL (see Figure 4) defines control messages and their
arrivals to the TN. Predicates is_add_port, is_add_route, is_send_faults define dif-
ferent kinds of control messages stipulated in Clause 6. According to Axioms 1-3,

spec : CTRL
use : TIME_WITH_T
sort : Ctrl
operations :
arrival, reception : Ctrl — Time
predicates :

is_add_port, is_add_route, is_send_faults, is_unrecognized : Ctrl
is_entering : Ctrl Time
axioms :
1: =(is_add_port(c) A is_add_route(c)),
: —(is_add_port(c) A is_send_faults(c)),
: —(is_add_route(c) A is_send_faults(c)),
: unrecognized(c) <=> —(is_add_port(c) V is_add_route(c) V is_send. faults(c)),
: arrival(c) < reception(c),
: is_entering(c,t) Ais_entering(c’,t) = c=¢,
: is_entering(c,t) <= arrival(c) < t At < reception(c)
where : ¢,c’ : Ctrl; t,t' : Time;
end CTRL.

-1 U W

Figure 4: Control messages

any control message can have at most one of those 3 types. If none of the above
predicates is satisfied, the message is unrecognized (see Axiom 4).

Predicate is_entering defines the activity of the control port-in. An atomic
formula is_entering(c, t) is given the following meaning: at timet, the control port-
in is busy due to the reception of the control message c. For this aim, each control
message c is provided with the instant of its arrival to the TN (arrival(c)) and
the instant when it is completely received by the TN and decoded (reception(c)).
According to Axiom 7, the control port-in is occupied by the control message c
between the instants arrival(c) and reception(c). The mutual exclusion (see Clause
2a) on the control port-in is expressed by Axiom 6. Note that arrivals of data
messages are specified in an analogous way.
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3.4 Opening Data Ports

Specification module OPENING_PORT (see Figure 5) tells us how control mes-

spec : OPENING_PORT_INDEX
use : PORT, CTRL
operations :
port : Ctrl — Port
predicates :
is_open : Port Time
axioms :
Vp Vt (is_open(p,t) <= 3c (reception(c) < t Ais_add_part(c) A port(c) = p))
where : p:Port; t: Time;
end OPENING_PORT.

Figure 5: Action of control messages on data ports

sages act on data ports.

Operation port associates a data port with each control message. The entry
of a control message ¢ of type is_add_port into the TN causes the opening of the
port port(c). Once more, the use of partial algebras would be more convenient (but
more complicated), since the operation port needs not to be defined on messages,
the type of which is not is_add_port.

The only axiom of this module states that a data port is open if and only if
a control message has ordered its opening. It follows from the above that no data
port is open before the reception of a control message. In particular, unlike in
Clause 5 but according to our modification (see Section 2.1), at the initial state,
if there is one, all data ports are closed.

3.5 Defining Routes

According to Clause 6b a route is defined by associating a set of data
ports with it. For this reason, we introduce a specification of sets of data ports
SET_OF_PORTS. The latter is obtained as an instance of the generic specification
SET (assumed well known). The parameter ELEM is instantiated by the specifica-
tion PORT_INDEX via the signature morphism Elem — Port. The resulting sort
Set is renamed into Ports.

Specification module DEFINING_ROUTE (see Figure 7) describes how control
messages act on routes. Two additional operations? associate a route (def _route(c))
and a set of data ports (ports(c)) with each control message c. Operation

2Qnce again, these operations could more usefully be partial, which the total algebra frame-
work does not allow.
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spec: SET_OF_PORTS
as : SET(ELEM +— PORT_INDEX by Elem + Port)

renaming : Set into Ports

end SET_OF_PORTS.

Figure 6: Sets of data ports as an instance of the generic SET by PORT_INDEX

associated_ports(r, t) returns a set of data ports associated with a route r at time
t.

At the reception of a control message of type is_add_route, the route
def_route(c) has the set ports(c) associated with it. This is guaranteed by Axiom 2.
Furthermore the set of data ports associated with a route can change at an instant
t’ with respect to an earlier instant t only if a control message of type is_add_route
associates another set of data ports to this route at an instant bounded by t and
t’. That is the meaning of Axiom 3.

According to Axiom 1 the set of data ports associated with a route is empty
before receiving a control message that defines this route. In particular, at the
initial state, if there is one, all routes are empty. This is in conformance with our
Assumption 5.

spec : DEFINING_ROUTE
use : ROUTE_INDEX, CTRL, SET_OF_PORTS
operations :
def_route : Ctrl — Route
ports : Ctrl — Ports
associated_ports, open_.ports : Route Time — Ports
axioms :
1: (Vc ((def_route(c) A route(c) = r) = t < reception(c)))
= associated_ports(r,t) = &,
2 : is_add_route(c) A def_route(c) =r
=> associated_ports(r, reception(c)) = ports(c),
3: (t < t’ Aassociated_ports(r,t) # pts A associated_ports(r,t') = pts
= e (t < reception(c) A reception(c) < t’' A is_add_route(c) A
def_route(c) = r A ports(c) = pts)),
4: pe€open_ports(r,t) <= (p € associated_ports(r,t) A is_open(p, t})
where : t,t' : Time; c: Ctrl; r : Route; p : Port; pts : Ports
end DEFINING_ROUTE.

Figure 7: Action of control messages on routes
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Finally we introduce an operation open_ports which yields the set of open
ports among those which are associated to the route. This operation will be used
for routing as described in Clause 7a.

3.6 Arrivals of Data Messages

Arrivals of data messages (see Figure 8) are specified similarly to arrivals of
control messages. Each data message m is provided with the instant of its arrival
to the TN (arrival(m)), the instant when it is completely received by the TN
and the routing information is decoded (reception(m)), the data port on which it
arrives (entry(m)) and the route (route(m)) it has to be routed to. The predicate

spec : DATA_ARRIVAL
use : OPENING_PORT, ROUTE_INDEX
sort : Data
operations :
arrival, reception : Data — Time
entry : Data — Port
route : Data — Route
predicates :
is_entering : Data Port Time
axioms :
1 : arrival(m) < reception(m) A reception(m) < arrival(m) + T,
2: is_entering(m,p,t) Ais_entering(m’, p,t) = m=m’,
3: arrival(m)=1t = is_open(entry(m),t),
4 : is_entering(m,p,t) < arrival(m) < t At < reception(m) A entry(m) = p,
where : m,m’ : Data; p: Port; t: Time;
end DATA_ARRIVAL.

Figure 8: Arrival of data messages

is_entering defines the occupation of data ports-in. The axioms are analogous to
those of the specification CTRL except Axiom 3 which, according to Clause 2c,
states that a data message may not arrive to a closed data port.

3.7 Transit of Messages

Specification module TRANSIT (see Figures 9 and 10) describes different stages
of lifecycle of messages inside the TN and their transmission outside of the TN.
These stages are represented by the predicates introduced in this module. Our
understanding of the informal specification leads us to consider the following stages
of the lifecycle of data messages:
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Message m is been receiving by data port-in p (is_entering(m, p, _)).2

At the reception instant reception(m) the TN detects whether it can be rou-
ted to a port of its route route(m). It consists of checking whether there is an
open port associated with the route (open_ports(route(m), reception(m)) #
@). If such a port exists, the message turns to the waiting state
(is_waiting_inside(m, _)). It corresponds to the situation when the message
is not “too old” or has not been yet detected as such.

If no such port exists at the reception time, the message is put to the faulty
collection (is_in_fe{m, reception(m))).

A waiting message (is_waiting_inside(m, _)) which will not become “too old”
before the end of its transmission outside (i.e. whose transit time through the
TN will not exceed the constant T) is routed to the one among those data
ports-out which have been associated with its route at its reception instant
and were open at that instant. This is the beginning of the transmission on
the data port-out (is_leaving(m, p,_)).

A waiting message (is_waiting_inside(m, _.)) is moved to the faulty collection
(is—in_fe(m, ) after being detected as “too old”.

From the faulty collection a message moves at some moment to the
control port-out after after the reception of a send-faults control mes-
sage. This is the beginning of the transmission on the control port-out
(is—leaving_on_ctrl(m, _)).

At some moment any transmission ends and the transmitted message is
already outside the TN. Notice that this is represented by the fact that no
atomic formula built from predicates is_entering, is_waiting_inside, is_in_fec,
is_leaving or is_leaving_on__ctrl holds for the message.

A control message passes through the following states:

Message c is been receiving by the control port-in (is_entering(c, .)).

At the reception instant reception(c) the TN detects whether the message is
incorrect (is_unrecognized(c)).

After being interpreted, a correct control message disappears inside of the
TN.

An incorrect control message is put to the faulty collection at the reception
time (is_in_fc(m, reception(m))).

Form the faulty collection a control message moves as any data message at
this stage.
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spec :

predicates :

axioms :
1: is_waiting_inside(m,t) A is_waiting_inside(m,t") At <t” =
((t <t At < t") = is_waiting_inside(m,t')),
2 ¢ isin_fo(m, t) Als—in_fo(m, ") At <t = (1 <t'At <t") = is_in_fe(m,t')),
3: isain_fe(c, t) Asdin_fe(c, ") At <t = (1<t At <t") = isin_fe(c,t')),
4 : is_leaving_on_ctrl(m,t) Ais_leaving_on_ctrl(m,t") At <t" =
(k< t' At <t") = is_leaving_on_ctri(m, t')),
5 : is_leaving_on_ctrl(c,t) Ais_leaving_on_ctrl{c,t") At < t" =
((t <t' At < t") = is_leaving_on_ctri(c, t')),
6 : is_leaving(m,p,t) Ais_leaving(m,p,t") At <t =
((t LAt < t") = is_leaving{m, p, t')),
7: t<reception(m) = (~is_waiting_inside(m,t) A —is_in_fc(m, t)),
8 : t<reception{c) = —is_in_fc(c,1),
9 : is_waiting_inside(m,t) Ais_in_fe(m,t") = t<t,
10 : is_in_fe(m, t) Ais_leaving_on_ctrl(m,t’) = t<t,
11 : is_infc(c,t) Ais_leaving_on_ctrl{c,t') = t<t/,
12 : is_waiting_inside(m, t) A is_leaving(m,p,t") = t<t,

TRANSIT
use : DEFINING_ROUTE, DATA_ARRIVAL

is_waiting_inside, is_in_fc, is_leaving_on_ctrl : Data Time
is_in_fc, is_leaving_on_ctrl : Ctrl Time
is_leaving : Data Port Time

Figure 9: Internal flow and transmission of messages (part 1)

This is specified as follows

1.

Continuity and unigqueness

Any message can be in a given state only once. This means that,
for a given message, predicates is_waiting_inside, is_in_fc, is_leaving and
is_leaving_on_ctrl can hold on one time interval only. This is guaranteed
by Axioms 1-6.

Succession of stages: some necessary conditions
These are provided by Axioms 7-12 which describe minimal assumptions on
the precedence of different stages of messages’ lifecycles.

. Waiting state

Sufficient condition for reaching the waiting state is provided in Axiom 13.

. Transmission on data port-out

Axiom 14 is a necessary condition for a data message to be put on a data

3In this discussion we omit variables of sort Time which are replaced by an underscore.
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13:
14 :
15:
16 :
17

18

22 :
23 :
24
25 :

26 :
27 :
28 :
29 :
30 :
31:
32:

open_ports(route(m), reception(m)) # @ = is_waiting_inside(m, reception(m)),
is_leaving(m, p,t) = p € open_ports(route(m), reception(m)) A —is_in_fc{m, ")),
(is—waiting_inside(m,t) AVt' —is_in_fc(m,t')) = 3" Ip is_leaving(m,p, "),
is.leaving(m,p,t) = 3t (t <t' A ~is_leaving(m,p,t')),
(open_ports(route(m), reception(m)) # @ Ais_in_fc(m, 1)) = arrival(m)+ T < t,

: open_ports(route{m), reception(m)) =@ = is_in_fc(m, reception(m)),
19:
20 :
21:

(is—waiting_inside(m,t) Aarrival(m) + T < t) = 3t' (t <t' Ads_in_fc(m,t"),
is_leaving_on_ctrl(m,t) = dJc (arrival(c) < t Ais_in_fc(m, reception(c))},
(is—in_fc(m, reception(c)) A is_send_faults(c)) =

3t (reception(c) < t A is_leaving_on_ctrl(m, t}),
is_leaving_on_ctrl(m,t) = Jt' (t < t’' A—is_leaving_on_ctrl(m,t")),
unrecognized(c) <= is_in_fc(c, reception(c)),
is_leaving_on_ctrl{c,t) = 3c (arrival(c’) <t Ais_in_fc(c, reception{c’}}),
(is—in_fc(c, reception(c’)) A is_send_faults(c’)) =

3t (reception(c’) < t A is_leaving_on_ctrl(c, t)),
is_leaving_on_ctrl(c,t) = 3Jt' (t < t' A —is_leaving_on_ctrl(c, t')),
is_leaving(m, p, t) A is_leaving(m’,p,t) = m=m’,
is.leaving_on_ctrl(m, t) Ais_leaving_on_ctrl(m’,t) = m=m',
is_leaving_on_ctri{c, t) A is_leaving_on_ctri(c’,t) = c=c,
—(is_leaving_on_ctrl(m, t) A is_leaving_on_ctrl(c, 1)),
—(is_leaving_on_ctrl(m, t) A 3p is_leaving(m, p,1')),
(is_leaving(m, p,t) Ais_leaving(m,p’,t')) = p=p’
where: t,t': Time; m, m':Data; ¢, ¢': Ctrl; p, p': Port

end TRANSIT.

Figure 10: Internal flow and transmission of messages (part 2)

port-out. A sufficient condition is stated in Axiom 15. Axiom 16 tells us that
a data message cannot occupy a data port-out for an infinite time.

. Data messages in the faulty collection

Axiom 17 is a necessary condition for a data message with a correct route
to be put in the faulty collection. Sufficient conditions are stated in Axioms
18 and 19. Axiom 21 describes the situation when a data message leaves the
faulty collection and enters the control port-out.

. Transmission of faulty data messages

A necessary condition is provided by Axiom 20 and the sufficient condition
by Axiom 21. Axiom 22 tells us that a data message cannot occupy a control
port-out during an infinite time.

Control messages in the faulty collection
The necessary and sufficient condition for a control message to be put to the
faulty collection is Axiom 23.
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8. Transmission of faulty control messages
This is described by Axioms 24, 25 and 26 which are analogous of Axioms
20 and 21 for faulty data messages.

9. Mutual exclusion on ports-out
This is defined in Axioms 27-30.

10. Axioms 31 and 32 describe the fact the a data message can be sent only
through one port-out. These are probably redundant with respect to the
other axioms.

4 Conformity of the Formal Specification

In this section we address the problem of the conformity of our formal spe-
cification with respect to the informal requirements of the Transit Node system
including modifications and assumptions listed in Section 2.1.

It is clear that, in general, one cannot know whether a formal specification truly
describes the required system. One can only check that some essential properties
of the system are satisfied by the theory described by the formal specification. This
increases one’s confidence in the conformity of the formal specification with respect
to the informal requirements. In the case of algebraic specifications this amounts
to proving that the properties we are interested in are the logical consequences of
the axioms of the specification.

For the conformity of our TN specification we need to distinguish between
two kinds of properties: necessily properties and possibility properties. In order to
make clear the distinction between them, note that any model of the specification
represents a complete scenario of the functioning of the TN, This leads to the
following remarks:

e The specification satisfies “P is possible” if and only if there is at least one
model of the specification satisfying the property P. Consequently, “P is
possible” is a consequence of the specification if and only if the specification
augmented with P is consistent.

e The specification satisfies “P is necessary” if and only if P is a consequence
(in the usual sense) of the specification.

Note that refutational theorem proving seems to be suitable for testing the validity
of both kinds of properties.

Possibility properties will distinguished by the mention “it is possible that”.
For necessity properties we do not make a special mention. Some properties will

4This distinction corresponds with the usual modalities of temporal logics. It is not very
surprising to rediscover them in the context of the temporal properties we deal with.
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be shortened using the predicate is_inside : DataTime, which reflects the fact that
a data message is inside the TN:
is_inside(m,t) <=> (is._waiting_inside(m,t) V dp is_leaving(m, p,t) Vv

is_in_fe(m, t) Vis_leaving_on_ctrl(m, t))

Another useful predicate, already_sent : DataTime, reflects the fact that a data
message has passed through the TN:

already_sent(m,t) <= (reception(m) < t A —is_inside(m, t))

We discuss below the conformity of our formal specification with each clause

of the informal specification and we possibly state the corresponding property to
be checked.

1.

2a.

2b.

2c.

o

Ga.

Gb.

This clause is obviously satisfied since any model of PORT_INDEX (resp.
ROUTE_INDEX) is a set of cardinality N (resp. M).

According to Axioms CTRL(6), DATA_ARRIVAL(2), TRANSIT(27-30), two dis-
tinct messages cannot be on the same port at the same moment.

Here, we want to check if arrivals and/or departures of messages may occur
simultaneously. For instance, in order to know whether two data ports-in can
simultaneously receive messages we check that it is possible that

Jt I3m Im’ Ip Ip' p#£p Als_entering(m, p, t) Ais_entering(m’, p’, t)

This clause is exactly expressed by Axiom DATA_ARRIVAL(3).

. Even if the specification does not express any priority between ports or at

the level of message transit, it is clear that fairness properties cannot be
treated in the algebraic and classical logic frameworks.

. We check the following property

Vm 3t arrival(m) <t
= (—(3p is_entering(m, p, t) Vis_inside(m, t)) V is_in_fc(m, t))

. The problem of the initial state has been deliberately left unspecified. We

do not even specify that the TN has to have the beginning of its history.
Moreover, our modification (see Section 2.1) overrides this clause. At the
initial state, if there is one, all data ports are closed (see Figure 5), all routes
are empty (see Axiom DEFINING_ROUTE(1)) and both control port-in and
control port-out are open (and remain open).

The reception of a control message ¢ of type is_add_port makes the data
port port(c) open (see Figure 5). We may additionally verify the property it
is possible that

Vp Vt 3t Im (is_open(p,t) At <t) = is_entering(p,m,t’)
This would ensure that an open data port-in may receive messages.

This clause corresponds to Axioms DEFINING_ROUTE(Z, 3).
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Ge.

7a.

7b.

Tc.

10a.

10b&ec.

1la.

11b.

1le.

12.

This clause corresponds to Axioms TRANSIT(21, 25).

Properties which guarantee that faulty messages are those described in the
informal specification will be discussed in the sequel. We state below a pro-
perty that ensures that a data message, that is never faulty during its history,
leaves the TN through an open data port-out associated with the route of
the message at the time of its reception:
(Vt —is—in_fe(m, t)) =
3t’ 3p (p € open_ports(route(m), reception(m)) A is_leaving(m, p, t'))

Due the modifications (see Section 2.1) which overrides this clause, we read

it: no data message may disappear inside the TN. This is stated as follows:
(reception(m) < t A (3t' ((Ip is_leaving(m, p,t') =t <)V

(is_leaving_on_ctrl(m,t') =t <t'))) = is_inside(m, 1)

We did not define a faulty state. According to Clause 9 faulty messages are
those which go to the faulty collection. Consequently, this clause corresponds
to Axiom TRANSIT(19).

. The fact that ports-out transmit the message outside the TN corresponds to

the formula
(is_leaving(m, p, t) V is_leaving_on_ctrl(m, t)) = 3t’ already_sent(m, t')
In order to show that messages can leave the TN in any order we may check
that it is possible that
Im Im’ (arrival(m) < arrival(m’) A 3t (is_inside(m, t) A already_sent(m’, t)))
and that it is possible that
Am Im’ (arrival(m) < arrival(m’) A 3t (is_inside(m’, t) A already_sent(m, t)))

. This clause corresponds Axioms TRANSIT(18, 19, 23).

Faulty control messages are precisely those in the faulty collection. This
clause corresponds therefore to Axiom TRANSIT(23).

We did not define a s faulty state. According to Clause 9 faulty messages are
those which go to the faulty collection. Consequently Axioms TRANSIT(17,18,
19) describe precisely properties required by Clause 10b&c.

Due to the latter remarlk this corresponds to Axiom TRANSIT(19).

For this clause we may check that it is possible that
Jdm Jt (is_waiting_inside(m, t) A arrival(m) + T < t)

This corresponds to Axioms TRANSIT(21, 25).
Nothing to check.

Of course the properties stated above should be proved. The use of a theorem
prover would make easier this task.
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5 Conclusions

We have presented an algebraic specification of the Transit Node system.
The underlying formalism is Many-Sorted First Order Logic with Equality. Con-
sequently we do not use techniques devoted to concurrency or real time. The idea
which has allowed us to overcome the usual limitations of “classical” algebraic spe-
cifications to express concurrent and real time properties was the use of an abstract
data type which make explicit temporal aspects in the system specification.

The example of the TN seems to be representative for a large class of concurrent
and real time systems which can be characterized as communicating processes ex-
changing static data.’ It shows that within classical many-sorted logic it is possible
to specify concurrent and real time systems. Moreover this kind of specifications
has the following advantages:

e Apart from modularity aspects, the semantics is simple and well known. It
allow to express the true concurrency (no need of interleaving semantics).

e On the contrary to algebraic specifications of concurrency, the same for-
malism is used to express data type and static components properties of a
system as well as its dynamic behaviour.

e Proof techniques which might be used to check the conformity of a formal
specification with the informal requirements are well known and several tools
which support such proofs are available or under development.

The limits of this approach are intrinsic to first order logic. It is mainly the
matter of the incompleteness of theories which would be useful for modeling tem-
poral aspects. We also notice that classical first order logic seems to be too fine
for specifying simple dynamic aspects. For instance, in order to express that two
actions a and a’ (represented by two predicates depending on time) should succeed
each other one needs to write:

() AF() = (E< ¥ A(E< ¥ AY < = (a(t)) V(1))

a(t) = 3t' a'(t')
This might be avoided in an approach which includes a logic of time intervals, for
instance in the style of [4]. We believe that, more generally, the use of partial order
builtin to the semantics would make temporal causalities between actions easier
to express, especially in the contexts of recent results in resolution-style theorem
proving. Among recent advances in this area we may cite [2] where authors provide
a refutationally complete set of inference rules which besides the usual rules such
that ordered resolution, ordered paramodulation or superposition include a new
rule called chaeining for dealing with transitive relations. Taking these results into
account, our future work will include some experiments with the system “Saturate”

5This class does not include systems in which a process may be sent as a datum to another
process.
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[6] implementing those techniques. This tool is currently under development at
Universitat Politécnica de Catalunya (Barcelona).

We did not discuss in this paper modularity issues. However, a careful look
at the structure of our specification leads to remark that dependencies between
modules reflect the temporal causality between different kinds of events. For ins-
tance, since no data may arrive to a closed port, module DATA_ARRIVAL uses
module OPENING_PORTS which in turn uses module CTRL because control mes-
sages cause port opening.
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