Accelerated Methods for the Block
Cimmino Row Projection Method
for Solving Large Nonsymmetric Linear
Systems

Emmanuel KAMGNIA
Department of Computer Science
University of Yaounde I
P.O. Box 812 Yaounde, CAMEROON

Abstract

The use of the row block projection method (block Cimmino) for
solving nonsymmetric linear system Ax = b gives rise to a symmetric
positive definite system Gz = g, where B is the sum of orthogonal
projection matrices P; = Ai(A:pri)_lA,T, and where the A;r’s are
block rows of A. In this paper we present an efficient implementation
of the cgT method for solving the derived symmetric positive definite
system. We use initial smoothing to accelerate the method and we
derive efficient techniques for estimating the initial smoothed vector.
Numerical results are given for the 2 row block case and since the
eigenvalues of G can then be calculated, we by-pass the computation
of orthogonal projections P;x of a vector z onto the range of A4; by
solving a transformed equivalent system. Test results show that the
method is robust.

Keywords: nonsymmtric linear system, projection methods, Cimmino row
block projection methods, block Stiefel method, cgl' method, smoothing,
Krylov subspace, Lanczos method.

1 Introduction

Over the last few years, researchers have concentrated their efforts on devel-
opping efficient iterative solvers for nonsymmetric linear systems Az = b,
where A is large sparse and nonsingular. In general one can group these

— 44] —

solvers into four categories: matrix splitting, C'G-like, residual polynomial
and symmetrization methods. The first three categories are restricted to
the case where A+ AT is positive definite or the spectrum of A lie on one side
of the imaginary axis. Symmetrization methods explicitely or implicitely
transform the original system onto a symmetric positive definite system
Gz = g which can be solved using some the existing powerful methods
designed for such systems. An example of the symmetrization method is to
use the CG method on the normal equation AT Az = ATb. This method,
however, has very often hindered on the following observations: (i) forming
AT A can be costly in terms of storage and processing time, (ii) the condi-
tion number k(AT A) is the square of x(A) which is a much serious problem
especially when A is not well conditioned. A family of symmetrization
methods which avoid these difficulties are the row projection methods. Let
A be partitionned into N blocks as follows: AT = [A;, A,--+, An] and b be
partitionned conformally. A row projection method is any algorithm which
requires the orthogonal projection Pz = A;(ATA;))" ATz of a vector z
onto range(A;) to be computed. One such method is the block Cimmino
method where the symmetric positive definite system is

(PPt Pyl =y, (D)
with
g= A (ATA) " b+ Ay (ATA2) " bot o+ Ay (4FAN) T by,
It is derived by premultiplying the system Az = b by
[A1(AT A, Ay (AT A, - An(AT AN ™Y
In the sequel we will write system (1) as
Gr =g. (2)

g and the projection P;xj of a vector zj onto the range of A; could be
formed by solving N independent linear least squares problems. For the 2
row block case, it can be shown [9], [10] that the eigenvalues of G = P, + P,
are given by

M(@G)=1%x¢;=1%cosb;, i =1,2,---,0/2,

where @.s are the angles between the hyperplane generated by A; and As.
For the 2 row block case, we could therefore study the behavior of a gradient

— 447 —

direction method for solving system (2) by solving instead of the equivalent
system

(I-K)o=F,)
where
K= diag(_ch TC2, 70ty T2 Cnf2y Crja—1s" " " cl)a

and where the cs, are defined above. This is the system that we later con-
sider for our numerical experiments. It is worth mentioning that the block
Cimmino method is well suited for parallel computation as the projection
can be computed in parallel.

Our primary interest in this paper is to develop appropriate techniques
to accelerate the row block Cimmino system. We consider two such tech-
niques: the block Stiefel method[6] and the cgT method[4]. We show that
the cgT method combined with initial smoothing is robust and we devise
an efficient method for estimating the initial smoothed vector. Finely we
show how a matrix-vector multiplication, a fundamental primitive in a cgT
step, can be computed efficiently.

2 Block Stiefel Method[6]

The classical Stiefel iteration[4] for system (2) produces residuals r; that
satisfy
rj = P;(G)ro, (4)

where P;(\) is a polynomial of degree < j given by
T;(“52)

Pi(A) = (y,+U) y VSAS (5)

in which T;(§) is the Tchebyshev polynomial of degree j given by

cos(j cos™1 £) €] <1
T;(6) = (6)
cosh(jcosh™' &) |¢] > 1.

If one has an estimate 7 of an interior eigenvalue A;11, for a small integer s

0<VS/\1S/\ZS"'S)‘S<77S>‘3+1S"'S/\mslu'

— 443 —

and if

m

o=y Tiz,

=1

where the zls are the eigenvector associated to the Als, then

rj = P~(G)TQ (7)
= ZT1P (/\)~z+ Z TzP (A)‘/z
=1 1=5+1
= T}-I—'r‘;»l.
But
T” 1
e
2 i)
Il T
ol = Ty(&D).

Thus, 7 is damped out faster than 7/ as j increases. The basic strategy of
the block Stiefel method is to anuihilate the contributions of the eigenvec-
tors 21, 23, + -+, 2s in 7; so that ||rj|l — 0 as

1

AmtAs !
(=)

and not as :

\m A)
/\m'—)\l

IfZ = (=n,z2,- -+, 2s) is the matrix consisting of the s eigenvectors corre-
sponding to s smallest eigenvalues of G, then instead of taking z; as the
j-th estimate, one takes

&;=; + 2(27GZ) 1 2T (8)

for which #; = g — G&; has a zero projection onto the space generated by
Z1y 23y 00, Zse 1.8, ZTfj = 0. Since

ZTGZ = diag(M, Mg, -+, As),

— 444 —

we have s T
z; = fvj—l—zgzi)\—mzi. (9)
i=1 *

In practice the eigenvalues and eigenvectors of G are not known so that
equation (9) cannot be used. We can however use methods such as cg to
estimate the extreme eigenvalues A; and A,,. A technique for approximat-
ing Z(ZTGZ)™1ZTr; is described in [6]. It is based on forming the QR
factorization of the matrix

Ry = [Tl—s+la7'l——s+2’ T,

where 1 is iteration number such that

1

/\m+/\sil
Tl(Am=Ast1

for a prescribed tolerance 7 which indicates that 7";’ is sufficiently damped
so that projection can be done.

3 The cgT Method[4]
Let us premultiply the system (2) by

B =G - RO,
where R(\) is a polynomial such that R(0) = 1. We then obtain the system

[I - R(G)]z = G™'[I — R(G)]g,
which we write as
Fz = f, (10)

where

f=67I - R@)g. (11)
Then

Ai(F) =1- R(M(G)),
and the process amounts to a spectral transformation of system (2), which,
hopefully with a proper choice of R(\), will make the condition number

of F' become smaller than that of G. Solving system (10) is not straight
forward because:

— 445 —

(i) to compute the initial residual one needs to form the right hand side f
which would require solving the system Gf = [I — R(G)]g,

(ii) each matrix vector multiplication Fry will require forming the matrix
polynomial vector product R(G)r; which may be expensive if the
degree of R(A) is large.

The cgT Method is an efficient method for solving system (10) without
forming f explicitly. The method has two stages:

(i) an inner stage, called inner method, where the Tchebychev method is
used to form the matrix vector Fry;

1) an outer stage, called outer method, where the cg uses information
g g
generated by the inner method to update the approximate iterate.

The inner method is therefore subordinate to the outer method because for
every step of the latter, a fixed number of steps of the inner method (m, say)
must be carried out. R(A) can be chosen to be any residual polynomial
R, (X) satisfying R,,(0) = 1. For example Flanders and Shortley[4] propose
the 3-term recurrence formula

Rip1tA) = Rp(AN)+ ARp—1(\) k=0,1,2,---,m
1)
ARL(N) = E[/\Rk(A) + ap—1ARR_1(N)],

where Rg = 1, AR_1(A\) = 0, for computing R,,(A). If fr and oy are
computed as in algorithm 1 below, it can be shown that

Tp(#H2)
Tk(ﬂ) ?

w—v

Ri(N) = v <A<y, (12)

where Ty (A) is defined as above. Let R(A) be the residual polynomial R,,(})
for a fixed m. In the sequel, we consider the conjugate direction methods
for solving Gz = g that use the following flow diagram

Algorithm 1:
1. set a; =0,Ar; =0, Ar; =0, w = cosh™ %”_L—Z

2.5tk =0

3. choose initial extimate zg

— 446 —

4, form initial residual rq = g — Gzg
5. repeat until convergence test met

5.1 compute

+ s
e k=20
B =
u—v cosh({k+1)w) k>0
4 cosh{kw)
5.2 compute
Azy = ('fk + ap_1Az_y)

B
5.3 compute
At = ——(Gm + apo1 Arg_q)

5.4 set xp41 = xf + Az
5.5 set rpa1 = 7 + AT
5.6 if convergence tolerance met stop. Else,

5.7 cowmpute
0 k<o

p—y __ cosh{ kw; .
4 cosh{{k+1)w k Z 0

ap =

58 setk=k+1

end repeat

To solve system (10), the cgT Method proceeds as follows:

3.1 Forming the Initial Residual 7y = f — Fi,

Suppose we solve Gz = g, using the inner method and starting with zo =
Zo. Then
To=6g— GZE().
Since
Tm = Rm(G)TO’
it follows that
Ty = (I — F)’I‘o.

447 —

Thus,
TO— T = FTOa

so that
G(zm — x0) = Fg — FGx,.

i.e.,
T — 2o = GYFg — Fag = .

Thus to form the initial residual 7y = f — F'#y we carry out m steps of the
inner method for the system (2), using &, as the initial estimate, then set
To = Ty, — To-

3.2 Computing the Matrix-vector Product F7y

Suppose we solve the system Gz = 7 using the inner method and the
initial estimate zg = 0. Then rg = 7. But

Tm = Rm(G)TO = RWL(G)fk‘

Therefore
ro — Tm = [I — R(G)|7k.

Thus in order to compute F'F, we take m steps of the inner method for the
system Gz = 71, using g = 0 as the initial estimate, then set F'7y = Tp—r,.

3.3 Initial Smoothing

To make the cgT Method more efficient, it is recommanded to eliminate
the contribution of eigenvalues above a certain (not too small) limit o,
by first taking k steps of the Tchebychev method with ¥ = ¢ (in place
of v < Amin). For a large enough k, the residual vector and the error
vector of the k-th approximate lies "almost” in the invariant subspace of a
relatively small dimension 1, spanned by the eigenvectors corresponding to
the eigenvalues below o. This process is called smoothing, and the k-th
resulting approximate z is called the smoothed vector. We can then
start the cgT Method using the smoothed vector 2 as the initial estimate.

Smoothing is useful only when k is large enough. But a large k make
smoothing expensive. In what follows, we explore ways of reducing the
cost of smoothing (measured in terms of matrix vector multiplication), by
approximating the smoothed vector.

— 448 —

3.4 Method for Approximating the Smoothed Vector

Let z1. be the smoothed vector obtained after k steps of Tchebychev method.
Since
i, = g — Gz = Ry(G)ro
and
To=4¢g— G.’I)o,

it follows that

rek=9g—Gzr = Rp(G)ro
= Ru(G)g - Gro)

= Gzr = g— Rp(G)g+ Ri(G)Gxo
= (I - Ri(G))g + Ri(G)Gzq
=z, = GTII — Ri(@)]g + G Re(G)Go. (13)

Since Ry(0) = 1, it follows that
1
P(A) = 51~ Ru(M)]
is a polynomial of degree k-1 which we will denote by Py_1(A). Then

zy = Pr-1(G)g + Ri(G)xo. (14)

If zp = 0, then
zr = P4 (G)g. (15)

In this section we consider an approximation of (15) of the form
Iy = 7V-Pk‘—1 (Tm)ela (16)

where v is a scalar, V an nXm matrix, I, a tridiagonal matrix of dimension
m, all to be determined. Here, e; is the first unit vector. Hopefully, m will
be much smaller than k so that the right hand side of (16) is much more
cheaper than that of (15). We bigin by showing that the polynomials Py(§)
satisfy a 3-term recurrence.

— 449 —

Theorem 1 The polynomials

1
Pi(§) = E[l — Ria(€)]
staisfy the 3-term recurrence relationship,
. Ti(a@) .
P = 2 —~(ox — BEYP_
k(E) Tk+1(0£)(/5) k l(é‘)
Tk..](&’) . Tk(a)
— =L P (&)t 22—, k> 2, 17
Ty PO 4 28 _ (17)
where
o 3
) = 7,
a
/
with
_ ptv 2
A

Proof: from (12)

Tepi(a—BE) Tiya()

Ri1(8) = Tip1(e) — Tipa(e)’

where

(=oa-—p¢E.

From the properties of the Chebyshev polynomials T%(() we have,

Tit1(€) = 2(Tw(¢) — T—1(¢), -1 < (<L

Thus
R (f):TkH(C) _ Ti(a) Te(Q) Te—1(e) Te1(C)
AL Tey1(a) Tr1(e) Ti(e) Thyr(a) Th—1(a)
or Ti(a) _ Tp—1(e)
ZCTk-H(a) Ril®) Trqa(a) Ria(6)
i.e.
Raa(€) = 27,200 - BORKE) ~ T Bea(): (1)

— 450 —

Now since 1
P(&) = E[l = Ri41(6)],

it follows that
2aTk(a) — Tk_.l(a)

PO = T)
Ty1(0) o o Ti(a)
+o¢ (———Tk+1 L Pea(©) = 27 (a)/s)
o Ti(e)
- me(a*ﬂf)])k—l(f)-

Since 2aTy(a) — Th-1(a) = Tyt1(a), we have

PE) = 275 BOP(O
Tk_l(a) . Tk(a) e~ ¢
Tk+1(a) PA—Z(E) + ZﬂTk.{_l(a), k > 2.

This concludes the proof.
Returning to the approximation of x;, we observe that

TE € .span{g,Gg, -7'2g7"'7Gk——Ig}a

the Krylov subspace of dimension k. We would like to seek an approxima-
tion from the Krylov subspace

o 2 m—1
K, ={v,Gv,G*v,---,G" v},

for a small m. We choose the initial vector to be v = g/||g]|2 and generate
the basis of K, using the well known Lanczos algorithm which will produce
an orthogonal basis
Vin = {'Ub Vg 0y 'Um}
of K,, such that
GV = ViDL + 5"0m+1€,7,;, (19)

where Vg;’vm_,_l = 0, and T3, is a tridiagonal matrix of dimension m. Since
Vi is orthogonal, V,, VT is a projection onto K, and consequently,

m

« T
‘rk = V;n‘fm zk

— 451 —

is the projection of z;, onto K, and as such the closest approximation of
z, from K,,. Since

711.61 H “2 ‘U],

it follows that

& = Vm mPk 1(G)g
= ”9“2Vm m Pk-—l (G)Vmel
Recalling (16), if we choose v = |lgllz and V' = Vi, we therefore

approximate V,?; Pi_1(G)V,, with Pr_1(T). The following theorem will
help to bound the the error ||z — Zg||2.

Theorem 2 Let Q,—1(€) be ¢ polynomial of degree < m — 1 that approzi-
mates Pr_q1(£) and let

Tm = Pk—l(f) - Qm—l (f) (20)
Then,

[Pe—1(@)g = llgll2Vem Pe-1(Tmdenllz < Hgllallirm(Glz + lrm(Twm)il2) (21)
Proof: From equation (20) we have,
Piq (G)g = Tm(G)g + Qm-1 (G)g
ng2[Qm—l(G)7~’1 + Tm(G)'Ul]-
But from equation (19),

G] = m L2

mel, j<m-—1.

Thus
Qm-1(G)v1 = Vo, Qm—1(Tm)es-
Since
Qu—-1(Tw)er = Pe1(Twm)er — 1 (Tin)en,
_it folows that

Py (G)g = “gH‘Z[VmPk—l (Tm)e‘l - Vme(Tm)el + Tm(G)vl]-
Therefore

| Pe-1(G)g = lgll2Vin Pe-1(Tw)exllz < lgllallirm (G2 + lIrm(Tm)|l2];

— 452 —

which concludes the proof.

As a consequence of theorem (2), the error can be estimated by bound-
ing each of the terms in the right hand side of (21). We establish a bound
for the case when

Qm—~1 (g) = Pm—l (6)7

for which 1
rm(€) = E[Rm(f) - Rk(f)]
Since 5
oo [VEFVY ‘
g mei=2 (7).)
and

Al(G) S /\1(T'm), /\17L(Tm) <)\n(G)’

and since m < k, it follows that

k
IFcs(@~ il oo (Bl < 2 (V2])

This is a very crude bound and a sharper bound can be found. For example
when Py_1(G)g—||g||2Ven Pe—1(Tom)€1 is expanded, it becomes apparent that
Tm(G)g is a polynomial of degree k-m in G and the power k in the right
hand side of (23) is an overestimation.

Returning to the problem of approximating the smoothed vector, we
now use

Tk = ||gll2Von Pi—1(Tin)ex (24)

to start the cgT method. One way of forming Zj is to use the 3-term re-
currence relationship (17) which will cost k tridiagonal matrix vector mul-
tiplications. But as indicated by the equations (14) and (15), Py—1(Tm)e1
is the estimate obtained after k steps of Tchebyshev method for solving

Tmili = €3. (25)

Since m is relatively small compared to n, solving directely (25) not only is
far cheaper than k tridiagonal matrix vector multiplications, but also gives
a better value of T;. Our test results confirm this assertion. A better value
for Z is translated into a faster convergence.

— 453 —

4 Numerical Results, Summary and Comments

Numerical results reported here were conducted on a SUN work station
while the author was visiting IRISA in Rennes and only deal with the 2
row block case. This is mainly because the eigenvalues of P, + P, can be
expressed in terms the angles between the 2 subspaces generated by A; and
A, and since the behavior of a gradient method in solving a linear system
depends mainly on the distribution of the eigenvalues of the coefficient
matrix, we can by-pass the computation of the projection in the block
Cimmino system, by solving the equivalent diagonal system

(I-Kz=g, (26)

where
K= diag(_clv =€yt TCR /2. Cnf2y Cp 215" Cl)7

and where the cls, which are defined above, are generated randomly so
as to obtain a desired distribution of eigenvalues of P; + P;. Another
advantage in dealing with a diagonal system is that we are able to handle
large size systems. As long as the cost is measured in terms of matrix-
vector multiplication, the behavior of a gradient direction method on both
systems (2) and (26) should be identical. We have, however, carried out
the full investigation using a) a matrix obtained from the finite difference
discretization of a 2 dimensional elliptic partial differential equation with
nonconstant coefficients, and b) a matrix generated experimentally. Tests
were conducted on an IBM PS/PV 486DX2 of the department of computer
science of the University of Yaounde I in Cameroon, but the small size of
the systems used does not warrant publishing the results along side those
obtained on a SUN work station.

In the experiments being reported here, systems (26) are constructed
as follows: the cfs and the true solution vector z are first generated ran-
domly then, the right hand side vector is obtained as ¢ = (I — K)z.
Throughout, we use n. = 10000 and a relative error equal to 0.5E-05. Ta-
bles 1 and 2 display the results for the block Stiefel when the projection
Z(zTGZ)~'Z7 is (i) computed exactly and (ii) approximated. In both
cases, s = 5, 7 = 0.5F — 02 and the prescribed maximum number of iter-
ations before projection is 200. The exact number of eigenvalues that lie
below 7 is not known and the first column gives the number of eigenval-
ues missed. The block Stiefel under good conditions, i.e., good estimate of
how many eigenvalues lie below v and good approximation of their corre-
sponding eigenvectors has performed well. However, tables (1,2) seems to

— 454 —

Table 1: block Stiefel method (exact projection used)

eig. missed | matvet mult | iter. before proj.(prec.) | iter. after proj.
0 409 181(0.5E-2) 228
50 254 43(0.5E-2) 211
100 252 30(0.5E-2) 222
500 252 15(0.5E-2) 237
1000 252 30(0.6487) 222

A1 =0.118153E — 04 < A; < A, = 1.9999881847

Table 2: block Stiefel method (projection approximated)

eig. missed | matvet mult | iter. before proj.(prec.) | iter. after proj.
0 533 103(0.5E-2) 430
50 468 40(0.5E-2) 428
100 447 30(0.5E-2) 417
500 436 13(0.5E-2) 426
1000 435 10(0.5E-2) 425

A1 = 0.118153F — 04 < A; < A, = 1.9999881847

indicate that early projection may not be not too critical as long as the
value of 7 corresponding to the early projection step is small enough.

Tables 3 through 5 show the result for the cgT method. In each case the
initial smoothing vector z is approximated using Lanczos method. The
degrees of the Tchebychev polynomials used for the inner step are given in
columns 2 to 4. The cgT method combined with initial smoothing seems
to be the more promising approach, especially if Zj, is used to approximate
the smoothed vector. However, test results indicate that in the presence of
a large number of small eigenvalues, one would gain more in using smooth-
ing to eliminate the contribution of these small eigenvalues. If these small
eigenvalues are not dampted out, the degree of the polynomial in the in-
ner T-method of c¢gT should be kept small, thus making the cgT method
behaves more like the cg method.

References

[1] A Biorck & G. GoLuB, Numerical Method for Computing

Angles Between Linear Subspaces, Mathematics of Computation
27(123)(1973), 579-594.

455 —

Table 3: cgT method with A(smoothing) = Ao

r Number of matrix-vector multiplication
deg. T-poly.
Lanczos step(deg. smmoting) | 0 1 2 II:’[; 2
10 (k=200) 358 | 355} 359 || 0.5E-2
20 (k=200) 357 | 356 | 357 || 0.3E-2
30 (k=200) 355 | 352 | 351 || 0.2E-2

| exact smoothing(k=100)

[[361 [360 [370 || 0.7E-3 |

A1 = 0.118153E — 04 < \; < A, = 1.9999881847

Table 4: cgT method with A(smoothing) = A\

r Number of matrix-vector multiplication]
deg. T-poly.
Lanczos step(deg. smmoting) | 0 1 2 J‘:::‘L{—Z—
10 (k=200) 337 | 338 | 340 ([0.19E-1
20 (k=200) 337 | 340 | 342 || 0.14E-1
30 (k=200) 340 | 340 | 343 || 0.10E-1
| exact smoothing (k=100) [[379] 380 | 411]| 0.1471 |
M =0244E —03 < \; < A, = 1.999756
Table 5: cgT method with A(smoothing) = Aj00
r Number of matrix-vector multiplication
deg. T-poly.
Lanczos step(deg. smmoting) || 0 1 2 H%Hf
10 (k=200) 384 | 383 | 383 || 0.54E-2
20 (k=200) 384 | 384 | 383 || 0.12E-2
30 (k=200) 384 | 384 | 382 || 0.44E-5

exact smoothing (k=100)

| 385 | 386 | 388 || 0.25E-6 |

X = 0.244E — 03 < \;

<\, = 1.999756

— 456 —

(2]

[8]
[9]

E. GALLoPoOULOS & Y. SAAD, Efficient Solution of Parabolic Equa-
tions by Polynomial Approximation Methods, CSRD Technical Report
no. 969, Center for Supercomputing Research & Development, Univer-
sity of Illinois at Urbana-Champaign.

G. H. Gorus & C. F. VaN LoAN, Matriz Computations, Second
Edition, The John Hopkins University Press.

M. Engeul, TH. Ginsi, H. RuTisHAUSER & E. STIEFEL, Refined
Iterative Methods for Computation of the Solution and Figenvalues of
Self-Adjoint Boundary Value Problems, Mitteilungen aus dem Institut
fiir angewandte Mathematik, 8(1959.

0. G. Jounson, C. A. MicuEeLit & G. PauL, Polynomial Precon-
ditioners for Conjugate Gradient Calculation, SIAM J. Numer. Anal.,
2(20) (1983), 362,376.

Y. SaaD, A. SAMEH & P. SAYLOR, Solving Elliptic Difference
Equations on Linear Array of Processors, SIAM J. Sci. Stat. Comp.,
4(6)(1985), 1049-1063.

P. SaYyLoRr, Leapfrog Variants of Iterative Methods for Linear Al-
gebraic FEquations, Technical Report no. UIUCDCS-R-87-1373, De-
partment of Computer Science, University of Illinois at Urbana-
Champaign.

R. VARGA, Matriz Iterative Analysis, Prentice-Hall, Inc. 1962.

R. BRAMLEY, Row projection methods for linear systems, PhD The-
sis 881(1989), Center for Supercomputer Research and Development,
University of llinois at Urbana Champaign, Urbana, IL.

R. BRAMLEY AND A. SAMEH,Row projection methods for large non-
symmetric linear systems, SIAM J. Sci. Stat. Comp., 13(1992), 168-193

T. ELFVING, Block-iterative for consistent and inconsistent linear
equations, Num. Math., 35(1980), 1-12

C. KAMATH AND A. SAMEH, A projection method for solving nonsym-
metric linear systems on multiprocessors, Parallel Computing, 9(1988),
291-312

— 457 —

