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Abstract 

The use of the row block projection  method (block Cimmino) for 
solving  nonsymmetric  linear  system Ax = b gives rise to a symmetric 
positive  definite  system G x  = g, where B is the  sum of orthogonal 
projection matrices Pi = Ai(ATAi)-'AT, and where the Ar's  are 
block rows of A. In this  paper we present  an efficient implementation 
of the  cgT  method for solving the derived symmetric positive definite 
system. We use initial  smoothing  to accelerate the  method  and we 
derive efficient techniques for estimating  the  initial  smoothed vector. 
Numerical  results are given for the 2 row block case and since the 
eigenvalues of G can  then  be  calculated, we by-pass the  computation 
of orthogonal  projections Pix of a vector x ont0  the  range of Ai by 
solving a transformed  equivalent  system.  Test  results show that  the 
method is robust. 

Keywords: nonsymmtric linear system, projection methods, C!imInino row 
block projection  methods, block  Stiefel method, cgT method,  smoothing, 
Krylov subspace, Lanczos method. 

1 Introduction 

Over the  last few years, researchers have concentrated  their efforts on  devel- 
opping efficient iterative solvers for nonsymmetric linear  systems Az = b,  
where A is large  sparse and nonsingular. In general one can group  these 
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solvers into  four  categories:  ma,trix  splitting,  CG-like,  residual  polynomial 
and  symmetrization  methods.  The  first  three  categories  are  restricted to  
the case where A+AT is positive  definite or the  spectrum of A lie on one side 
of the  imaginary axis. Symmetrization  methods explicitely or implicitely 
transform  the  original  system  ont0 a symmetric  positive  definite  system 
GX = g which can  be solved using  SOI^ the existing  powerful methods 
designed for  such systems. An example of the  symmetriaation  rnethod is to 
use the CC: method  on  the  normal equa.tion ATAz = ATb. This  method, 
however, has very often hindered on  the following observakions: (i) fornling 
ATA can be costly  in  terms of storage  and processing time,  (ii)  the condi- 
tion  number &(AT/!) is the  square of K ( A )  which is a much  serious  problem 
especially when A is not well conditioned. A family of symmetrization ,- 

methods which avoid these difficulties are the row projection  methods. Let 
A be  partitionned  into N blocks as follows: AT = [Al ,  112,. . -, AN] and b be 
partitionned conforma.lly. A row projection  method is any a.lgorithm which 
requires the  orthogonal  projection Paz = A;(A?A;)-'ATz of a  vector 3: 

ont0  range(A;) to  be computed.  One such method is the block Climmino 
method  where  the  symmetric positive  definite  system is 

g and  the  projection Pizk of a vector zk ont0  the  range of Ai could be 
formed by solving N independent  linear lea.st squares  problems. For the 2 
row block case, it can be shown [9J9 [10] that  the eigenvalues of G = Pl +Pl 
are given by 

x;(G) = 1 f ci = 1 f cos e;, i = 1,2 , .  . . , 4 2 ,  

where 13;s are  the angles  between the hyperplane  generated by A1 and A2. 
For the 2 row block case, we could therefore  study  the  behavior of a gradient 
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direction method for  solving system (2) by solving instead of the equivalent 
system 

(1 - K). = f, (3) 

where 
li = d i a g ( - c ~ , - c ~ , ~ ~ ~ , - c ~ / ~ , c , / ~ , c , , / ~ ~ ~ , ~ ~ ~ , c ~ ) ,  

and  where the C~S, are defined above.  This is the system that we later con- 
sider  for Our numerical  experiments.  It is Worth mentioning that  the block 
Chnmino  method is  well suited for parallel  computation as the  projection 
can  be  computed in parallel. 

Our  primary  interest in this  paper is to  develop appropriate  techniques 
to  accelerate the row block Cimmino  system. We consider two  such  tech- 
niques: the block Stiefel method[6]  and  the  cgT  method[4]. We show that 
the  cgT  method combined  with  initial smoothing is robust  and we devise 
an efficient method for estimating  the  initial  smoothed  vector. Finely we 
show how a matrix-vector  multiplication, a fundamental  primitive  in a cgT 
step,  can  be  computed efficiently. 

2 Block Stiefel Method[G] 

The  chssical Stiefel iteration[4] for  systern (2) produces  residuals T ;  that 
satisfy 

rj  = P’(G)ro, (4) 

where Pj(X) is a polynomial of degree 5 j given by 

in which Ti(()  is the Tchebyshev  polynomial of degree  j given by 

If one  has an  estimate v of an interior eigenvalue Xs+l, for a small  integer s 
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and if 

where the 2:s are the eigenvector  associated to the Ais, then 

1 

and  not as 
1 

If 2 = (21 , 2 2 ,  - - , zs) is the  matrix consisting of the s eigenvectors corre- 
sponding to s s m d e s t  eigenvahes of Ci ,  then  instead of taking xj as the 
j-th  estimate, one takes 
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we have 

In prac.tice the eigenvalues and eigenvectors of G are  not known so that 
equation (9) cannot  be used. We can however use methods such as cg to 
estimate  the  extreme eigenvalues A, and A,. A technique  for  approximat- 
ing Z(ZTGZ)-'ZTrj is described in [ 6 ] .  It is based on forming the QR 
factorization of the  nlatrix 

where 1 is iteration  number suc.h that 

1 
X r n + L  1 m x m - x , ; ,  1 < T' 

for a prescribed tolerance T which indicates that ry is sufficiently damped 
so that projection can be done. 

3 The  cgT Method[4] 

Let us premultiply the system (2) by 

B = G-'[I - R(G)],  

where R(A) is a polynomial such that R(0) = 1. We then  obtain  the  system 

[ I  - R(G)]x = G-'[I - R(G)]g, 

which we write  as 
Fx = f, 

where 

Then 

f = G-l[I  - R(G)]g. 

A;(F) = 1 - R(X;(G)), 

and  the process awounts  to a spectral  transformation of system (2), which, 
hopefully with a proper choice of R(A), will make the condition number 
of F become smaller than  that of G. Solving system (10) is not  straight 
forward because: 

- 445 - 



(i) to  compute  the  initial  residual  one needs to forrn the right  hand  side f 
which would require  solving the  system Gf = [ I  - R(G)]g, 

(ii) each matrix vector  multiplication Frk will require forming the  matrix 
polynomial  vector  product B,(G')r/; which 1na.y be expensive if the 
degree of R(X) is large. 

The cgT Method is an efficient nlethod for solving  system (10) without 
forrning f explicitly. The  method  has  two  stages: 

(i) an  inner  stage, ca.Ued inner method, where the Tchebychev method is 
used to  form the  matrix vector Frk;  

(ii) an  outer  stage, ca.lled outer  method, where the cg uses information 
generated by the  inner  method  to  update  the  a,pproximate  iterate. 

The inner  method is therefore  subordinate to  the  outer  method  because  for 
every step of the  latter, a fixed nurnber of steps of the inner  method (III, Say) 
must  be  carried  out. R(X) caa be chosen to  be  any residua.1 polynomial 
R,,(X) sa.tisfying R,,,(O) = 1. For emmple Flanders  and Shortley[4] propose ,. 

the  3-term  recurrence  formula 

A R @ )  = -[XRk.(X) + Crk-lARk-1(X)], 
1 

P k  

where Ro = 1, AR.-1(X) = O, for computing &,,(A). If [3k and crk are 
cornputed as in algorithm 1 below, it can be shown that 

(12) 

where T k ( X )  is defined as above.  Let R(X) be  the residual  polynomid R,,(X) 
for a fixed 111. In the sequel, we consider the  conjugate direction methods 
for  solving Gz = g that use the following flow diagram 

Algorit hm P : -- 

1. set QI = O, A x ~  1 O, A T ~  = O, w z= cosh-' EL! 
!J-u 

2. set k = O 

3. choose initial  extimate 20 
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4. form initial  residual TO = g - Gao 

5 .  repeat  until convergence test  met 

5.1 compute 
( 9  k = O  

P k  = [ p--v cosh((k+l)w) 
4 COSll( kw) k > O  

5.4 set Z L + ~  = x k  + AZL 
5.5 set rk+l  = r k  +  AT^ 
5.6 if convergence tolerance  met  stop. Else, 
5.7 compute 

k < O  

5.8 set k = k + 1 

end repeat 

To solve. system ( l O ) ,  the c.gT  Me.thod proceeds as follows: 

3.1 Forming the Initial Residual ?O = f - Fi& 
Suppose we solve Ga = g, using the inner  method  and  starting  with a0 = 
50. Then 

T g  = g - Gao. 

it follows that 
TT,, = (1 - F)To.  
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Thus, 
q-O - T m  = Fr07 

so tha.t 
G(x,, - 20) = Fg - FGlt.0. 

1.e., 
Z, - 50 = G-lFg - FZO = ?o. 

Thus  to form the  initial residua.1 ?O = f - FZo we carry out m  steps of the 
inner  method for the systenl (2), using 5 0  as the initial  es-timate,  then  set - - = x,,, - 20. 

3.2 Compwting the Matrix-vectsr Product F7 'k  

Suppose we solve the systenl Gz = ?k using the inner method and the 
initial estimate ICO = O .  Then TO = r"k. But 

3.3 Initial Smoothing 

To malte the cgT  Method  more efficient, it is recommanded to eliminafe 
the contribution of eigenvalues above a certain  (not too s1na.U) limit o7 
by first ta.lring k steps of the Tchebychev method  with u = O (in place 
of u < For a large enough k, the  residud vector and  the error 
vector of the  k-th  approximate lies 77almost97 in the  invariant  subspace of a 
relakively small dimension 1, spanned by the eigenvectors corresponding to 
the eigenvalues below cr. This process is ca.lled srnsothing, and the  k-th 
resulting  a,pproximate zk is ca.Ued the smsstlaed vectsr. We can then 
sta.rt the cgT  Method using the smoothed vector zk as the initial  estimate. 

Smoothing is useful only when k is large enough. But a large k make 
smoothing expensive. In  what foUows,  we explore ways of reducing the 
cost of smoothing  (measured in ternls of matrix vector multiplication), by 
approxirnating the  smoothed vector. 
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3.4 Method for Approximating the Smoothed Vector 

Let zk be  the  smoothed  vector  obtained  after k steps of Tchebychev  method. 
Since 

TX:  9 - Gzk = R ~ ( G ) T o  

and 
TO = 9 - Gzo, 

it follows that 

1 
x P(A) = -[1- R k ( X ) ]  

is a polynomial of degree k-1 which we  will denote by Pk-1 (A). Then 

If zo = O, then 
zk = Pk-l(G)g. 

In this section we consider an  approximation of (Ili) of the  form 

where y is a scalar, V an nxnz matrix, T,, a tridiagonal matrix of dimension 
m, d to  be  determined. Here, el is the  first  unit  vector. Hopefully, m will 
be much  smaller than k so that  the  right hand  side of (16) is much more 
cheaper than  that of (1.5). We bigin by showing that  the polynomials Pk(J) 
satisfy a 3-term  recurrence. 
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where 
( = a - Pt. 

Frorrl the  properties of the Chebyshev polynomials T k ( ( )  we ha.ve, 

Thus 
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Now since 
1 

P h i 0  = -11 - &+1(t)], t 
it follows tha,t 

Since 2aTk(a) - Th-1 ( a )  = Th+1 (a), we have 

This concludes the proof. 
Returning to  the  approximation of zk, we observe that 

the Krylov subspace of dimension k. We would like to seek an  approxirna- 
tion from the Krylov  subspace 

K 7 , ,  G { V ,  Gv )  G'u, * * * , G7IL-'v}, 

for a  small m. We choose the initial  vector to  be 'u = g/llglla and  generate 
the basis of ri,,, using the well known Lanczos algorithm which will produce 
an  orthogonal basis 

v , , L  = { V I )  v a ,  . * * ,  ,~?,,} 

where ~ ~ ~ u , , + I  = O, and T,,, is a tridiagonal  rnatrix of dimension 111. Since 
V,,, is orthogonal, V,,,yT is a projection  ont0 ri,,, and conseyuently, 

2 ,  = V7,J{;xk 
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is the  projection of zk ont0 1CTn and as such the closes-t approximation of 

i t  follows that 

Therefore 
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which concludes the proof. 
As a consequence of theorem  (2),  the  error  can  be  estimated by bound- 

ing  each of the  terms in the  right  hand side of (21). We establish a bound 
for the case when 

Q ? r L - 1 ( ( )  = P 7 1 L - 1 ( t ) 7  

for which 

Since 

This is a very crude  bound and a sharper  bound can be  found. For example 
when Pk-1(G)g-Ilgl12Vn,P~-l(Z,)el is expanded,  it becomes apparent  that 
T,,,(G)g is a polynomial of degree k-m in G and  the power k in the right 
hand side of (23) is an overestimation. 

Returning to  the problem of approximating  the  smoothed  vector, we 
now use 

3k = Ilgll2v,I,Pk-,(T?l,)el (24) 

to  start  the cgT method. One way  of forming 3 k  is to use the 3-term re- 
currence  relationship (17) which will cost k tridiagonal matrix vector mul- 
tiplications.  But  as  indicated by the equations  (14) and  (15), P,-l(TnL)el 
is the  estimate obtained  after k steps of Tchebyshev method  for solving 

Since m is relatively small  compared to  n, solving directely (25)  not only is 
far cheaper than k tridiagonal matrix vector  multiplications, but also gives 
a better value of Ph. Our test  results confirm this  assertion. A better value 
for 31, is translated  into a faster convergence. 
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Numerkal  results  reported  here were conducted on a SUN work station 
while the  author was visiting  IRISA in Rennes and only  deal with  the 2 
row block case.  This is ma.inly because the eigenvalues of Pl + F'J can be 
expressed in terms  the angles  between the 2 subspaces generated  by A 1  and 
A2 and since the beha.vior of  a gradient  method in solving a linea.r system 
depends  nminly on the  distribution of the eigenva.lues of the coefficient 
matrix, we can by-pa,ss the compu-tation of the projection in the bloclr 
Clinlmino system, by solving the equivalent dia,gonal system 

where 
IC = diELg(-el,-ca,... ,- c,,/z,c,/a,c,,/a-l,...,@l), 

and where the cis, which are definecl a.bove, a.re genemted  ra.ndomly so 
as  to  obta,in a desired distribution of eigenvalues of Pl + 82. Another 
advantage in dealing  with a diagonal  systeru is that we a,re able to  handle 
large size systems. As long a.s the cost is measured in terms of matrix- 
vector  n~ultiplic.ation,  the  behavior of a gradient direction method on both 
systems (2) and (26) should be identical. We have, however, carried  out 
the full investigation  using  a,) a matrix obta,ined  from the finite  difference 
discretization of a 2 dimensional  elliptic  partial differential equation  with 
nonconstant coefficients, and  b) a Ina.trix  generated  experimenta.lly.  Tests 
were c.onducted on a.n IBM PS/PV 486DX2 of the  department of cornputer 
science of the IJniversity of Yaounde 1 in Cameroon, but  the sma.ll size of 
the systems used does not warrant publishing the results  along  side  those 
obtained on a. SlJN work sta.tion. 

In the experiments  being  reported  here,  systems (26) are constructed 
as follows: the c:s and the  true solution vehor ;I: are first  generated ram- 
donlly then,  the right  hand side  vector is obta,ined as g = (1 - 1C)z. 
Throughout, we use 7). = 10000 and a relative error equal to O.5E-05. Ta- 
bles 1 a.nd 2 disp1a.y the  results for the block Stiefel when the  projection 
%(ZTG'Z)-' ZT is (i)  computed  exactly  and  (ii)  approximated. In both 
cases, .s = 5, T = 0.5E - O2 a.nd the prescribed ~naximurn  nunber of iter- 
ations  before  projection is 200. The  exact  number of eigenvalues that lie 
below 77 is not known and  the  first colunln gives the number of eigenval- 
ues missed. The block Stiefel under good conditions, i.e., good estimate of 
how many eigenvalues lie below v and good approximation of their  corre- 
sponding eigenveclors ha.s perfornled well. However, tables (1,2) seems to 
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Table 1: block Stiefel method  (exact  moiection  used) 
eig. rnissed 1 matvet  mult 1 iter. before proj.(prec.j 1 iter.  after  proj. 

O 228 181(0.53-2) 409 

* "  

50 

222 30(0.6487) 252 1000 

222 30(0.5E-2) 252 100 
21 1 43(0.53-2) 254 

500 237 15(0.SE-2) 252 

A1 = 0.118153.E - 04 5 A; 5 A,, = 1.9999881847 

Table 2: block Stiefel method  (projection  approximated) 
eig. missed iter.  after  proj.  iter. before  proj.(prec.) matvet  mult 

O 

417 30(0.53-2) 447 1 O0 
428 40(0.53-2) 468 50 
430 103(0.53-2) 533 

1000 435 lO(0.53-2) 425 
,500 426 13(0.53-2) 436 

A1 = O.llX153.E - 04 5 A; 5 A,, = 1.9999881847 

indicate that e,arly projection  may  not  be  not  too critical as long as  the 
value of T corresponding to  the ea.rly projection  step is  small  enough. 

Tables 3 through 5 show the result  for the  cgT  method. In each  case the 
initial  smoothing vector zk is approximated  using Lanczos method.  The 
degrees of the Tchebychev  polynomials used for the inner  step  are given in 
colulnns 2 to 4. The  cgT  method combined  with  initial smoothing seems 
to  be  the  more promising approach, especially if Zx: is used to  approximate 
the  smoothed vector. However, test  results  indicate  that in the presence of 
a large  number of small eigenvalues, one would gain  more  in  using smooth- 
ing to  eliminate  the  contribution of these small eigenvalues. If these  small 
eigenvalues are  not  dampted  out,  the degree of the polynomial  in the in- 
ner  T-method of cgT should  be kept  small,  thus  making  the  cgT  method 
behaves  more like the cg method. 
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Table 3: cgT method  with X(snwothing) z Al0  

Number of matrix-vector multiplication 

exact smootking(ln=100) II 361 1 360 1 370 11 0.7E-3 
A1 = 0.1181533 - 04 5 A; 5 A, = 1.9999881847 

Table 4: cgT  method with A(snesothim3) = XI 
I Number of matrix-veckor multiplication 1 

exact  smoothing ( k = l O O )  II 379 ] 38Q ] 411 I I  0.1471 1 
XI = 0.2433 - 03 5 X i  4 A, = 1.999756 

Table 5: cgT method with X(.sm.oothing) = Al00 

Number of matrix-vector multiplica.tion 

exact  smoothing (k=lOO) 1)  385 1 386 1 388 ( 1  0.253-6 1 
XI = 0.2443 - 03 5 A; 4 A, = 1.999756 
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