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Abstract : Communication  issues  remain the key for the  development of 
Distributed Memory MIMD cornputers. Two main  approaches  prevail in the 
search  for adequate communication paradigms : the use of static  or 
reconfigurable  interconnection  networks. In this paper, we are  interested in the 
second  approach.  Reconfigurable  Distributed  Memory MIMD computers  with  a 
large number  of  processors  need  multistage  switching  networks  to  interconnect 
the processors.  The  Clos  rearrangeable  switching  network  belongs  to the most 
used in the industry.  For this family  of  switching  networks the literature 
proposes several End of control algorithms. The decomposition of the 
interconnection  matrix  of the switches,  induced by a  given  configuration, into 
permutation  matrices  constitutes  an  interesting  approach. 

For  each  permutation  matrix  the  algorithms of this class  proceed in two 
phases whose the second, the most  costly  expensive,  needs for a  mxm 
interconnection matrix  at  most m/2 iteration  steps. 

This paper  discusses two modifications of these  algorithms.  The  Erst 
results in an  algorithm  whose  second  phase  needs  less  than m/3 iteration  steps 
instead of d 2 .  When  after  al1  second  phase is needed, the  second  modification 
shows  how  to  carry  out it according  to  the  divide  and  conquer  strategy. 

Keywords : Parallel  computer,  interconnection  network,  message  conveying, 
permutation  matrix,  Clos  rearrangeable  switching  network. 
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Ilne exprience gained  with the devdopment of parallel prscessing 
reveals that commufnication issues ace at least as important as  computation 

In order for intercomection network to be 
ations are modeled as graphs of processes 

which must  be rnapped onto the processor's graph. The perfommce of the 
application cm then be  measured  by thc distance between  the two graph. 

DisMbuted  Memory MIMD compteers with fixed  interconneclrion 
network are not dways well suitable to bring  closer these two graphs; 
according to the application, in general, costly  expensive comunication 
belween  distant processes is the prie to pay.  However note that completely 
comected networks constitute an exception; unfortunately,  they do mot support 
a large number of processors. 

thsugh they offer more flexibility than the previous, the bus  based 
inkrcomection networks J so  limit the number of the processors because of the 
high communication contention they can induce. 

Dynamic or reconfigurable  interconneetion networks constitute an 
intemediate class. Cornparatively to the precedents, their  interest cornes from 
their  ability to bring  neighbows two distant processes by comecting directly 
the processors on which they  are mnning. To intercomect a very  large mumber 
of pr~cess~rs, these networks consist in seveml crossbars organiseel in stages 
and are called  rnultistage  switching  networks. 

In the large vxiety of multistage  switching  networks, the Clos W e e  
stages remangeable network el] is one of the most attractive. lndeed it pleeds a 
low cost of crosspoints,  induces a low delay and because of its remangeability 
is able to perfom any permutation that is to say amy processors intercomection 
network. Many industrial realisations of paraIlel cornputers  use this Eund of 
switching  networks [a], [3], [4], etc. The  price to pay for this flexibility is the 
cost of the control: the computatisn of the commands required to prform a 
given  configuration. 

any control algorithm have been sed in the literatuPe; except 
for some  particulap  classes of networks [5] ,  pinciples remain the same 
and they cliffer only in the fomalism they use. We distinguish  bipartite  graph 
edges coloring [6], set theory [7] and matrix  decomposition approaches [9]. 
Recently amther method called  scheduling was pro 

The a l g o p i ~ s  based u p n  matrix decornposition  cornsist in two phases 
whose the second, costly expensive, is necessary only if the first does not 
succeed. In [10] Tsao-Wu reports a strategy  for the first phase to lower the 
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probability of  the  second  phase.  Although interesting for large switching 
networks, this modification  does  not  induce  a  noticeable  improvement  of the 
cost  of  the second. 

More recently, Jajszczyk [ll] proposed a method for matrix 
decomposition  which  should  not  require a second  phase. In [8] it  is proved  that 
this algorithm does not  always  provide  information  enough to solve the 
problem  without  a  second  phase. 

This paper  proposes  to  reduce  the  cost  of  the  second  phase  too. In the 
next  sections, we first introduce  some  definitions  and  generalities  about the 
matrix  decomposition  approach  to  the  calculus  of the settings of Clos three 
stages  rearrangeable  switching  networks.  Then we  show  how  to  reduce  the cost 
of the second phase to m/3 iteration steps instead of m/2 for a  mxm 
interconnection  matrix. We  also  show  how  the  second  phase  could  be  carry out 
more  efficiently  with  a  divide  and  conquer  strategy. 

II. The matrix  decomposition  process 

A  Clos  three  stages  rearrangeable  switching  network  consists in m  dxd 
input  modules,  d  mxrn  intermediate  modules  and  m  dxd  output  modules.  The 
modules  are  intermnnected  as  follows:  the k-th output  (input)  of  the i-th &th) 
input  (output)  module is connected  to  the i-th &th) input  (output) of the k-th 
intermediate  module  (see  figure 1 below). 

Let n be  a  permutation of N=md  elements  representing  a  processors 
interconnection. To realise K, the  switching  network  must  connect  any of its 
inputs ie [O, N-1] to its outputs  n(i)E [O, N-11. More  precisely n induces the 
following  interconnections  between  the  outermost  modules  of  the  switching 
network:  an input module 1 is said  to  be  connected to an output  module J if 
there is an input i E  1 such as n(i) E J. This set of  interconnections  can be defined 
by the matrix HE whose  the  element Hn (1, J) indicates the number  of the 
connections  that n induces  between the modules 1 and J. In the following HE 
will  be  noted  simply H. 

Let P be  a  permutation  matrix  extracted  from H. It performs  an  one  to 
one  correspondence  between  the  outermost  modules  hence  a  sub-permutation 
Bk of m  elements of n. To realise  the  connections  that Bk represents it suffices 
to transit  them  by  one of the  intermediate  modules.  Thus  d  distinct  permutation 
matrices  must  be  extracted fi-om H to  achieve K. Figure 2 illustrates this process 
for  the  permutation  of  the  figure  1. 
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Figure 2% : The inkrconnection m a t h  associated 

to the permutation of the figure 1. 
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Figure  2b : Permutation  matrices  corresponding  respectively to the  switching 
commands for the first,  second,  third  and fourth switches  of  the  intermediate 

stage  of the figure 1. The  commands  for  the  outermost  stages  are  inferred. 

Figure  2 : A configuring  process 

As described  by  Neiman,  the  extraction of each  permutation  matrix Pk, 
consist in "marking"  the  non-nul1  elements  of H-EkdPk such as there is exactly 
one  by  row and by  column. In the  following, we will  use  the * sign to mark a 
non  null  element. It is proved 191 that with a  blind  marking,  for  a m m  matrix, 
the  number  of  elements  one  can  mark is at  least d 2 ,  

It  is uncommon  that this process  results in a  complete  permutation 
matrix. In such a  case  a  completion  phase is necessary.  Any  step of this one is 
similar to the search, in a  bipartite  graph, for an alternated path whose 
extremities  are  unsatured  to  construct  a  maximum  matching [12]. A systematic 
way to carry out the completion  process,  was  reported  by  Neiman [9]. It 
consists in two steps.  For  the  first  step : 

1 - Distinguish  the  columns  which  contain  a  marked  element with for  instance 

2 - Find  a non null  element a in an  undistinguished column. 
3 - If the  row of a contains  a  marked  element p, then  mark a with  for  instance 

the ' sign, undistinguish, by circling  the + sign,  the  column of p and 
distinguish  the row  of a with + sign. 

+ sign. 

4 - Else  mark a with  another  sign,  for  instance  sign. 

At  the  second  step : 

1 - From  an  element  marked  with  sign  and  whose  the  row  does  not  contain 
an element  marked  with * sign  construct  a  sequence  of non null  elements 
marked  alternatively with * sign  and ' sign by moving dong a  column  then 
along  a  row.  The  last  element of such  a  sequence is marked  with ' sign. 

2 - Alternate on this sequence * sign  with  the  other  signs. 

The  figure 3 illustrates  this process. 
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This prswss could be very expensive  because it requires am exhaustive 
search and furthermore, the  sequences which allow to increase the number  of 
the marked elements called sfrefcher in the follswing are longer tham necessary. 

To lower the probability of U s  process, Tsao-Wu [PO] proposes to 
modify the: first phase. hstead of blind mxkimg, he pr ses the following 
strategy for the Erst  phase : 

1- In each column  of H mark the largest umwked element. 
2- After an element H(i, j) has b e n  mwked, ehmse the next column k such as 

- 

H(i, k) be the largest. unmwked element in the i-th row. 

He then shoavs that for a switching metwork with dxd outermost 
modules, the number of the marked dements BE holds x S dd(2d-2). 
Asymptoticdly, U s  does not induce no noticeable improvement s-f the lower ' 
bound  of the number  of marked dements. 

This modification results in an algoritlm which in some cases does not 
need a completion  phase. 
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Figure 4 : A modified  Jajszczyk's  strategy. 
The numbers on the right  correspond  to  the  marking  order. 

III. Some  improvements 

In this section, we will deal with the improvements  of the completion 
process described  earlier. To that purpose  suppose  that  the  modified  Jajszczyk's 
strategy has been  used unsuccessfully. Let x be the number of the marked 
elements. There  are two permutation  matrices L and C such as 

where the diagonal  of Hl consists in al1 the marked  elements, H2 and H3 are 
both non null  and H4 = O. 

Let i E [l ,  XI such  as H2(i, .), the i-th row of H2 and H3 (., i), the i-th 
column of H3  are  both  non  null. The second step of  the completion process 
can take place  because  there are kl  and k2 E [x+l, ml such as the sequence 
(H2(i, kl) Hl(i,  i), H3(k2,i ) be a  stretcher. By iterating this process  while there 
is such a  sequence, it follows that for any i E [l, XI, H2(i, .) = O or H3 (., i) = O. 
From where : 

Proposition : There is t E [1/2, 11 such as x 1 m/(2-t). 

Proof : Let Sx(H1) = s i s mC1 sj 5 m Hl(i, j). One  verifies  easily that Sx(H1) = 
( 2 x - r n ) d a s & ~ ~ ~ , H l ( i , j ) = & ~ j ~ , H l ( i 7 j ) = d .  
Let t  be the maxlmum of the proportion of the non  null  rows  of  H2 and the 
proportion of the non  null  columns  of  H3. As H2(i, .) and  H3(., i) for any i E [ 1, 
x] are such as at least  one of them is null  then  t 2 1/2  and  we  have 
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S,(Hl) 2 (t(d-1) + 1)x. 
As M e r m o r e  S,(H1) = (2x - m)d it follows that x 2 md((2-t)d + t -1) which 
asymptotically  converges tswuds ml(2-t) . 

The  figure below illustrates  this  proposition. We can see  that a stretcher 
with 1engt.h 3 would suffke to complete the  number of the  marked  elements. 

O O 2" 2 

O O 1 1" 

O O 1 1 

1 2" O O 

2" 1 O O 

1 

!, O O O +  

Figure 4 

Now let us generalise this process. Consider  that  the  number of the nuIl 
colums of H3 is larger than the naunber of nul1 rows of H2. Let  (r(i) ; 15iSp) be 
these column nubers. 

Denote : 

Hl(i) the diagonal  block CgIl(a,b) ; a, b E [r(i-1), r(i)]) avhere r(0) = 1 
be the blocBe (Hz (a,b) ; a E [r(i-l), r(i)] b E [x+l, ml), 

H36) be the block (Fi3 (a,b) ; a E [x+l, ml, b E [r(i-l), r(i)]), 
(see figure 6). 

If Hz(~ )  is non nul1 then there are two probable stretchers whose 
extremities bdsng to a d  H$. 

More  precisely,  accoreling  to the process for building a stretcher, the 
non nul1 elements with the ' sign of each  probable  stretcher  belong  either to the 
lower or to  the upper eiangular part of Hl(i). 
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Figure 6 

We can now  apply the  completion  process on each (H2(i), Hl@, H@). 
Unlike the case where Hl(') wass  reduced  to  one  marked element, two 
situations  can  arise. 

- There is ie [ 1, p]  such as the  completion  process  succeeds.  Then  permute  the 
rows of the related stretchers  such as the new  marked  elements  be on the 
diagonal  of Hl and  repeat  the  process. 

- A l 1  the completion  processes fail. Then  extend H3(i) to  its next non null 
column ; Hl(i) and H2(i) are so extended  too;  apply  the  completion  process on 
each  of  the  new  sequences Hl(i), H3(i)). 

In the  worst  cases (H2@, Hl(i), H3@) converges  towards  the  sequence 
(Hz, Hl, H3); then  the  process is similar  to  the  one  described  earlier  which is 
known to be  successful. 

Othenvise  at  each  step we can  expect to mark  more  than  one  new non 
null  element with shorter  stretchers. 
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This divide and conquer  approach  to the completion process should be 
analysed carefilly as it can result in a parallel algorithm. Indeed we can 
imagine that for each the search  for the probable stretchers 
be allocated to a distinct  processor. 

This papa  reports some modifications  to the dgorithms for decomposing in 
permutation matrices the interconnection  matrix  associated to a configuration 
of a Clos Wee stages remangeable switching  network. It inlproves the results 
of similar studies. Indeed we have  proved that if the completion phase remains 
necessary then, for a m m  interconnection  matrix, it needs strictly less than m/3 
iteration steps instead of m/2. 

M e n  after al1 the completion  phase is needed  we  show that the cost of 
this latter can be reduced  by a divide and conquer  strategy. This approac.h  when 
analysed carefully should induce a parallel algorith. This will be the next step 
of our study. 

To carry out these improvements,  mainly the one  based upon the divide 
and conquer strategy, the marked  elements  must  constitute the diagond of Hl. 
This seerns to be expensive. In fact, we just need a circular permutation of the 
r o m  of H which  contain  the  elements of the  stretchers . 

We focused on the use of reconfigurable networks for producing 
interconnection schemes. While other techniques are available, this one 
represents the better  adequation  between an application processes graph and a 
processors graph. However, the associated control is generally complex, 
especially if a dynamic  behaviour is required. 

As much effort &vas dedicated  to buiild computation processors, a great 
deal of efforts must be devoted to produeing communication processors Whkh !. 

could handle such a complex control and execute the distributed algorithm 
required to build communication  schemes. 
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