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Abstract : Communication issues remain the key for the development of
Distributed Memory MIMD computers. Two main approaches prevail in the
search for adequate communication paradigms : the use of static or
reconfigurable interconnection networks. In this paper, we are interested in the
second approach. Reconfigurable Distributed Memory MIMD computers with a
large number of processors need multistage switching networks to interconnect
the processors. The Clos rearrangeable switching network belongs to the most
used in the industry, For this family of switching networks the literature
proposes several kind of control algorithms. The decomposition of the
interconnection matrix of the switches, induced by a given configuration, into
permutation matrices constitutes an interesting approach.

For each permutation matrix the algorithms of this class proceed in two
phases whose the second, the most costly expensive, needs for a mxm
interconnection matrix at most m/2 iteration steps.

This paper discusses two modifications of these algorithms. The first
results in an algorithm whose second phase needs less than m/3 iteration steps
instead of m/2. When after all second phase is needed, the second modification
shows how to carry out it according to the divide and conquer strategy.

Keywords : Parallel computer, interconnection network, message conveying,
permutation matrix, Clos rearrangeable switching network.
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I . Iniroduction

The experience gained with the development of parallel processing
reveals that communication issues are at least as important as computation
issues to obtain better performances. In order for interconnection network to be
as general as possible, target applications are modeled as graphs of processes
which must be mapped onto the processor's graph. The performance of the
application can then be measured by the distance between the two graphs.

Distributed Memory MIMD computers with fixed interconnection
network are not always well suitable to bring closer these two graphs;
according to the application, in general, costly expensive communication
between distant processes is the price to pay. However note that completely
connected networks constitute an exception; unfortunately, they do not support
a large number of processors.

Although they offer more flexibility than the previous, the bus based
interconnection networks also limit the number of the processors because of the
high communication contention they can induce.

Dynamic or reconfigurable interconnection networks constitute an
intermediate class. Comparatively to the precedents, their interest comes from
their ability to bring neighbours two distant processes by connecting directly
the processors on which they are running. To interconnect a very large number
of processors, these networks consist in several crossbars organised in stages
and are called multistage switching networks.

In the large variety of multistage switching networks, the Clos three
stages rearcangeable network [1] is one of the most attractive. Indeed it needs a
low cost of crosspoints, induces a low delay and because of its rearrangeability
is able to perform any permutation that is to say any processors interconnection
network, Many indusirial realisations of parallel computers use this kind of
switching networks [2], [3], [4], etc. The price to pay for this flexibility is the
cost of the control: the computation of the commands required to perform a
given configuration.

Many control algorithms have been proposed in the literature; except
for some particular classes of networks [5], their principles remain the same
and they differ only in the formalism they use. We distinguish bipartite graph
edges coloring [6], set theory [7] and matrix decomposition approaches [9].
Recenily another method called scheduling was proposed [8].

The algorithms based upon matrix decomposition consist in two phases

whose the second, costly expensive, is necessary only if the first does not
succeed. In [10] Tsao-Wu reports a strategy for the first phase to lower the
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probability of the second phase. Although interesting for large switching
networks, this modification does not induce a noticeable improvement of the
cost of the second .

More recently, Jajszczyk [11] proposed a method for matrix
decomposition which should not require a second phase. In [8] it is proved that
this algorithm does not always provide information enough to solve the
problem without a second phase.

This paper proposes to reduce the cost of the second phase too. In the
next sections, we first introduce some definitions and generalities about the
matrix decomposition approach to the calculus of the settings of Clos three
stages rearrangeable switching networks. Then we show how to reduce the cost
of the second phase to m/3 iteration steps instead of m/2 for a mxm
interconnection matrix. We also show how the second phase could be carry out
more efficiently with a divide and conquer strategy.

II . The matrix decomposition process

A Clos three stages rearrangeable switching network consists in m dxd
input modules, d mxm intermediate modules and m dxd output modules. The
modules are interconnected as follows: the k-th output (input) of the i-th (j-th)
input (output) module is connected to the i-th (j-th) input (output) of the k-th
intermediate module (see figure 1 below).

Let © be a permutation of N=md elements representing a processors
interconnection. To realise &, the switching network must connect any of its
inputs ie [0, N-1] to its outputs ®(i)e [0, N-1]. More precisely w induces the
following interconnections between the outermost modules of the switching
network: an input module 1 is said to be connected to an output module J if
there is an input ie I such as n(i) € J. This set of interconnections can be defined
by the matrix Hy whose the element Hy (I, J) indicates the number of the
connections that © induces between the modules I and J. In the following Hy
will be noted simply H.

Let P be a permutation matrix extracted from H. It performs an one to
one correspondence between the outermost modules hence a sub-permutation
7, of m elements of . To realise the connections that wy represents it suffices
to transit them by one of the intermediate modules. Thus d distinct permutation
matrices must be extracted from H to achieve x. Figure 2 illustrates this process
for the permutation of the figure 1.
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Figure 1 : A Clos three stages rearrangeable switching network configured to
realise the interconnection corresponding to the permutation
= (13,7,3,12,8,9,5,10,14,1,0,4,6,2,15,11)
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Figure 2a : The interconnection matrix associated
to the permutation of the figure 1.
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Figure 2b : Permutation matrices corresponding respectively to the switching
commands for the first, second, third and fourth switches of the intermediate
stage of the figure 1. The commands for the outermost stages are inferred.

Figure 2 : A configuring process

As described by Neiman, the extraction of each permutation matrix Py,
consist in "marking" the non-null elements of H-Zy ;P such as there is exactly
one by row and by column. In the following, we will use the * sign to mark a
non null element. It is proved [9] that with a blind marking, for a mxm matrix,
the number of elements one can mark is at least m/2.

It is uncommon that this process results in a complete permutation
matrix. In such a case a completion phase is necessary. Any step of this one is
similar to the search, in a bipartite graph, for an alternated path whose
extremities are unsatured to construct a maximum matching [12]. A systematic
way to carry out the completion process, was reported by Neiman [9]. It
consists in two steps. For the first step :

1- Distinguish the columns which contain a marked element with for instance
+ sign.

2 - Find a non null element o in an undistinguished column.

3 - Ifthe row of o contains a marked element B, then mark o with for instance
the ' sign, undistinguish, by circling the + sign, the column of § and
distinguish the row of o with + sign.

4 - Else mark o with another sign, for instance " sign.

At the second step :

1- From an element marked with " sign and whose the row does not contain
an element marked with * sign construct a sequence of non null elements
marked alternatively with * sign and ' sign by moving along a column then

along a row. The last element of such a sequence is marked with ' sign.
2 - Alternate on this sequence * sign with the other signs.

The figure 3 illustrates this process.
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Figure 3 : The process for building a stretcher.

This process could be very expensive because it requires an exhaustive
search and furthermore, the sequences which allow to increase the number of
the marked elements called streicher in the following are longer than necessary.

To lower the probability of this process, Tsao-Wu [10] proposes to
modify the first phase, Instead of blind marking, he proposes the following
strategy for the first phase :

1- In each column of H mark the largest unmarked element.
2- After an element H(j, j) has been marked, choose the next column k such as
H(i, k) be the largest unmarked element in the i-th row,

He then shows that for a switching network with dxd outermost
modules, the number of the matked elements x holds x 2 dm/(2d-2).
Asympiotically, this does not induce no noticeable improvement of the lower
bound of the number of marked elements.

A more interesting marking strategy was reported by Jajszczyk [11].
This one consists in marking the non null element whose the row contains the
largest number of zeros. In [13], this strategy has been modified. The new
strategy consists in marking the non null elements H(i*, j*) such as firstly the
row (column) i* (j*) contains the largest number of zeros and then the column
(row) j* (i*) also contains the largest number of zeros among all the column
(row) j (i) that verify H(i*, j) (HG, j*)) #0.

This modification results in an algorithm which in some cases does not
need a completion phase.
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Figure 4 : A modified Jajszczyk's strategy.
The numbers on the right correspond to the marking order.
III . Some improvements
In this section, we will deal with the improvements of the completion
process described earlier. To that purpose suppose that the modified Jajszczyk's

strategy has been used unsuccessfully. Let x be the number of the marked
elements, There are two permutation matrices L and C such as

H; H»
Hj Hy4

LHC =

where the diagonal of Hy consists in all the marked elements, H, and H3 are
both non null and Hy = 0.

Leti e [1, x] such as H(i, .), the i-th row of H and Hg (., i), the i-th
column of Hz are both non null. The second step of the completion process
can take place because there are k1 and ko € [x+1, m] such as the sequence
(H2(, k1) H1(, 1), Ha(ko,i ) be a stretcher. By iterating this process while there
is such a sequence, it follows that for any i € [1, x], Hao(i, .)=0or H3 (., i) =0.
From where :

Proposition : There is t €[1/2, 1] such as x = m/(2-t).

Proof : Let Sx(H1) = Zj <j<mZ1 <j<m Hi1(, j). One verifies easily that Sx(H;) =
@2x-m)dasZi<jsmHi(i, j) =21 <jem H1 (G, j) = d.

Let t be the maximum of the proportion of the non null rows of H, and the
proportion of the non null columns of H3. As Hy(i, .) and H3(,, i) forany i e [1,
x] are such as at least one of them is null then t = 1/2 and we have
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Sx(H1) = t(d-1) + Dx,
As furthermore Sx(H{) = 2x - m)d it follows that x 2 md/((2-t)d + t -1) which
asymptotically converges towards m/(2-t) .

The figure below illustrates this proposition. We can see that a stretcher
with length 3 would suffice to complete the number of the marked elements.

® ®
[ o 1% 1 0 0 y | +
M
0 0 0 2+ 2 0
0 0 0 1 1* 2
2 0 0 1 1 0
1 1 2% 0 0 o |*
1 2" 1 0 0 0
Figure 5

Now let us generalise this process. Consider that the number of the null
columns of Hj is larger than the number of null rows of Hs. Let (1(i) ; 1<i<p) be
these column numbers.

Denote :

H; () the diagonal block (Hy(a,b) ; a, b & [r(i-1), 1(i)]) where 1(0) = 1,
H,® be the block (Hy (a,b) ; a € [x(-1), ()], b € [x+1, m]),

H5® be the block (Hs (a,b) ; a e [x+1, m], b & [r(i-1), r@)]),

(see figure 6).

If Hy® is non null then there are two probable stretchers whose
extremities belong to HyW and Hz®,

More precisely, according to the process for building a stretcher, the
non null elements with the ' sign of each probable stretcher belong either to the

lower or to the upper triangular part of H;®-
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Figure 6

We can now apply the completion process on each (Hy®, Hi®, Hz®).
Unlike the case where H;{() wass reduced to one marked element, two
situations can arise.

- There is ie[1, p] such as the completion process succeeds. Then permute the
rows of the related stretchers such as the new marked elements be on the
diagonal of H; and repeat the process.

- All the completion processes fail. Then extend H3;® to its next non null
column ; H;® and Hy® are so extended too; apply the completion process on
each of the new sequences (Hy®, H;®, H;®),

In the worst cases (Hy®, H{®, H3®W) converges towards the sequence
(Hz, Hy, H3); then the process is similar to the one described earlier which is
known to be successful.

Otherwise at each step we can expect to mark more than one new non
null element with shorter stretchers. '
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This divide and conquer approach to the completion process should be
analysed carefully as it can result in a parallel algorithm. Indeed we can

imagine that for each (H,™, H;®, H3Y) the search for the probable stretchers
be allocated to a distinct processor.

1V . Conclusion

This paper reports some modifications to the algorithms for decomposing in
permutation matrices the inierconnection matrix associated to a configuration
of a Clos three stages rearrangeable switching network. It improves the results
of similar studies. Indeed we have proved that if the completion phase remains
necessary then, for a mxm interconnection matrix, it needs strictly less than m/3
iteration steps instead of m/2.

When after all the completion phase is needed we show that the cost of
this latter can be reduced by a divide and conquer strategy. This approach when
analysed carefully should induce a parallel algorithm. This will be the next step
of our study.

To carry out these improvements, mainly the one based upon the divide
and conquer strategy, the marked elements must constitute the diagonal of Hj.
This seems to be expensive. In fact, we just need a circular permutation of the
rows of H which contain the elements of the stretchers .

We focused on the use of reconfigurable networks for producing
interconnection schemes. While other techniques are available, this one
represents the better adequation between an application processes graph and a
processors graph. However, the associated control is generally complex,
especially if a dynamic behaviour is required.

As much effort was dedicated to build computation processors, a great
deal of efforts must be devoted to producing communication processors which
could handle such a complex control and execute the distributed algorithm
required o build communication schemes,
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