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summary: This paper  presents  insights  gained  from an experience  with the 
optimal  linear  layout of processors in  regular  arrays.  In  such  design  styles, the area 
optimization is equivalent  to a graph  mincut  computation. We propose a heuristic 
based on  the  Gurari and Sudborough  equivalent  relation  and  we  experiment it on 
a graph  representation  adapted  to  the mincut computation. 
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This paper presents insights gained from an experience with the linear 
layout of processors in regular  arrays. In such structures, the processors 
may be replicated several hundred  times.  In a linear layout design style, 
the area optimization is quivalent to a net congestion minimization in the 
routing area. This problem is similar to the computation of the mincut of a 
graph  or a hypergraph. As a processor is composed of a few cells (less than 
one hundred), we decided to experiment on algorithms with  even a high 
complexity. 

To find an optimal placement,  we use first the algorithm of Gurari and 
Sudborough, beeause it has the lowest complexity. They propose a polyno- 
mial decision algorithm which  determines  whether a graph has a cut value 
less than a given constant. Used iteratively from a cut lower bound, the 
algorithm stops at the first positive answer  and delivers a vertex placement 
respecting the exact mincut value. 

This decision algorithm has an O(N')-tirne complexity where M is the 
number of vertices and k the cut  value. We propose a heuristic based on 
the sarne equivalence relation among the partial ordering, bue which lirnits 
the choice to only the placed  vertex  successors  when extending a partial 
Qrdering. For many sample cases,  this heuristic gives the exact ntincut 
value with better run tirnes. 

However, the min& value is not  guaranteed to be determined using the 
heuristic algorithm. We investigate the use of the original decision algorithm 
to check and decrease this upper bound of the rnincud value. 

For the implementation of these different algsrithms, we face two prob- 
lems. First, the  data structures initially proposed by Gurari and Sudborough 
can not be implemented due to the memory storage requirement. Second, 
the algorithms use graphs when the natural representation of a circuit is 
a hypergraph. We propose a graph representation adapted to the mincut 
computation. 

Many  signal or image processing  algorithms  demand  regular computatisns, which 
can be efficienfly  implemented  on  massively  parallel  architectures such as systolic 
srregular mays. 'Fhese structures are composed  of simple processors conmected to 
their  nearest  neighbors [ 81. To produce compact layouts, the automatic  generation 
ofthelayout is done in two steps: processor  layout  generation; and may assembly. 
k a y  assembly is addressed by the MADMACS system [4]. In this paper, we focus 
on the processor  layout  generation. 

Rocessors  in such structures are made  of  few cells, generally less than one 
hundred. The generation can be done  efficiently by a linear layout of predefined 
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Figure 1:  Different  types of connector  placement  constraints 

@) Ordering 1 : 2 routing trach. (c) Ordering 2 : 4 muting tracks. 

Figure  2: Vertex ordering  effect  on the cutwidth. 

cells. This layout style is common in circuit design; we can cite gate matrices [2, 
141, Weinberger  arrays  [13],  datapath  generators  [12],  and singlerow of standard 
cells [7, 111.  However, the processor layout generation  must be constrained in 
order to retain the regularity  at the array  level. As presented in figure 1, these 
constraints are related  to the processor  connector  positions. 

As a ce11 has a single layout in the library and also a fixed size, minimization 
of the global  layout  area  will be achieved  by  routing  area  minimization.  For  such 
linear layouts, a good  approach is to globally  reduce the net congestion [l, 61, 
which  corresponds  to the routing  tracks  necessary  to  achieve the routing. This 
problem is known as Mincut  Linear  Arrangement,  Backboard  Permutation or Op- 
timal Linear Arrangement [9,5, 101. Algorithms  seek a hypergraph  vertex linear 
ordering which  minimizes the maximal cut (also named cutwidth or mincut) 
between  successive  nodes, as illustrated in figure  2. 

The mincut computation is an NP-complete  problem[3].  Many  heuristics 
have been  proposed in the past to solve this problem.  These  approaches are not 
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guaranted to deliver the exact mincut value.  However, some authors have pro- 
posed decision algorithm which deliver one possible  hypergraph linex ordering, 
with a cu-t 5 k (where k is a constant integer). By iteratively  applying these al- 
gorithms, one cm find the exact mineut of a hypergraph.  However, this approach 
is time-consuming.  For  ample, the Miller and Sudborough decision algorithm 
[ICI] h%s a polynomial-time  complexity in O(NL’+~L+’), where N is the vertex 
number and k the cut vdue. Gurari and Sudborough [5] propose a decision al- 
gorithm with m B(NL)-time complexity  where N is the vertex number and k 
the cut vdue. For srnall probalems Oess thm one  hundred celals), this algorithm 
is attractive.  However, the direct representation of a circuit is not a graph, but a 
hypergraph. 

In  regular  arrays, a processor  may be replicated  several  hundred  times. A 
simple width  Illinimization of the processor, for example, in the range of a 5 micron 
saving in the layout of a routing tracck, will lexl to a 0.5 mm width minimization 
of a 100 processor wide may. For these reasons, we se& an algorithm which 
gives us the exact  mincut  value. As a processor is composd of few cells (less 
than one hundred), an algorithm with even a high complexity can be implemented 
if it has acceptable  run time on small  problems. 

We investigatte the results of Gurari and Sudborough  because their original 
algorithm has the %owest complexity.  Different algorithm basd  on their equiv- ~ 

alence  relation are implemented. This quivalence relation is among the partial 
orderings  and  guarantees that every  partial  layouts of a class  will be completed in 
total layouts with the same cutwidth. 

The first  algorithm is an iterative implernentation of their original decision 
algorithm.  Starting  from a mincut lower bound, the algorithm is used iteratively 
until it delivers an answer.  However, this algorithm has an O(N’)-time complex- 
ity. 

We propose a second  algorithm which uses a heuristic for induction on the 
number of vertices. In fact, the heuristic limits the vertex to extend a partial 
ordering to be one of the successors  of the placed  vertices. This algorithm is 
faster and gives, in many  cases, similar mincu-t values  to those of the original 
algorithm.  However, it does  not  guarantee  finding the mincut vdue. 

The third  algorithm combines the two previous ones. First, stxting from a 
lower bound, the heuristic  algorithm is used  iteratively  to  approach the mincut 
value, which is in fact an upper  bound.  Then, in order to find the exact value, we 
use the exact  algorithm  to check and  decrease the mincut  upper  bound. 

These three algorithms have b e n  implemented and evaluated.  For  their 
implementations, we face two problems. First, the data structures that the authors 
propose are not  reasonnable due to the memory  storage  requirement. We propose 
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Figure 3: Different  subsets in vertices  and  edges. 

other  ones.  Second, the natural  representation  of  a  circuit is a  hypergraph  and 
their  algorithm treats only graphs. To resolve these problems, we propose a graph 
representation  of  a circuit and  modify  their  original  algorithm. 

Section 2 gives some definitions  and  presents the quivalence relation  among 
partial  orderings  proposed  by  Gurari and Sudborough.  Section 3 details the dif- 
ferent  algorithms.  Section 4 presents  their  implementation.  Results are gathered 
in section 5. 

2 Equivalence  relation 

In this section,  we  first give some definitions  and  then  present the quivalence 
relation  among the partial  orderings,  on  which the original  algorithm  of  Gurari 
and  Sudborough is based. 

2.1 Definitions. 

Let G = (V, r) be a  finite  undirected  graph. A one-to-one  mapping  function 
L : V + { 1, ....., card (V)}  is a  linear  ordering  of G called  a  total layout L. 
A partial layout L' of the graph G = (V, r) is a  one-to-one  mapping  function 

Given a partial layout L', the placed set of this partial layout is the set of 
L' : v' c v + { 1,  ..) card(V')}.  

placed  vertices  and the unpleced set is the set of  unplaced  vertices: 

placetl(G, L') = V'; 

a unplaced(G, L') = V \ V'; 

Given the partition  of a partial  layout into its placed set on one side,  and its 
unplaced set on the other side (see figure 3), there  exist  edges  between one vertex 
of the placed set and one vertex  of the unplaced set. The subset of  vertices ylaced 
is called the active set, the subset of  vertices unplaced is called the successor 
set, and the set  of  edges  between ylaced and unplaced is called dangling. 
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Given a partial layout, we define the netcut between two successives vertices 
as the number of dges between the left and right parts. The cutwid-th of the 
layout is the maximum of its netcuts, and the mincwt of the graph is the minimum 
of the cutwidths of total layouts. 

netcut(G, L', i) = ca.Td({y E r 1 y = (w, u') A E'(W) 5 i AEQI') > i}); ' 

e cwtwidth(G, L') = ma,z;(netcut(G, L', i)) where i 5 c a ~ d ( V ' ) ;  

e mincut(G) = cutwidtlr(G) = minL(cutwidth(G, L ) ) ;  
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3 Algorithms 

In this section, we  present the two  algorithms.  Basically,  they  determine only 
if mincut(G) 5 k. To cornpute the mincut  value,  they  must be used iteratively 
by either increasing  or  decreasing the k value. We choose the first solution to 
reuse the classes examined  during the former  iterations. To reduce the number 
of iterations needed, k is initialized  with the maximum of the Left degree,  of the 
Right degree and  of the greater  half-degree of the other vertices. 

3.1 Original  algorithm 

Gurari  and  Sudborough  propose a decision  algorithm  based on the former  equiva- 
lencerelation. The algorithm  uses  two data structures: aboolean array tubClusses 
to mark the equivalence  classes  with cutwidth 5 k and a stack Q to memorize 
one partial layout for each  marked  equivalence  class. Q is initialized by Lo, the 
empty layout. The algorithm is as follows: 

While Q # 8 do 
Take a partial layout L in Q ;  
For each  vertex T I  in unpZuced(G, L )  do 

L' = L + '0; 
If L' is a total  layout then 

If cuturidth(G, L') _< k then 
return(G has a mincut 5 k, L' is a linear  ordering); 

If L' is a partial layout then 
If cutwidth(G, L') _< k then 

If tubCZusses(L') unmarked then 
Mark tubCZusses(L'); 
Q = Q U L'; 

EndFor 
EndWhile 
return(G has a mincut > k ) ;  

To  find the exact  amincut  value, this algorithm  must be used iteratively by 
increasing a lower bound,  or  decreasing  an  upper  bound. 
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euristic algorithm 

To reduce the run time, it is necessary to limit the tree search  by  means of heuristic. 
To extend a pa.r&ial layout L,  the possible  vertices  are  chosen mong the vertices 
of svecessor(G, L ) ,  as eard(svccess0r(G, L ) )  5 card(unpZaced(G, E ) ) .  This 
choice limits locally the cutwidth increase. The previous  algorithm is simply 
modifiecl by replacing the primitive instruction: 

For each  vertex 2 in u,nplaced(l) do - For each vertex 2 in successor(E) do 

This approach can be understood as the generallization of the greedy  algorithm 
presentedbyKang [7], wherethevertextoextendalayoutLisinsuccesssr(G, L )  
and induces the minor increase of the graph  cut.  But the choice is definitive. Like 
partition-based heuristics [a], this search  approach cm be trappecl into a locd 
optimal solution, while ours does not, thanmks to the backtracking. 

The present heuristic does  not  guarantee a better  complexity in compxison ts 
the Gurari and Sudborough  algorithm.  For  instance, if G is a complete graph, the 
time complexity and the number  of  examined  classes  will be the same.  However, 
as shown on practical  exarnples  (see  next  section), the number ofexarnined classes 
and the mn times  are  reduced using the heuristic  approach. 

3.3 Heuristic 

The heuristic  actually gives an upper  bound of the rninevt value even if, in many 
cases, this value is exact. We have  investigated  using the original  algorithm to 
check  and  eventually  decrease the value  delivered by the heuristic  algorithm. This 
approach is attractive. As the heuristic is fater than the original  algorithm,  and 
the heuristic n~.%ncut value is exact in many cases, the original  algorithm  will be 
used only to check  and not to decrease  iteratively this nzin.cut value. Furthemore, 
the results show that the heuristic value is closer  to the exact rnineu.t value than 
the lower  bound  used  to initialize the iteration. 

m e n  implementing these dgorithms, we face two  problems: the original data 
structures are not  adapted in term of storage  requirements; and the natural  rep- 
resentation of a circuit is a hypergraph, while these  algorithms  work only on 
graphs. 
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(a)  Example of circuit. @) Net  representation. 

Figure 4: Net representation. 

(a) Symbolic layout. (b) Cell representation. 

(c) Final graph. 

Figure 5: Ce11 representation. 

4.1 Ce11 representation 

One  problem  in  using the previous  algorithm is the representation  of  a circuit with 
a  graph.  In the graph  model,  each ce11 is usually  represented by one vertex  and 
each  net by one or several  edges.  But this model  lacks  accuracy for the mincut 
computation. 

Net  representation: A single net  can  connect P inputs andor outputs. Such a 
net  can be represented by ( P  - 1)  edges  with  a  common  vertex.  But they must 
be marked as a single multi-edge  to be counted as 1 during the cut computation, 
as they will be laid out by  a single routing  wire. This representation is illustrated 
in figure 4.b. 

Ce11 representation: The mincut computation just considers the edges  between 
successive  vertices. So, the symbolic layout (see figure  5.a),  has  a  mincut  of 2. 
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But  on B itself, the cut is 3. In this example, the cell B inputhutput ordering 
increases the cut. This is a real  problem as a ce11 has  generally a single layout 
representation in the lihrary with a fixed inputhutput ordering, for example E l  
on the left, E2 in the middle, and 1’ on the right.  However, this problem has to be 
considered on cells  with 4 or more inputs/outputs only.  With 2 or 3, a horizontal 
mirror solves this proklem. 

To compte the real cut, inputdoutputs are represented  by  interdependent 
vertices. Figure 5.b  illustrates this circuit  graph  model. To place such a ver- 
tex, dl the interdependent  vertices will be suecessively  placed  according to the 
inputbutput ordering. If the new  graph h a  additional  vertices, the complewity 
does  not increase as the placement is predefined,  but the cut computation is more 
time-consuming. 

Circuit cells have some structural  properties  that  can be used ts decrease the 
netcut on the cell  itself. It is possible to examine the horizontal minor of the 
ce11 (in  fact the reverse inputhutput predefined  ordering).  In  addition, some cell 
inputs are commutative, for example, “Nand” gate inputs. This property cm be 
used to modify the input  netlist which is, in  some sense, equivalent  to  changing 
the inputhutput predefined  ordering. 

Extemal signalx A circuit  has  external  inputs/outputs  which muse be consid- 
ered in the minculi computation. In the case of type 1 processor, two vertices, 
named h f t  and Right, are added  and  connected  to the external  signals ( s e  fig- 
ure 5.c). These Q f t  and Riglzt vertices  will be initidly plaeed  on the leftmost and 
rightmost of the linear  ordering. Then, the initial value  of the stack Q is the 
vertex  rather  than the empty layout Lo, and every  vertex of urLylaced( %) - Riglzt 
c m  be chosen.  Indeed, the Right vertex  placed in the rightmost  position  does not 
modify the cutwidth. 

For t g p  2 or t y p e  3 processors  (see  figure 1.b and c), the vertical part of the 
connectors  are to be ignored. So, the n a i ~ ~ u t  computation  for tgpe 3 is similar 
to the t ype  1 one. On the other  hand, type 2 have  no Right vertex  and  morover, 
their Left vertex is not  fixed:  during the tree  search, the different  graph vertices 
will successively  represent  the Qft. 

Gwph reeduction: Makedon and  Sudborough [9] have prsposed removing  ev- 
ery  vertex  with a degree  of 2 and  merging the edges.  They  prove  that this new 
graph  has the same mincut.  Moreover,  we  propose to remove  every edge (or 
multi-edge)  between  the lkft and Right vertices. Such an edge,  the dock for 
example, is a diffusion signal, and  will be laid out on a single routing  track. 
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Table 1: tubClasses lists study. 

4.2 Data  structures 

A direct implementation  of  Gurari  and  Sudborough  algorithm is unrealis- 
tic. As there are O ( N k )  possible  classes, the porposed tubClusses boolean 
array data structure would  require  too  much storage and the compter used to 
execute this algorithm  would  spend  its time “swapping” the memory.  Instead, 
we use a  bidimensional may [1..N, 1 ..k] of list pointers, This array is indexed 
by curd(pZaced(G, L ) )  and card(dmgling(G, L))] .  Each list contains al1 the 
examined  equivalence  classes  with  the same number of vertices and the same 
rightmost netcut.  Moreover, to optimize the search of a class in a list, the lists are 
sorted in lexical order.  Such  structures are computationally  practicable,  however, 
the maximum  number of dements in each list is in theory O ( N k ) .  Experience 
shows that the number  of list elements is lower (see Table 1). 

5 Results 

In this section, we give two  comparative  tables: one on the run  times of the 
algorithms, and one on the computed and memorized  classes by the algorithms. 

Circuit  description: Different  circuits  are  used  to  compare these algorithms: 
C432, “208, C29 from the ISCCAS85 benchmarks, C77 a counter, C50 an ellip- 
tical  fifth  order  filter, C40 a clock  controller, Cl 1 a systolic correlator  processor, 
C8 a systolic convolver  processor,  and C7 an example  which  shows the heuristic 
limitation. Table 2 gives the characteristics of these  different  circuits:  number of 
cells, number  of  hyperedges,  number of edges,  maximum  of the Le f t degree, of 
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Table 2: Characteristics of the circuit exmples. 

the Right degree and of the greater  half-degree  of the other vertices. This last 
value is used to initialize k in the iteration. 

lgorithrn cornparison: We compare the following Jgorithms: 

S., the original  algorithm, 

e Heuristic, the heuristic algorithm, 

Check, which  combines the heuristic and original algorithms. 

These different  algorithms  were coded in @. Weused a SUN4/5O with 32 Mo 
Table 3 summarizes the run time, the miacut, and b o p  the nurnber  of  iterations 
for each algorithm. This table also  gives the cut found  with an implementationof 
Kang “ln-Act-Out” algorithm [7]. 

The heuristic provides good results for both run time md mincut value, For 
dl the exmples studied with the exception  of the couPtterexemple C7 built  to 
emphasize the heuristic limitation, the s m e  number of iterations is required by 

. and Heuristic algorithms. 
wever on some exmples, the Heuritic Check algorithrn gives greater 

mn times in cornparison  to the dgorithm. There is different reasons to ex- 
plain these results. Firstly on t 1 examples, the results are not significative, 

the Check step corresponds to the most  time-consuming iteration of . algorithm.  Finally, the Check step  does  not used actually the classes 
computed  during the  Heuristic step.  Using  them, this Sep would be improved by 
a factor 2 (see the table 4 especially on C432 and C4O). 

- 122 - 



Table 3: Comparison of algorithms. 

Table 4: Computed  layouts  and  memorized  classes. 

Computed  Iayouts  and  classes: The heuristic limits the number  of  examined 
layouts and of classes  memorized in tabCZa,sses. A limitation of memorized 
classes is important to avoid  memory  “swapping”  and reduce run  time.  Table 4 
summarizes the differences  on the last iteration, between Heuristic and G. & S.  

As shown in table 4, the heuristic  reduces the number of computed layouts 
and  memorized  classes,  especially  on  large  circuits.  On “50 and CS, there is no 
reduction.  In  fact  on  these  examples, the vertex  ordering is close to the optimal 
linear ordering. We investigated the use of initial vertex  sorting (a topological 
sorting, result of Kang InAetiveOut algorithm, , . . ) before  processing, but without 
success in terms  of  reduced  run  times. 
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This paper has presented an approach for the linear layout of processors in regulx 
mays. In such  structures, the processors are often  replicated  several  hundred 
times. A few  microns  of  optimization on a single processor  will lead to a large 
sptimization on the array. Pn a linear layout design style, the area optimization 
comes down to a net  congestion  minimizalion in the routing area. This problem 
is similar to the computation of the mincut of a graph  or a hypergraph. As a 
prscmsor is composed  of a few cells (less than one hundred),  even an algorithm 
with a high complexity cm be implemented. 

We investigatethe decision  algorithm  proposed by Gurari  and  Sudborough, to 
find a processor linear placement respecting the exact mincut value of a graph. To 
efficiently implementthis algorithm, we propose a new  data structureto rnemorize , 

the partial linear  ordering, and an accurate graph mode1 of B circuit  which ensures 
the identity between the graph’s nain.cu1: and the number  of  routing  tracks  needed 
for the layout. 

As the iterative implementation of the decision  algorithm is time-consuming, 
we investigate a heuristic based  on the equivalence relation  among the partial 
linear ordering,  initially  proposed  by  Gurari and Sudborough. This heuristic t. 

limits the possible  vertices to extend a partial linear placement,  to be one of the 
successors of the placed ones. Wlile this new algorithm in theory gives an upper 
bound of the mincut value,  in many cases, it gives the exact value but with better 
mn times in comparison to the  decision  algorithm. 

The heuristic does not guaranntee an exact mincut value. We study a step 
to check and decrease the value  determined by the heuristic,  using the decision 
algorithm. In some cases, the Heuristic a- Check times  are greater than these 
found directly with the decision  algorithm. This can be explainecl by the f c t  
that we do not use the classes  computed by the former Heueistic algorithm in the 
Check step. We think, using  these classes would  improve the Check step by a 
factor 2. 

Actually,  we  get the exact naineut value with good mn times on processors 
with less thm one hundred  cells. Such processor sizes are  large  enough for many 
regular may cases. On lxger problems, these algorithms are actually too time- 
consuming or do not run to completion. We continue investigations to reduce the 
mm times: improving the data  structures, looking for  other  graph reductions baset3 
on structural  properties of circuits. 
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