
A new ce11 placement algorithm
for optimal linear layout

Eric Gautrin, Oumarou Si6
IRISA

Campus de Beaulieu
35042 Rennes C a e x

FRANCE
Phone: (33) 99 84 71 O0

Email: gautrin@irisa.fr, sie@irisa.fr

keywords: placement, linear layout, graph cut, regular array.

summary: This paper presents insights gained from an experience with the
optimal linear layout of processors in regular arrays. In such design styles, the area
optimization is equivalent to a graph mincut computation. We propose a heuristic
based on the Gurari and Sudborough equivalent relation and we experiment it on
a graph representation adapted to the mincut computation.

- 711 -

This paper presents insights gained from an experience with the linear
layout of processors in regular arrays. In such structures, the processors
may be replicated several hundred times. In a linear layout design style,
the area optimization is quivalent to a net congestion minimization in the
routing area. This problem is similar to the computation of the mincut of a
graph or a hypergraph. As a processor is composed of a few cells (less than
one hundred), we decided to experiment on algorithms with even a high
complexity.

To find an optimal placement, we use first the algorithm of Gurari and
Sudborough, beeause it has the lowest complexity. They propose a polyno-
mial decision algorithm which determines whether a graph has a cut value
less than a given constant. Used iteratively from a cut lower bound, the
algorithm stops at the first positive answer and delivers a vertex placement
respecting the exact mincut value.

This decision algorithm has an O(N')-tirne complexity where M is the
number of vertices and k the cut value. We propose a heuristic based on
the sarne equivalence relation among the partial ordering, bue which lirnits
the choice to only the placed vertex successors when extending a partial
Qrdering. For many sample cases, this heuristic gives the exact ntincut
value with better run tirnes.

However, the min& value is not guaranteed to be determined using the
heuristic algorithm. We investigate the use of the original decision algorithm
to check and decrease this upper bound of the rnincud value.

For the implementation of these different algsrithms, we face two prob-
lems. First, the data structures initially proposed by Gurari and Sudborough
can not be implemented due to the memory storage requirement. Second,
the algorithms use graphs when the natural representation of a circuit is
a hypergraph. We propose a graph representation adapted to the mincut
computation.

Many signal or image processing algorithms demand regular computatisns, which
can be efficienfly implemented on massively parallel architectures such as systolic
srregular mays. 'Fhese structures are composed of simple processors conmected to
their nearest neighbors [81. To produce compact layouts, the automatic generation
ofthelayout is done in two steps: processor layout generation; and may assembly.
k a y assembly is addressed by the MADMACS system [4]. In this paper, we focus
on the processor layout generation.

Rocessors in such structures are made of few cells, generally less than one
hundred. The generation can be done efficiently by a linear layout of predefined

- 712 -

Figure 1: Different types of connector placement constraints

@) Ordering 1 : 2 routing trach. (c) Ordering 2 : 4 muting tracks.

Figure 2: Vertex ordering effect on the cutwidth.

cells. This layout style is common in circuit design; we can cite gate matrices [2,
141, Weinberger arrays [13], datapath generators [12], and singlerow of standard
cells [7, 111. However, the processor layout generation must be constrained in
order to retain the regularity at the array level. As presented in figure 1, these
constraints are related to the processor connector positions.

As a ce11 has a single layout in the library and also a fixed size, minimization
of the global layout area will be achieved by routing area minimization. For such
linear layouts, a good approach is to globally reduce the net congestion [l, 61,
which corresponds to the routing tracks necessary to achieve the routing. This
problem is known as Mincut Linear Arrangement, Backboard Permutation or Op-
timal Linear Arrangement [9,5, 101. Algorithms seek a hypergraph vertex linear
ordering which minimizes the maximal cut (also named cutwidth or mincut)
between successive nodes, as illustrated in figure 2.

The mincut computation is an NP-complete problem[3]. Many heuristics
have been proposed in the past to solve this problem. These approaches are not

- 713 -

guaranted to deliver the exact mincut value. However, some authors have pro-
posed decision algorithm which deliver one possible hypergraph linex ordering,
with a cu-t 5 k (where k is a constant integer). By iteratively applying these al-
gorithms, one cm find the exact mineut of a hypergraph. However, this approach
is time-consuming. For ample, the Miller and Sudborough decision algorithm
[ICI] h%s a polynomial-time complexity in O(NL’+~L+’), where N is the vertex
number and k the cut vdue. Gurari and Sudborough [5] propose a decision al-
gorithm with m B(NL)-time complexity where N is the vertex number and k
the cut vdue. For srnall probalems Oess thm one hundred celals), this algorithm
is attractive. However, the direct representation of a circuit is not a graph, but a
hypergraph.

In regular arrays, a processor may be replicated several hundred times. A
simple width Illinimization of the processor, for example, in the range of a 5 micron
saving in the layout of a routing tracck, will lexl to a 0.5 mm width minimization
of a 100 processor wide may. For these reasons, we se& an algorithm which
gives us the exact mincut value. As a processor is composd of few cells (less
than one hundred), an algorithm with even a high complexity can be implemented
if it has acceptable run time on small problems.

We investigatte the results of Gurari and Sudborough because their original
algorithm has the %owest complexity. Different algorithm basd on their equiv- ~

alence relation are implemented. This quivalence relation is among the partial
orderings and guarantees that every partial layouts of a class will be completed in
total layouts with the same cutwidth.

The first algorithm is an iterative implernentation of their original decision
algorithm. Starting from a mincut lower bound, the algorithm is used iteratively
until it delivers an answer. However, this algorithm has an O(N’)-time complex-
ity.

We propose a second algorithm which uses a heuristic for induction on the
number of vertices. In fact, the heuristic limits the vertex to extend a partial
ordering to be one of the successors of the placed vertices. This algorithm is
faster and gives, in many cases, similar mincu-t values to those of the original
algorithm. However, it does not guarantee finding the mincut vdue.

The third algorithm combines the two previous ones. First, stxting from a
lower bound, the heuristic algorithm is used iteratively to approach the mincut
value, which is in fact an upper bound. Then, in order to find the exact value, we
use the exact algorithm to check and decrease the mincut upper bound.

These three algorithms have b e n implemented and evaluated. For their
implementations, we face two problems. First, the data structures that the authors
propose are not reasonnable due to the memory storage requirement. We propose

- 714 -

Figure 3: Different subsets in vertices and edges.

other ones. Second, the natural representation of a circuit is a hypergraph and
their algorithm treats only graphs. To resolve these problems, we propose a graph
representation of a circuit and modify their original algorithm.

Section 2 gives some definitions and presents the quivalence relation among
partial orderings proposed by Gurari and Sudborough. Section 3 details the dif-
ferent algorithms. Section 4 presents their implementation. Results are gathered
in section 5.

2 Equivalence relation

In this section, we first give some definitions and then present the quivalence
relation among the partial orderings, on which the original algorithm of Gurari
and Sudborough is based.

2.1 Definitions.

Let G = (V, r) be a finite undirected graph. A one-to-one mapping function
L : V + { 1,, card (V)} is a linear ordering of G called a total layout L.
A partial layout L' of the graph G = (V, r) is a one-to-one mapping function

Given a partial layout L', the placed set of this partial layout is the set of
L' : v' c v + { 1, ..) card(V')}.

placed vertices and the unpleced set is the set of unplaced vertices:

placetl(G, L') = V';

a unplaced(G, L') = V \ V';

Given the partition of a partial layout into its placed set on one side, and its
unplaced set on the other side (see figure 3), there exist edges between one vertex
of the placed set and one vertex of the unplaced set. The subset of vertices ylaced
is called the active set, the subset of vertices unplaced is called the successor
set, and the set of edges between ylaced and unplaced is called dangling.

- 715 -

Given a partial layout, we define the netcut between two successives vertices
as the number of dges between the left and right parts. The cutwid-th of the
layout is the maximum of its netcuts, and the mincwt of the graph is the minimum
of the cutwidths of total layouts.

netcut(G, L', i) = ca.Td({y E r 1 y = (w, u') A E'(W) 5 i AEQI') > i}); '

e cwtwidth(G, L') = ma,z;(netcut(G, L', i)) where i 5 c a ~ d (V ') ;

e mincut(G) = cutwidtlr(G) = minL(cutwidth(G, L)) ;

- 716 -

3 Algorithms

In this section, we present the two algorithms. Basically, they determine only
if mincut(G) 5 k. To cornpute the mincut value, they must be used iteratively
by either increasing or decreasing the k value. We choose the first solution to
reuse the classes examined during the former iterations. To reduce the number
of iterations needed, k is initialized with the maximum of the Left degree, of the
Right degree and of the greater half-degree of the other vertices.

3.1 Original algorithm

Gurari and Sudborough propose a decision algorithm based on the former equiva-
lencerelation. The algorithm uses two data structures: aboolean array tubClusses
to mark the equivalence classes with cutwidth 5 k and a stack Q to memorize
one partial layout for each marked equivalence class. Q is initialized by Lo, the
empty layout. The algorithm is as follows:

While Q # 8 do
Take a partial layout L in Q ;
For each vertex T I in unpZuced(G, L) do

L' = L + '0;
If L' is a total layout then

If cuturidth(G, L') _< k then
return(G has a mincut 5 k, L' is a linear ordering);

If L' is a partial layout then
If cutwidth(G, L') _< k then

If tubCZusses(L') unmarked then
Mark tubCZusses(L');
Q = Q U L';

EndFor
EndWhile
return(G has a mincut > k) ;

To find the exact amincut value, this algorithm must be used iteratively by
increasing a lower bound, or decreasing an upper bound.

- 717 -

euristic algorithm

To reduce the run time, it is necessary to limit the tree search by means of heuristic.
To extend a pa.r&ial layout L, the possible vertices are chosen mong the vertices
of svecessor(G, L) , as eard(svccess0r(G, L)) 5 card(unpZaced(G, E)) . This
choice limits locally the cutwidth increase. The previous algorithm is simply
modifiecl by replacing the primitive instruction:

For each vertex 2 in u,nplaced(l) do - For each vertex 2 in successor(E) do

This approach can be understood as the generallization of the greedy algorithm
presentedbyKang [7], wherethevertextoextendalayoutLisinsuccesssr(G, L)
and induces the minor increase of the graph cut. But the choice is definitive. Like
partition-based heuristics [a], this search approach cm be trappecl into a locd
optimal solution, while ours does not, thanmks to the backtracking.

The present heuristic does not guarantee a better complexity in compxison ts
the Gurari and Sudborough algorithm. For instance, if G is a complete graph, the
time complexity and the number of examined classes will be the same. However,
as shown on practical exarnples (see next section), the number ofexarnined classes
and the mn times are reduced using the heuristic approach.

3.3 Heuristic

The heuristic actually gives an upper bound of the rninevt value even if, in many
cases, this value is exact. We have investigated using the original algorithm to
check and eventually decrease the value delivered by the heuristic algorithm. This
approach is attractive. As the heuristic is fater than the original algorithm, and
the heuristic n~.%ncut value is exact in many cases, the original algorithm will be
used only to check and not to decrease iteratively this nzin.cut value. Furthemore,
the results show that the heuristic value is closer to the exact rnineu.t value than
the lower bound used to initialize the iteration.

m e n implementing these dgorithms, we face two problems: the original data
structures are not adapted in term of storage requirements; and the natural rep-
resentation of a circuit is a hypergraph, while these algorithms work only on
graphs.

- 718 -

(a) Example of circuit. @) Net representation.

Figure 4: Net representation.

(a) Symbolic layout. (b) Cell representation.

(c) Final graph.

Figure 5: Ce11 representation.

4.1 Ce11 representation

One problem in using the previous algorithm is the representation of a circuit with
a graph. In the graph model, each ce11 is usually represented by one vertex and
each net by one or several edges. But this model lacks accuracy for the mincut
computation.

Net representation: A single net can connect P inputs andor outputs. Such a
net can be represented by (P - 1) edges with a common vertex. But they must
be marked as a single multi-edge to be counted as 1 during the cut computation,
as they will be laid out by a single routing wire. This representation is illustrated
in figure 4.b.

Ce11 representation: The mincut computation just considers the edges between
successive vertices. So, the symbolic layout (see figure 5.a), has a mincut of 2.

- 719 -

But on B itself, the cut is 3. In this example, the cell B inputhutput ordering
increases the cut. This is a real problem as a ce11 has generally a single layout
representation in the lihrary with a fixed inputhutput ordering, for example E l
on the left, E2 in the middle, and 1’ on the right. However, this problem has to be
considered on cells with 4 or more inputs/outputs only. With 2 or 3, a horizontal
mirror solves this proklem.

To compte the real cut, inputdoutputs are represented by interdependent
vertices. Figure 5.b illustrates this circuit graph model. To place such a ver-
tex, dl the interdependent vertices will be suecessively placed according to the
inputbutput ordering. If the new graph h a additional vertices, the complewity
does not increase as the placement is predefined, but the cut computation is more
time-consuming.

Circuit cells have some structural properties that can be used ts decrease the
netcut on the cell itself. It is possible to examine the horizontal minor of the
ce11 (in fact the reverse inputhutput predefined ordering). In addition, some cell
inputs are commutative, for example, “Nand” gate inputs. This property cm be
used to modify the input netlist which is, in some sense, equivalent to changing
the inputhutput predefined ordering.

Extemal signalx A circuit has external inputs/outputs which muse be consid-
ered in the minculi computation. In the case of type 1 processor, two vertices,
named h f t and Right, are added and connected to the external signals (s e fig-
ure 5.c). These Q f t and Riglzt vertices will be initidly plaeed on the leftmost and
rightmost of the linear ordering. Then, the initial value of the stack Q is the
vertex rather than the empty layout Lo, and every vertex of urLylaced(%) - Riglzt
c m be chosen. Indeed, the Right vertex placed in the rightmost position does not
modify the cutwidth.

For t g p 2 or t y p e 3 processors (see figure 1.b and c), the vertical part of the
connectors are to be ignored. So, the n a i ~ ~ u t computation for tgpe 3 is similar
to the t ype 1 one. On the other hand, type 2 have no Right vertex and morover,
their Left vertex is not fixed: during the tree search, the different graph vertices
will successively represent the Qft.

Gwph reeduction: Makedon and Sudborough [9] have prsposed removing ev-
ery vertex with a degree of 2 and merging the edges. They prove that this new
graph has the same mincut. Moreover, we propose to remove every edge (or
multi-edge) between the lkft and Right vertices. Such an edge, the dock for
example, is a diffusion signal, and will be laid out on a single routing track.

- 720 -

Table 1: tubClasses lists study.

4.2 Data structures

A direct implementation of Gurari and Sudborough algorithm is unrealis-
tic. As there are O (N k) possible classes, the porposed tubClusses boolean
array data structure would require too much storage and the compter used to
execute this algorithm would spend its time “swapping” the memory. Instead,
we use a bidimensional may [1..N, 1 ..k] of list pointers, This array is indexed
by curd(pZaced(G, L)) and card(dmgling(G, L))] . Each list contains al1 the
examined equivalence classes with the same number of vertices and the same
rightmost netcut. Moreover, to optimize the search of a class in a list, the lists are
sorted in lexical order. Such structures are computationally practicable, however,
the maximum number of dements in each list is in theory O (N k) . Experience
shows that the number of list elements is lower (see Table 1).

5 Results

In this section, we give two comparative tables: one on the run times of the
algorithms, and one on the computed and memorized classes by the algorithms.

Circuit description: Different circuits are used to compare these algorithms:
C432, “208, C29 from the ISCCAS85 benchmarks, C77 a counter, C50 an ellip-
tical fifth order filter, C40 a clock controller, Cl 1 a systolic correlator processor,
C8 a systolic convolver processor, and C7 an example which shows the heuristic
limitation. Table 2 gives the characteristics of these different circuits: number of
cells, number of hyperedges, number of edges, maximum of the Le f t degree, of

- 721 -

Table 2: Characteristics of the circuit exmples.

the Right degree and of the greater half-degree of the other vertices. This last
value is used to initialize k in the iteration.

lgorithrn cornparison: We compare the following Jgorithms:

S., the original algorithm,

e Heuristic, the heuristic algorithm,

Check, which combines the heuristic and original algorithms.

These different algorithms were coded in @. Weused a SUN4/5O with 32 Mo
Table 3 summarizes the run time, the miacut, and b o p the nurnber of iterations
for each algorithm. This table also gives the cut found with an implementationof
Kang “ln-Act-Out” algorithm [7].

The heuristic provides good results for both run time md mincut value, For
dl the exmples studied with the exception of the couPtterexemple C7 built to
emphasize the heuristic limitation, the s m e number of iterations is required by

. and Heuristic algorithms.
wever on some exmples, the Heuritic Check algorithrn gives greater

mn times in cornparison to the dgorithm. There is different reasons to ex-
plain these results. Firstly on t 1 examples, the results are not significative,

the Check step corresponds to the most time-consuming iteration of . algorithm. Finally, the Check step does not used actually the classes
computed during the Heuristic step. Using them, this Sep would be improved by
a factor 2 (see the table 4 especially on C432 and C4O).

- 122 -

Table 3: Comparison of algorithms.

Table 4: Computed layouts and memorized classes.

Computed Iayouts and classes: The heuristic limits the number of examined
layouts and of classes memorized in tabCZa,sses. A limitation of memorized
classes is important to avoid memory “swapping” and reduce run time. Table 4
summarizes the differences on the last iteration, between Heuristic and G. & S.

As shown in table 4, the heuristic reduces the number of computed layouts
and memorized classes, especially on large circuits. On “50 and CS, there is no
reduction. In fact on these examples, the vertex ordering is close to the optimal
linear ordering. We investigated the use of initial vertex sorting (a topological
sorting, result of Kang InAetiveOut algorithm, , . .) before processing, but without
success in terms of reduced run times.

- 723 -

This paper has presented an approach for the linear layout of processors in regulx
mays. In such structures, the processors are often replicated several hundred
times. A few microns of optimization on a single processor will lead to a large
sptimization on the array. Pn a linear layout design style, the area optimization
comes down to a net congestion minimizalion in the routing area. This problem
is similar to the computation of the mincut of a graph or a hypergraph. As a
prscmsor is composed of a few cells (less than one hundred), even an algorithm
with a high complexity cm be implemented.

We investigatethe decision algorithm proposed by Gurari and Sudborough, to
find a processor linear placement respecting the exact mincut value of a graph. To
efficiently implementthis algorithm, we propose a new data structureto rnemorize ,

the partial linear ordering, and an accurate graph mode1 of B circuit which ensures
the identity between the graph’s nain.cu1: and the number of routing tracks needed
for the layout.

As the iterative implementation of the decision algorithm is time-consuming,
we investigate a heuristic based on the equivalence relation among the partial
linear ordering, initially proposed by Gurari and Sudborough. This heuristic t.

limits the possible vertices to extend a partial linear placement, to be one of the
successors of the placed ones. Wlile this new algorithm in theory gives an upper
bound of the mincut value, in many cases, it gives the exact value but with better
mn times in comparison to the decision algorithm.

The heuristic does not guaranntee an exact mincut value. We study a step
to check and decrease the value determined by the heuristic, using the decision
algorithm. In some cases, the Heuristic a- Check times are greater than these
found directly with the decision algorithm. This can be explainecl by the f c t
that we do not use the classes computed by the former Heueistic algorithm in the
Check step. We think, using these classes would improve the Check step by a
factor 2.

Actually, we get the exact naineut value with good mn times on processors
with less thm one hundred cells. Such processor sizes are large enough for many
regular may cases. On lxger problems, these algorithms are actually too time-
consuming or do not run to completion. We continue investigations to reduce the
mm times: improving the data structures, looking for other graph reductions baset3
on structural properties of circuits.

- 124 -

References
[l] C. M. Fiduccia & R. M. Matheyses. A Linear-time Heuristic for Improv-

ing Network Partitions. Proc. lgth Design Automation Conference (1986),

[2] T. Fuji, H. Horikawa, T. Kikuno & N. Yoshida. A Heuristic Algorithm For
Gate Assignment in One-Dimensional Array Approach. IEEE Trans. on

[3] M. R. Garey & D. S . Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, San Francisco
(1979).

[4] E. Gautrin & L. Perraudeau. Madmacs : A Tool for the Layout of Regular
Arrays. WG 10.5 IFlP Workshop on Synthesis, Generation and Portability
of Library Blocks for ASIC Design (1992), pp. 212-221.

[5] E. M. Gurari & 1. H. Sudborough. Improved Dynamic Programming Algo-
rithms for Bandwidth Minimization And The MinCut Linear Arrangement
Problem. Journal of Algorithms, 5 (1984), pp. 531-546.

[6] A. G. Hoffman. Towards Optimizing Global Min Cut Partitionning. Proc.
The European Conference on Design Automation (1991), pp. 1167-1 171.

[7] S. Kang. Linear ordering and application to placement. Proc. 20th Design

pp.622-629.

CAD, vol.CAD-6 n02 (March 1987), pp. 159-164.

Automation Conference (1983), pp. 457-464.

[SI H.T. Kung. Why systolic architectures? IEEE Computer, Vol 15, pp. 37,
1982.

[9] F. S. Makedon & 1. H. Sudborough. Minimizing Width in Linear Layouts.
Proc. of International Conference on Automata, Languages, and Program-
ming(ICALP), Lecture Notes in Computer Science vo1.154, Springer-Verlag
(1983), pp. 478-490.

[lO] Z. Miller & 1. H. Sudborough Polynomial Algorithm for Recognizing
bounded Cutwidth in hypergraphs. Math. Systems Theory 24, Springer-
Verlag (1991), pp. 11-40.

[l 13 P. Ramyalal Suaris & G. Kedem. A Quadrisection-Based Combined Place
and Route Scheme for Standard Cells. IEEE Transactions on Computer-
Aided Design, vo1.8, nO.3 (March 1989).

[12] H. E. Shrobe. The Datapath Generator. CompCon82 High Technology in
the Information Industry, pp. 340-344, IEEE Computer Society (1982).

[131 A. Weinberger. Large Scale Integration of MOS Complex Logic : A Layout
Method. IEEE J. Solid State Circuits SC-2 (1967), pp. 182-190.

[14] O. Wing, S. Huang & R. Wang. Gate Matrix Layout. IEEE Trans. on CAD,
vol.CAD-4 n03 (July 1985), pp. 220-231.

- 725 -

