A new cell placement algorithm
for optimal linear layout

Eric Gautrin, Oumarou Sié
IRISA
Campus de Beaulieu
35042 Rennes Cédex
FRANCE
Phone: (33) 99 84 71 00
Email: gautrin@irisa.fr, sie@irisa.fr

keywords: placement, linear layout, graph cut, regular array.

summary: This paper presents insights gained from an experience with the
optimal linear layout of processors in regular arrays. In such design styles, the area
optimization is equivalent to a graph mincut computation. We propose a heuristic
based on the Gurari and Sudborough equivalent relation and we experiment it on
a graph representation adapted to the mincut computation.

— 711 —

Abstract

This paper presents insights gained from an experience with the linear
layout of processors in regular arrays. In such structures, the processors
may be replicated several hundred times. In a linear layout design style,
the area optimization is equivalent to a net congestion minimization in the
routing area. This problem is similar to the computation of the mincut of a
graph or a hypergraph. As a processor is composed of a few cells (less than
one hundred), we decided to experiment on algorithms with even a high
complexity.

To find an optimal placement, we use first the algorithm of Gurari and
Sudborough, because it has the lowest complexity. They propose a polyno-
mial decision algorithm which determines whether a graph has a cut value
less than a given constant. Used iteratively from a cut lower bound, the
algorithm stops at the first positive answer and delivers a vertex placement
respecting the exact mincut value,

This decision algorithm has an O(N'*)-time complexity where N is the
number of vertices and & the cut value. We propose a heuristic based on
the same equivalence relation among the partial ordering, but which limits
the choice to only the placed vertex successors when extending a partial
ordering. For many sample cases, this heuristic gives the exact mincut
value with better run times.

However, the mincut value is not guaranteed to be determined using the
heuristic algorithm. We investigate the use of the original decision algorithm
to check and decrease this upper bound of the mincut value,

For the implementation of these different algorithms, we face two prob-
lems. First, the data structures initially proposed by Gurari and Sudborough
can not be implemented due to the memory storage requirement. Second,
the algorithms use graphs when the natural representation of a circuit is
a hypergraph. We propose a graph representation adapted to the mincut
computation.

1 Introduction

Many signal or image processing algorithms demand regular computations, which
can be efficiently implemented on massively parallel architectures such as systolic
orregular arrays. These structures are composed of simple processors connected to
their nearest neighbors [§]. To produce compact layouts, the automatic generation
of thelayoutis done in two steps: processor layout generation; and array assembly.
Array assembly is addressed by the MADMACS system [4]. In this paper, we focus
on the processor layout generation.

Processors in such structures are made of few cells, generally less than one
hundred. The generation can be done efficiently by a linear layout of predefined

— T2 —

Y Y
x— o r—x

A[B| ¢ |[D AlB| Cc |D

(a) Type 1. (b) Type 2.

(c) Type 3.

Figure 1: Different types of connector placement constraints
()

() — «

(a) Circuit graph.

=

fre— X
Y Y — -F—l_
x—"‘lr—H::l_”r“ll——X‘ bq 11 ll'_l 110 Y

AiB| Cc |D A|B|D]| C

(b) Ordering 1 : 2 routing tracks. (¢) Ordering 2 : 4 routing tracks.

Figure 2: Vertex ordering effect on the cutwidth.

cells. This layout style is common in circuit design; we can cite gate matrices [2,
14], Weinberger arrays [13], datapath generators [12], and single row of standard
cells [7, 11]. However, the processor layout generation must be constrained in
order to retain the regularity at the array level. As presented in figure 1, these
constraints are related to the processor connector positions.

As a cell has a single layout in the library and also a fixed size, minimization
of the global layout area will be achieved by routing area minimization. For such
linear layouts, a good approach is to globally reduce the net congestion [1, 6],
which corresponds to the routing tracks necessary to achieve the routing. This
problem is known as Mincut Linear Arrangement, Backboard Permutation or Op-
timal Linear Arrangement [9, 5, 10]. Algorithms seek a hypergraph vertex linear
ordering which minimizes the maximal cut (also named cutwidth or mincut)
between successive nodes, as illustrated in figure 2,

The mincut computation is an NP-complete problem[3]. Many heuristics
have been proposed in the past to solve this problem. These approaches are not

— 713 —

guaranteed to deliver the exact mincut value. However, some authois have pro-
posed decision algorithms which deliver one possible hypergraph linear ordering,
with a cut < k (where k is a constant integer). By iteratively applying these al-
gorithms, one can find the exact mincut of ahypergraph. However, this approach
is time-consuming. For example, the Miller and Sudborough decision algorithm
[10] has a polynomial-time complexity in O(N K +3’“‘*'3) where IV is the vertex
number and % the cut value. Gurari and Sudborough [5] propose a decision al-
gorithm with an O(N*)-time complexity where N is the vertex number and k
the cut value, For small problems (less than one hundred cells), this algorithm
is attractive. However, the direct representation of a circuit is not a graph, but a
hypergraph.

In regular arrays, a processor may be replicated several hundred times. A
simple width minimization of the processor, for example, in therange of a5 micron
saving in the layout of a routing track, will lead to a 0.5 mm width minimization
of a 100 processor wide array. For these reasons, we seek an algorithm which
gives us the exact mincut value. As a processor is composed of few cells (less
than one hundred), an algorithm with even a high complexity can be 1mplemented
if it has acceptable run time on small problems.

We investigate the results of Gurari and Sudborough because their original
algorithm has the lowest complexity. Different algorithms based on their equiv-
alence relation are implemented. This equivalence relation is among the partial
orderings and guarantees that every partial layouts of a class will be completed in
total layouts with the same cutwidth.

The first algorithm is an iterative implementation of their original decision
algorithm. Starting from a mincut lower bound, the algorithm is used iteratively
until it delivers an answer. However, this algorithm has an O(V*)-time complex-
ity.

We propose a second algorithm which uses a heuristic for induction on the
number of vertices. In fact, the heuristic limits the vertex to extend a partial
ordering to be one of the successors of the placed vertices. This algorithm is
faster and gives, in many cases, similar mincut values to those of the original
algorithm. However, it does not guarantee finding the mincut value.

The third algorithm combines the two previous ones. First, starting from a
lower bound, the heuristic algorithm is used iteratively to approach the mincut
value, which is in fact an upper bound. Then, in order to find the exact value, we
use the exact algorithm to check and decrease the mincut upper bound.

These three algorithms have been implemented and evaluated. For their
implementations, we face two problems. First, the data structures that the authors
propose are not reasonnable due to the memory storage requirement. We propose

— T4 —

Figure 3: Different subsets in vertices and edges.

other ones. Second, the natural representation of a circuit is a hypergraph and
their algorithm treats only graphs. To resolve these problems, we propose a graph
representation of a circuit and modify their original algorithm.

Section 2 gives some definitions and presents the equivalence relation among
partial orderings proposed by Gurari and Sudborough. Section 3 details the dif-
ferent algorithms. Section 4 presents their implementation. Results are gathered
in section 5.

2 Equivalence relation

In this section, we first give some definitions and then present the equivalence
relation among the partial orderings, on which the original algorithm of Gurari
and Sudborough is based.

2.1 Definitions.

Let G = (V,TI') be a finite undirected graph. A one-to-one mapping function
L:V — {1,....,card(V)} is a linear ordering of G called a total layout L.
A partial layout L’ of the graph G = (V,T) is a one-to-one mapping function
L':V'CV - {1,..,card(V")}.

Given a partial layout L/, the placed set of this partial layout is the set of
placed vertices and the unplaced set is the set of unplaced vertices:

o placed(G,Ly=V';
o unplaced(G, L") =V \ V',

Given the partition of a partial layout into its placed set on one side, and its
unplaced set on the other side (see figure 3), there exist edges between one vertex
of the placed set and one vertex of the unplaced set. The subset of vertices placed
is called the active set, the subset of vertices unplaced is called the successor
set, and the set of edges between placed and unplaced is called dangling.

— 715 —

e active(G, L") ={ve V' |3y e TAy = (v,v)Av' € unplaced(G, L')};

e dangling(G,L") = {y € T' | v = (v,v") A v € active(G,L") A ' €
unplaced(G, L"};

o successor(G, L") = {v € unplaced(G, L") | v' € active(G, L')A(v',v) €
r};

Given a partial layout, we define the nefcut between two successives vertices
as the number of edges between the left and right parts. The cutwidth of the
layout is the maximum of its netcuts, and the mincut of the graph is the minimum
of the cutwidths of total layouts.

o netcul(G,L',i)= card({y €T | v = (v,v")AL'(v) <iAL' (V) > i});
o cutwidth(G, L") = maz;(netcut(G, L', ¢)) where ¢ < card(V');

o mincut(G) = cutwidth(G) = ming(cutwidth(G, L));

2.2 Equivalence relation

To limit the tree search of partial and total layouts, Gurari and Sudborough {5]
propose an equivalence relation ® among the partial layouts of a graph G(V,T).
Two layouts L1 and L2 are equivalent if:

cutwidth(G, L) = cutwidth(G, Ly) ;
active(G, L1) = active(G, L) ;
dangling(G, L) = dangling(G, L) ;

Let L1 and L, two equivalent partial layouts, then:

placed(G, L) = placed(G, Ly) ;
unplaced(G, L) = unplaced(G, Ly) ;
successor(G, L) = successor(G, Ly) ;

If L, and L, are equivalent, every layout of the vertices of unplaced(G, L)
completes Ly and L, into total layouts of G with the same cutwidth. So, for each
equivalence class, only one partial layout must be completed and memorized.

— 716 —

3 Algorithms

In this section, we present the two algorithms. Basically, they determine only
if mincut(G) < k. To compute the mincut value, they must be used iteratively
by either increasing or decreasing the & value. We choose the first solution to
reuse the classes examined during the former iterations. To reduce the number
of iterations needed, k is initialized with the maximum of the Left degree, of the
Right degree and of the greater half-degree of the other vertices.

3.1 Original algorithm

Gurari and Sudborough propose a decision algorithm based on the former equiva-
lencerelation. The algorithm uses two data structures: aboolean array tabC'lasses
to mark the equivalence classes with cutwidth < k and a stack Q) to memorize
one partial layout for each marked equivalence class. @ is initialized by Lo, the
empty layout. The algorithm is as follows:

While Q # @ do
Take a partial layout L in Q;
For each vertex v in unplaced(G, L) do
L' =L + v
If L' is a total layout then
If cutwidth(G, L") < k then
return(G has a mincut < k, L' is a linear ordering);
If L' is a partial layout then
If cutwidth(G, L") < k then
If tabClasses(L') unmarked then
Mark tabClasses(L');
Q=Qul,
EndFor
EndWhile
return{G has a mincut > k);

To find the exact mencut value, this algorithm must be used iteratively by
increasing a lower bound, or decreasing an upper bound.

— 717 —

3.2 Heuristic algorithm

To reduce the run time, it is necessary to limit the tree search by means of heuristic.
To extend a partial layout L, the possible vertices are chosen among the vertices
of successor(G, L), as card(successor(G, L)) < card(unplaced(G, L)). This
choice limits locally the cutwidth increase. The previous algorithm is simply
modified by replacing the primitive instruction:

For each vertex z in unplaced(L) do — For each vertex in successor(L) do

This approach can be understood as the generalization of the greedy algorithm
presented by Kang [7], where the vertex to extend alayout L isin successor(G, L)
and induces the minor increase of the graph cut. But the choice is definitive. Like
partition-based heuristics [2], this search approach can be trapped into a local
optimal solution, while ours does not, thanks to the backtracking.

The present heuristic does not guarantee a better complexity in comparison to
the Gurari and Sudborough algorithm. For instance, if G is a complete graph, the
time complexity and the number of examined classes will be the same. However,
as shown on practical examples (see next section), the number of examined classes
and the run times are reduced using the heuristic approach.

3.3 Heuristic & Check algorithm

The heuristic actually gives an upper bound of the mincut value even if, in many
cases, this value is exact. We have investigated using the original algorithm to
check and eventually decrease the value delivered by the heuristic algorithm. This
approach is attractive. As the heuristic is faster than the original algorithm, and
the heuristic mincut value is exact in many cases, the original algorithm will be
used only to check and not to decrease iteratively this mincut value. Furthermore,
the results show that the heuristic value is closer to the exact mincut value than
the lower bound used to initialize the iteration.

4 TImplementation

When implementing these algorithms, we face two problems: the original data
structures are not adapted in term of storage requirements; and the natural rep-
resentation of a circuit is a hypergraph, while these algorithms work only on
graphs.

— 718 —

(a) Example of circuit. (b) Net representation.

Figure 4: Net representation.

warag) I e N n el
1 1 I

in

T
A B C|D E

(c) Final graph.

Figure 5: Cell representation.

4.1 Cell representation

One problem in using the previous algorithm is the representation of a circuit with
a graph. In the graph model, each cell is usually represented by one vertex and
each net by one or several edges. But this model lacks accuracy for the mincut
computation.

Net representation: A single net can connect P inputs and/or outputs. Such a
net can be represented by (P — 1) edges with a common vertex. But they must
be marked as a single multi-edge to be counted as 1 during the cut computation,
as they will be 1aid out by a single routing wire. This representation is illustrated
in figure 4.b.

Cell representation: Themincut computation just considers the edges between
successive vertices. So, the symbolic layout (see figure 5.a), has a mincut of 2.

— 719 —

But on B itself, the cut is 3. In this example, the cell B input/output ordering
increases the cut. This is a real problem as a cell has generally a single layout
representation in the library with a fixed input/output ordering, for example E1
on the left, F2 in the middle, and ¥ on the right. However, this problem has to be
considered on cells with 4 or more inputs/outputs only. With 2 or 3, a horizontal
mirror solves this problem.

To compute the real cut, inputs/outputs are represented by interdependent
vertices. Figure 5.b illustrates this circuit graph model. To place such a ver-
iex, all the interdependent vertices will be successively placed according to the
input/output ordering. If the new graph has additional vertices, the complexity
does not increase as the placement is predefined, but the cut computation is more
time-consuming.

Circuit cells have some structural properties that can be used to decrease the
netcut on the cell itself. It is possible to examine the horizontal mirror of the
cell (in fact the reverse input/output predefined ordering). In addition, some cell
inputs are commutative, for example, “Nand” gate inputs. This property can be
used to modify the input netlist which is, in some sense, equivalent to changing
the input/output predefined ordering.

External signals: A circuit has external inputs/outputs which must be consid-
ered in the mincut computation. In the case of type 1 processor, two vertices,
named Left and Right, are added and connected to the external signals (see fig-
ure 5.c). These Left and Right vertices will be initially placed on the leftmost and
rightmost of the linear ordering. Then, the initial value of the stack Q) is the Left
vertex rather than the empty layout Lo, and every vertex of unplaced(L) — Right
can be chosen. Indeed, the Right vertex placed in the rightmost position does not
modity the cutwidth.

For type 2 or type 3 processors (see figure 1.b and c), the vertical part of the
connectors are to be ignored. So, the mincut computation for type 3 is similar
to the fype 1 one. On the other hand, type 2 have no Right vertex and morover,
their Left vertex is not fixed: during the tree search, the different graph vertices
will successively represent the Lefi.

Graph reduction: Makedon and Sudborough [9] have proposed removing ev-
ery vertex with a degree of 2 and merging the edges. They prove that this new
graph has the same mincut. Moreover, we propose to remove every edge (or
multi-edge) between the Left and Right vertices. Such an edge, the clock for
example, is a diffusion signal, and will be laid out on a single routing track.

— 720 —

tabClasses | Stocked | Max for
Circuit | Cells | Mincut entries classes a list
C432 150 41 6150 82131 21852
C208 103 12 1236 1855 151
Cc77 77 15 1155 89113 8140
C50 50 21 1050 49 1
C40 40 12 480 98771 10865
C29 29 8 232 31 2
Cl11 11 7 77 43 8
C8 8 4 32 7 1
Cc7 7 4 28 7 2

Table 1: tabClasses lists study.

4.2 Data structures

A direct implementation of Gurari and Sudborough algorithm is unrealis-
tic. As there are O(N*) possible classes, the porposed tabClasses boolean
array data structure would require too much storage and the computer used to
execute this algorithm would spend its time “swapping” the memory. Instead,
we use a bidimensional array [1..N, 1..k] of list pointers. This array is indexed
by card(placed(G, L)) and card(dangling(G, L))]. Each list contains all the
examined equivalence classes with the same number of vertices and the same
rightmost netcut. Moreover, to optimize the search of a class in a list, the lists are
sorted in lexical order. Such structures are computationally practicable, however,
the maximum number of elements in each list is in theory O(N*). Experience
shows that the number of list elements is lower (see Table 1).

5 Results

In this section, we give two comparative tables: one on the run times of the
algorithms, and one on the computed and memorized classes by the algorithms.

Circuit description: Different circuits are used to compare these algorithms:
C432,C208, C29 from the ISCCAS85 benchmarks, C'77 a counter, C'50 an ellip-
tical fifth order filter, C40 a clock controller, C'11 a systolic correlator processor,
C'8 a systolic convolver processor, and C7 an example which shows the heuristic
limitation. Table 2 gives the characteristics of these different circuits: number of
cells, number of hyperedges, number of edges, maximum of the Le ft degree, of

— 721 —

Circuit | Cells | Hyperedges | Edges | Degree
C432 150 186 333 36
C208 103 113 181 10
C77 77 90 157 12
C50 50 £ 105 21
C40 40 44 86 10
C29 29 37 63 8
Cl11 11 16 23 5
C8 8 i1 18 3
Cc7 7 12 12 3

Table 2: Characteristics of the circuit examples.

the Right degree and of the greater half-degree of the other vertices. This last
value is used to initialize & in the iteration.

Algorithm comparison: We compare the following algorithms:
s G. &S, the original algorithm,
s Heuristic, the heuristic algorithm,
e Heuristic & Check, which combines the heuristic and original algorithms.

These different algorithms were coded in C. We used a SUN4/50 with 32 Mo RAM.
Table 3 summarizes the run time, the mincut, and Loop the number of iterations
for each algorithm. This table also gives the cut found with an implementation of
Kang “In-Act-Out” algorithm [7].

The heuristic provides good resulis for both run time and mincut value. For
all the examples studied with the exception of the counterexemple C7 built to
emphasize the heuristic limitation, the same number of iterations is required by
G. & 8. and Heuristie algorithms.

However on some examples, the Heuritic & Check algorithm gives greater
run times in comparison to the G. & 8. algorithm. There is different reasons to ex-
plain these results. Firstly on the small examples, the results are not significative.
Secondly, the Check step corresponds to the most time-consuming iteration of
the G. & S. algorithm. Finally, the Check step does not used actually the classes
computed during the Heuristic step. Using them, this step would be improved by
a facior 2 (see the table 4 especially on C432 and C40).

— 722 —

G. & S. Heuristic Heuristic & Check Kang
Circuit Time Cut | Loop Time Cut | Loop Time Cut | Loop | Cut
C432 | 20258.6s | 41 6 | 139785s | 41 6 | 32631.44s | 41 7 53
C208 1283s | 12 3 145s | 12 3 19.04s | 12 4 22
C77 75744s | 15 7| 12693s | 15 7| 329530s | 15 8 23
C50 0.25s | 21 1 0.25s | 21 1 028s | 21 2 24
C40 37302s | 12 3] 168221s | 12 3| 490852s | 12 4 13
C29 0.17s 7 3 0.13s 7 3 0.14s 7 4 13
C11 0.16s 7 3 0.11s 7 3 0.20s 7 4 8
C8 0.05s 4 2 0.02s 4 2 0.04s 4 3 4
Cc7 0.04s 4 2 0.03s 5 3 0.04s 4 5 5

Table 3: Comparison of algorithms.
G. &8S. Heuristic

Circuit | Computed layouts | Memorized classes | Computed layouts | Memorized classes
C432 11957829 82131 5924480 74918
C208 120643 1855 14778 702
Cc77 3381844 89113 210884 13505
C50 75 49 166 49
C40 3203985 98771 1453474 65663
C29 243 31 120 29
Cl11 348 43 246 43
C8 13 7 15 7
C7 16 7 13)

Computed layouts and classes:

Table 4: Computed layouts and memorized classes.

The heuristic limits the number of examined

layouts and of classes memorized in tabClasses. A limitation of memorized
classes is important to avoid memory “swapping” and reduce run time. Table 4
summarizes the differences on the last iteration, between Heuristic and G. & S.
As shown in table 4, the heuristic reduces the number of computed layouts
and memorized classes, especially on large circuits. On C50 and C8, there is no
reduction. In fact on these examples, the vertex ordering is close to the optimal
linear ordering. We investigated the use of initial vertex sorting (a topological
sorting, result of Kang InActiveQut algorithm, . ..) before processing, but without
success in terms of reduced run times.

— 723 —

6 Conclusion

This paper has presented an approach for the linear layout of processors in regular
arrays. In such structures, the processors are often replicated several hundred
times. A few microns of optimization on a single processor will lead to a large
optimization on the array. In a linear layout design style, the area optimization
comes down to a net congestion minimization in the routing area. This problem
is similar to the computation of the mincut of a graph or a hypergraph. As a
processor is composed of a few cells (Iess than one hundred), even an algorithm
with a high complexity can be implemented.

‘We investigate the decision algorithm proposed by Gurari and Sudborough, to
find a processor linear placement respecting the exact mincut value of a graph. To
efficiently implement this algorithm, we propose a new data structure to memorize
the partial linear ordering, and an accurate graph model of a circuit which ensures
the identity between the graph’s mincut and the number of routing tracks needed
for the layout.

As the iterative implementation of the decision algorithm is time-consuming,
we investigate a heuristic based on the equivalence relation among the partial
linear ordering, initially proposed by Gurari and Sudborough. This heuristic
limits the possible vertices to extend a partial linear placement, to be one of the
successors of the placed ones. While this new algorithm in theory gives an upper
bound of the mincut value, in many cases, it gives the exact value but with better
run times in comparison to the decision algorithm.

The heuristic does not guarantee an exact mincut value. We study a step
to check and decrease the value determined by the heuristic, using the decision
algorithm. In some cases, the Heuristic + Check times are greater than these
found direcily with the decision algorithm. This can be explained by the fact
that we do not use the classes computed by the former Heuristic algorithm in the
Check step. We think, using these classes would improve the Check step by a
factor 2.

Actually, we get the exact mincut value with good run times on processors
with less than one hundred cells. Such processor sizes are large enough for many
regular array cases. On larger problems, these algorithms are actually too time-
consuming or do not run to completion. We continue investigations to reduce the
run times: improving the data structures, looking for other graph reductions based
on structural properties of circuits.

— 724 —

References

[1] C. M. Fiduccia & R. M. Matheyses. A Linear-time Heuristic for Improv-

ing Network Partitions. Proc. 19** Design Automation Conference (1986),
pp.622-629,

[2] T. Fuji, H. Horikawa, T. Kikuno & N. Yoshida. A Heuristic Algorithm For
Gate Assignment in One-Dimensional Array Approach. IEEE Trans. on
CAD, vol.CAD-6 n°2 (March 1987), pp. 159-164.

[3] M.R. Garey & D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, San Francisco
(1979).

[4] E. Gautrin & L. Perraudeau. Madmacs : A Tool for the Layout of Regular
Arrays. WG 10.5 IFIP Workshop on Synthesis, Generation and Portability
of Library Blocks for ASIC Design (1992), pp. 212-221.

[5] E. M. Gurari & 1. H. Sudborough. Improved Dynamic Programming Algo-
rithms for Bandwidth Minimization And The MinCut Linear Arrangement
Problem. Journal of Algorithms, 5 (1984), pp. 531-546.

[6] A. G. Hoffman. Towards Optimizing Global Min Cut Partitionning. Proc.
The European Conference on Design Automation (1991), pp. 1167-1171.

[7] S. Kang. Linear ordering and application to placement. Proc. 20** Design
Automation Conference (1983), pp. 457-464.

[8] 11{9T Kung. Why systolic architectures? IEEE Computer, Vol 15, pp. 37,
82.

[9]1 E S. Makedon & I. H. Sudborough. Minimizing Width in Linear Layouts.
Proc. of International Conference on Automata, Languages, and Program-
ming(ICALP), Lecture Notes in Computer Science vol.154, Springer-Verlag
(1983), pp. 478-490.

[10] Z. Miller & 1. H. Sudborough Polynomial Algorithm for Recognizing
bounded Cutwidth in hypergraphs. Math. Systems Theory 24, Springer-
Verlag (1991), pp. 11-40.

[11] P. Ramyalal Suaris & G. Kedem. A Quadrisection-Based Combined Place
and Route Scheme for Standard Cells. IEEE Transactions on Computer-
Aided Design, vol.8, n°.3 (March 1989).

[12] H. E. Shrobe. The Datapath Generator. CompCon82 High Technology in
the Information Industry, pp. 340-344, IEEE Computer Society (1982).

[13] A.Weinberger. Large Scale Integration of MOS Complex Logic : A Layout
Method. IEEE J. Solid State Circuits SC-2 (1967), pp. 182-190.

[14] O. Wing, S. Huang & R. Wang. Gate Matrix Layout. IEEE Trans. on CAD,
vol.CAD-4 n°3 (July 1985), pp. 220-231.

— 725 —

