ÉVALUATION DES RESSOURCES EN EAU NON PÉRENNES : MÉTHODE DE RÉGIONALISATION DE RÉSULTATS OBSERVÉS

A. JOIGNEREZ¹, N. GUIGUEN¹, J-C. OLIVRY¹

RÉSUMÉ

Sur demande du gouvernement malien appuyée par le PNUD, les auteurs ont conduit une recherche pour évaluer l'occurrence de la ressource en eaux superficielles non pérennes, à l'exutoire de l'ensemble des bassins versants de superficie inférieure à 200 km² et situés dans la fraction méridionale, soudanienne à sahélienne (1 200 à 500 mm), du pays. La nature des informations, malheureusement limitées, disponibles sur l'environnement dans la zone d'étude, et l'examen de la littérature consacrée au fonctionnement hydrologique de tels hydro-systèmes, ont amené à structurer la démarche autour des trois étapes suivantes :

- recherche et proposition d'une représentation liant l'écoulement à la pluie, en fonction de la végétation et de la morpho-pédologie, de la superficie et des pentes des bassins;
- l'influence d'une nappe sub-affleurante a été envisagée, validation de la proposition précédente par une année de campagne d'observations environnementales, de mesures de pluies et débits, sur neuf bassins versants choisis aussi « représentatifs » que possible des conditions hydro-écologiques dominantes dans la zone d'étude;
- application du modèle à 4 000 bassins, convenablement identifiés à partir de cartes (1/200 000) phyto-géomorphologiques du PIRL (Projet d'Inventaire des Ressources Ligneuses), des fonds topographiques IGN à la même échelle, et des cartes de pluviométrie.

L'ensemble de la démarche précédente est détaillée et des résultats sont présentés.

Mots-clefs: Mali - Petits bassins - Ressources en eau - Régionalisation.

¹Orstom, BP 2528, Bamako, Mali

INTRODUCTION

Le schéma directeur de mise en valeur des ressources en eau du Mali, réalisé par le PNUD et la DNHE, a mis en évidence les connaissances très limitées sur le régime des eaux non pérennes bien que celles-ci représentent un potentiel considérable peu ou mal exploité et d'un grand intérêt pour le développement du pays.

Une étude hydrologique a donc été décidée par le gouvernement malien et le PNUD afin de combler cette lacune. Cette étude avait pour objectifs une bonne compréhension des régimes hydrologiques des écoulements sur petits bassins versants et l'évaluation des ressources en eaux non pérennes pour la fraction méridionale - soudanienne à sahélienne (1 200 à 500 mm) - du Mali.

LA DÉMARCHE SCIENTIFIQUE

Pour répondre au problème posé (chiffrer rapidement une ressource initialement négligée par le schéma directeur), une démarche simple et originale s'imposait.

La première partie de l'étude consistait à mieux connaître les mécanismes d'écoulement au Mali par observations de terrain. Un suivi hydrologique s'est effectué durant l'hivernage 1991 afin d'établir, pour chaque bassin, une relation simple entre précipitations et lames écoulées et d'en estimer ainsi un cœfficient d'écoulement médian.

La deuxième partie avait pour but l'extension des résultats à l'ensemble de la zone d'étude et s'est ordonnée de la façon suivante :

- inventaire sur carte IGN au 1/200 000 des bassins inférieurs à 200 km² et calcul des paramètres de forme, superficie et pente ;
- mise à jour des isohyètes médianes;
- définition d'un indice de perméabilité globale à partir d'une cartographie d'inventaire des sols (végétation, sols, géomorphologie);
- recherche d'une relation entre cœfficient d'écoulement et rapport relief/ perméabilité globale, à partir des résultats de la première partie et d'études antérieures ;
- détermination des écoulements annuels médians et estimation d'un cœfficient d'écoulement moyen par grande zone géomorphologique.

RÉSULTATS DE LA CAMPAGNE DE MESURE 1991

À l'issue d'une phase de prospection, 9 bassins jugés aussi représentatifs que possible des grandes tendances hydro-écologiques du territoire étudié (figure 1 et tableau 1 : situation géographique et caractéristiques des bassins) ont été sélectionnés. Le suivi hydrologique comprenait les mesures de pluviométrie

journalière en 3 ou 4 points du bassin, doublées d'un enregistrement pluviographique, l'enregistrement limnigraphique à l'exutoire du bassin, l'étalonnage de la station ainsi que des mesures régulières dans des puits ou des piézomètres, durant tout l'hivernage.

La saison des pluies a bénéficié de conditions pluviométriques s'approchant des conditions médianes (calculées pour les postes du réseau national) sur l'ensemble du territoire, à l'exception de la région de Kita, relativement déficitaire.

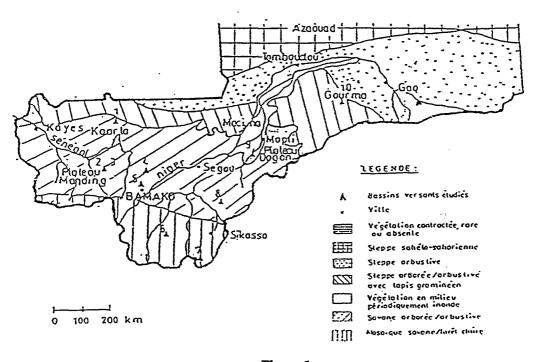


Figure 1
Situation des bassins

ÉVALUATION DES CONDITIONS MÉDIANES D'ÉCOULEMENT

À partir des données journalières de pluies et lames écoulées mesurées durant l'hivernage 1991 sur l'ensemble des bassins, nous avons pu rechercher une relation entre lames écoulées et hauteurs de pluie correspondantes dans le but de constituer des séries d'écoulement annuel pour chaque bassin. Ces relations, qui ne pouvaient être que très simples en raison de la courte durée d'observation, se basent sur des régressions inspirées du modèle simplifié de GIRARD.

Tableau 1
Caractéristiques physiques des bassins

BASSINS		Tinkaré	Seme 1	Seme 2	Diarabougo	Dounfing	Belexcni	Kambo	Kcutiala	Sinkoroni
S. Superficie	km²	22,60	9,05	5,30	20,60	17,50	120,00	10,00	24,80	9,60
P.Périmètre	km	16,50	12,80	9,50	20,90	18,20	50,00	16,00	19,00	12,00
A.Altitude zéro échelle	m	256,00	315,00	315,00	395,00	425,00	330,00	320,00	350,00	300,00
Kc. Indice de compacité		0,97	1,23	1,16	1,22	1,22	1,26	1,42	1,07	1,08
L. Longueur du rectangle équivalent	m	6,50	4,52	3,00	7,27	6,10	18,60	6,47	6,23	3,60
l. Largeur du rectangle équivalent	m	3,48	1,88	1,76	3,15	2,87	6,50	1,55	3,98	2,70
lg. Pente moyenne (entre 5 et 95 %)	m/km	3,00	63,05	9,67	6,00	22,00	3,00	2,84	5,52	12,9
Ip. Indice de pente de Roche			0,31	0,099	0,092	0,161	0,04	0,059	0,08	0,058
A. Altitude moyenne d'après courbe	m	263	462	323	419	460	348	332,60	370	346
Aspect du réseau hydrographique		Radial	Rad/Arêt	Arête	Arête	Arête	Arête	Arête	Arête	Arête
PARAMÈTRES MORPHOL	OGIQUES									
Casse de relief	(Rodier-Auvray)	P2	R5	R3,5	R2,5	R4,5	R2	R2	R2,5	R4
Casse de relief	(Olivry)	R1,6	R6	R2,8	R2,6	R4,2	R1,2	R1,6	R2,2	R3
Casse de perméabilité		P2,75	P3,5	P4	P3,75	P3	P3,5	P4	P3,5	P2
Casse de couverture végétale	(Olivry)	V1,5	V2	V2,5	V2,5	V2	V3	V2,5	V2,5	V1
Surfaces cultivées	%	35	30	55	65	20	70	65	60	5

LE MODÈLE DE GIRARD

Le modèle simplifié de GIRARD (1975) a été utilisé par RODIER pour une évaluation de l'écoulement annuel dans les régions tropicales sèches d'Afrique occidentale (1976) et le Sahel tropical africain (1975), puis repris en 1990 par RIBSTEIN.

Ce modèle s'appuie sur l'équation de base :

$$Ej = Ko(Pj - Po)$$

avec:

Pj = hauteur de précipitation journalière (mm) du jour j, Ej = lame journalière écoulée (mm) du jour j, Ko = cœfficient d'écoulement.

Ho s'exprime:

pour 1 jour j : Hj =
$$C(Pj - 1 + Hj - i)$$
,
Hj < Homax Ho = 0,
 $C < Hj < Homax$ Ho = Homax - Hj,
Hj = 0 Ho = Homax.

Hj, indice de Kholer, représente l'humidité des sols.

C est un paramètre de calage du modèle compris entre 0 et 1 et souvent proche de 0,7 (Roder, 1976).

APPLICATION AUX BASSINS

Pour chaque bassin, les couples (lames écoulées / lames précipitées journalières) sont portés sur la figure 2. Le tracé des courbes enveloppe des points permet de déterminer graphiquement Ko (pente des droites) et Homax qui représente la hauteur maximale de pluie pour laquelle il n'y a pas d'écoulement.

Pour affiner ces relations, nous avons recherché les meilleures régressions entre lames écoulées d'une part et hauteurs de pluie et indices de Kholer d'autre part. L'indice des pluies antérieures, exprimé avec C = 0,7 (Kholer), traduit le fait que les écoulements sont d'autant plus importants que de fortes averses sont tombées les jours précédent l'événement. Cependant, les réactions d'un bassin face aux précipitations peuvent varier au fur et à mesure que l'on avance dans la saison. De plus, les débits de base dépendant du tarissement des nappes obéissent à des lois différentes de celles du ruissellement. C'est pourquoi plusieurs indices de pluies antérieures, combinés entre eux, ont été testés afin de tenter d'exprimer ces divers phénomènes.

Le tableau 2 et la figure 3 présentent les relations trouvées ainsi que les cœfficients d'écoulements estimés pour chaque bassin.

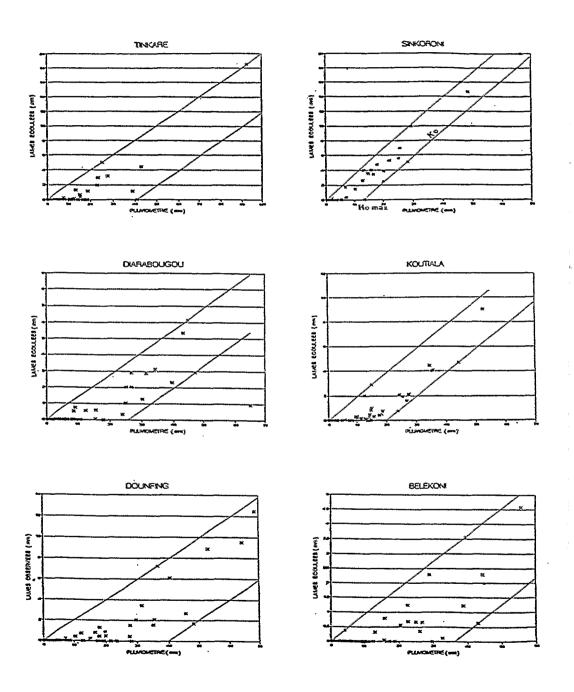


Figure 2
Application du modèle GIRARD

Tableau 2 Relations pluie - écoulement

	TINKARE	DIARABOUGOU	DOUNFING	BELEKONI	KOUTIALA	SINKORONI
k S R2	0.076*P +0.009*P * k -1.5 0.7*(P -1+ k -1) 9 mm 0.95	4 mm 0.79	0.7*(Pj-1 + lkj-1) 9 mm 0.80	0.7°{P[+1+lk -1) 16 mm 0.80	9 mm 0.93	0.26*Pj+0.0026*lkj*Pj+1.1 0.7*(Pj-1+lkj-1) 2.5 mm 0.985 27
LBJ IkJ R2 N	21			21 0.0134*1kj-0.79 0.94*(Pj-1 +1kj-1) 0.53 137	32	151
LTJ Jkj R2 N			0.0034*lkj 0.97*(Pj-1 +lkj-1) 0.96 42	3.5E-4*lkj-1-0.11 0.99*(Pj-1 +lkj-1) 0.80 24		

LEJ: Ecoulement rapide de crue (lame écoulée du jour j) LBJ: Ecoulement de base (lame écoulée au jour j - LEJ) LTJ: Tarissement

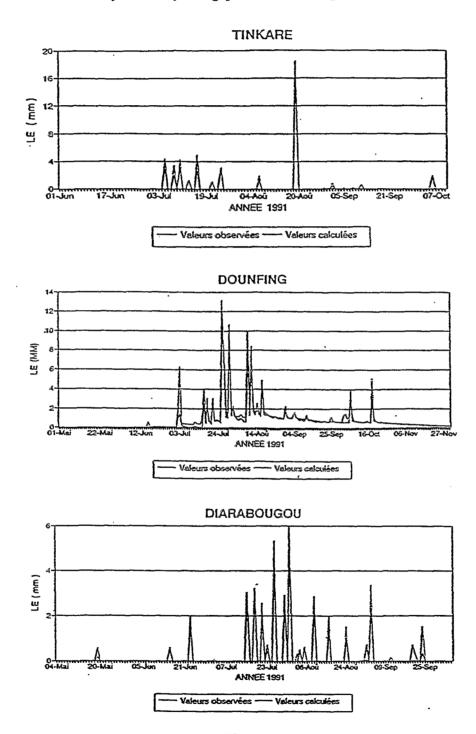


Figure 3
Calage des modèles - Lames écoulées en 1991

LES FACTEURS CONDITIONNELS DE L'ÉCOULEMENT AU MALI

PRÉCIPITATIONS

La carte des isohyètes interannuelles a été réactualisée à partir de 31 postes de la Météorologie nationale, assez bien répartis sur l'ensemble du territoire observé (figure 4) : ce sont les postes les plus anciens du pays dont la plupart totalisent plus de 50 années d'observation.

BASSIN	POSTE	ΝЬ	LOIS	DECENNALE	MEDIANE	DECENNALE	Le OBS.	Ke ≒
	PLUVIO.	ANS		SECHE (mm)	(നന)	HUMIDE (mm)	91 (mm)	MEDIAN
TINKARE	DIEMA	43	GALTON	15	34	73	41	5.6
DIARABOUGOU	KOLOKANI	64	GOODRICH	17	36	\$8	36	4.6
	BAMAKO	71	GOODRICH	32	52	80		5.0
DOUNFING	ВАМАКО	70	GALTON	50	132	190	169	12.8
BELEKONI	BOUGOUNI	71	GALTON	32	73	152	87	6.1
KOUTIALA	KOUTIALA	- 70	GALTON	25	46	77	50	4.9
SINKORONI	морті	68	GALTON	\$2	77	122	122	16.0

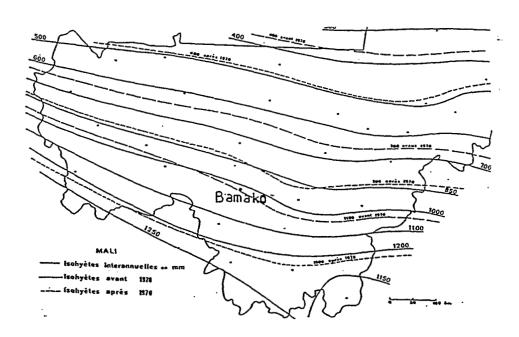


Figure 4

Lames écoulées reconstituées annuelles - Résultats d'ajustements statistiques

FACTEURS PHYSIOGRAPHIQUES

Les informations, malheureusement limitées, disponibles sur l'environnement dans notre zone d'étude et l'examen de la littérature consacrée au fonctionnement hydrologique, ont conduit à choisir 2 paramètres, pente et perméabilité, pour traduire les réactions des bassins face aux précipitations.

PENTE

Étant donné le nombre important de bassins recensés (plus de 4 000), les valeurs de pente ont été calculées de façon simplifiée par le rapport :

(Alt.maxi - alt.mini) / Longueur du rect. équiv.

en tenant compte des altitudes données par les courbes de niveau uniquement. Nous avons établi une classification du relief inspirée de celle de

Nous avons établi une classification du relief inspirée de celle de RODIER-AUVRAY. L'introduction d'un demi indice permet, en affinant les limites de classes, d'éviter des cassures trop brutales.

Sols et végétations

Le PIRL (Projet d'Inventaire des Ressources Ligneuses, réalisé par BDPA-SCET-AGRI, CTFT-CIRAD et SYSAME) a édité, pour la fraction méridionale du Mali, une cartographie détaillée au 1/200 000 d'inventaire des unités morphopédologiques et du couvert végétal présents au Mali. Cette cartographie s'est basée sur un inventaire de zones tests des principaux milieux écologiques et une extrapolation à l'ensemble du territoire en utilisant plus de 160 images SPOT acquises entre 1987 et 1989. Cet inventaire confirme en outre l'existence de relations étroites entre les modes de distribution de la végétation et le contexte morphopédologique replacé dans son domaine climatique (PIRL, 1991).

Nous avons donc utilisé cet inventaire en donnant à chaque unité une valeur de Arête « perméabilité globale » d'après la classification Rodier-Auvray, selon ses caractéristiques de géologie et de sols ainsi que les caractéristiques du couvert végétal qui lui est associé (tableau 3). Ainsi, après avoir été délimités sur carte IGN au 1/200 000, chacun des quelques 4 000 bassins a pu être caractérisé de façon individuelle et en tenant compte de ses particularités propres (figure 5).

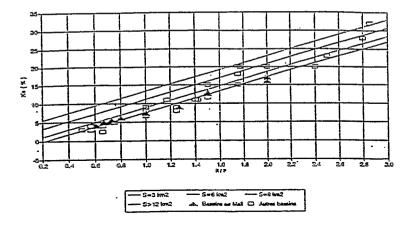
RELATION ENTRE PERMÉABILITÉ, PENTE, ET CŒFFICIENT D'ÉCOULEMENT

Le tableau 4 donne la liste des 46 bassins utilisés pour exprimer le cœfficient d'écoulement (Ke) en fonction de la superficie (S) et du rapport (R/P) entre pente et perméabilité globale : en plus des 7 bassins étudiés dans le cadre de cette étude, 39 bassins étudiés précédemment par l'Orstom (au Mali mais aussi dans les autres pays de la même zone climatique) ont été retenus (Dubreuil, 1972; Rodier, 1976).

Tableau 3 Unités morphopédologiques et classification de perméabilité

CLAS.	N°	Interes Mobiles colores	TOPOGRAPHIE	901 (Tricipation.	Pan	774	T
PERM	UM	UNITÉS MOPHOLOGIQUES	IONOKAPHIE	SOL (matériaux)	VÉGÉTATION	mm	UA	UP
Pl	47	Relief gréseux vigoureux (Zone de BANDIAGARA)	Plateaux rocheux, escarpement dissection ruiniforme	Dalle de grès, gradin empilment en place	Sans	500	0	4
P2	46	Relief gréseux	Plateau rocheux, versants en gradins, fractures fréquentes	Lentille de sol, reconvrement subleux superficiel	5% formation hygrophile	800 à 1100	۰	4
122	41	Reliefs tabulaires à	Massif tabulaire, cuirasse bombée	Cuirane gravillonnaire (bowés)	Bowal arboré	600	0	4
	43	sommets cuiressés, buttes	pentes fortes, gradins	texture grossière, blocs	savane boisée ou		+	4
	44	de deolérites, chaines témoins d'un ancien massif gréseux	pentes moyennes.	démantellement gravillomaire	forêt cinire	1200	0	4
P2	31	Formes cuiras., relief ondulé	Formes cuiras, résistant à l'érosion	Blocs de cuirasse, gravillomaire	Savane boisée	600	0	4
	32	fossilisé par une cuirasse	pente 5 à 20 %, dissection	altération en boule de dolérite	Forêt claire	*	0	4
	34	glacis d'érosion carapacés	relief résiduel en croupes, versant	sables grossiers, grès en dalles	Bowal m	1200	0	4
P3	33	Cuirasses démantelées,	Pentes faibles, forme d'érosion	Texture grossière sur sommets	Savame arborée	800	+	2
	35	basecs croupes	modelé onduleux, plages cuirassée	moyenne à fine sur versants	savanes, verger		##	2
	45	croupes et vallons		et fonds		1200	+	3
P3	51	Basse colline, glacis	modelé inégulier, mollement ondu	Texture hétérogène sableuse	Steppe arbusive		+	2
	52	influencés par le substratum	2 à 6 % pente, localement érosion	à limoneux-sableux, parfois cuirasse	Miche	800	+	2
P4	21	Clacis à épundage	plaine, pente de 2 à 6 %, présence de nappe pluéatique	Texture limono fine à grossière, sol anthropique	Cultures, savanes, verger, parfois forêt claires	600 à 1200	+++	2
P4	11	Forme d'accumulation	Bane médian ou latéral, mondation	Migration matériaux grossiers	Prairies et galeries	600	+	3
	12	dépôts alluvisux récents	chenal longitudinal, inondation	apport alluvial, texture mélangé	hydrophiles		#	3
	14		périodique	apport alluvio-colluvial	formations hydrophiles	à	+++	1
	15		vallée étroite et sinnense	texture fine, hydromorphie par	galerie de type		+	3
	16		besse plaine, engorgée en hivernage	inondation et remontée nappe	sahélien ou guinéen	1200	+	3
P4	61	Forme alluviale avec	Plaine pen inclinée, drainage Mohe	Sable en surface et limono-	Savane arborée	500	#	2
	6 2	dépression et buttes	plaine horizontale, parfois et dépôt	angileux sur le reste du profil	affectée par hydromorphie	à	+	2
	ଷ	Forme diverse émoussée	éolien, modélé mollement bosselé	Texture subleuse dominante	savane arbust, ou arborée	800	+	3
	64	mamelon et champ de chablis	cordon dunsire	sauf dans les dépressions			+	4
	65	champs de dames transvers. orientés OSO-ENE	cordon dunaire massif	argilo-limo neuse		400 à	0	4
	66	Forme alluviale diverse	Lit avec chenanx entéromorphes	recouvrement subleux sur dépôt	savane arbusive	800	#	2

Figure 5


La figure 6 donne la distribution des cœfficients Ke en fonction de S et R/P ainsi que les régressions établies à partir des points expérimentaux.

Quelques bassins, situés dans une zone à plus de 1 000 mm de pluviométrie annuelle bénéficient d'un écoulement de surface; les seuls paramètres sélectionnés ne suffisent alors pas à traduire cet effet de nappe et les résultats obtenus sont sous-estimés. Ne disposant malheureusement pas d'éléments suffisants pour combler cette lacune, nous avons décidé provisoirement de diminuer les indices de perméabilité dans l'extrême sud du Mali, où les niveaux piézométriques sont très souvent subaffleurants (figure 7) et les hauteurs-pluviométriques annuelles supérieures à 1 000 mm.

Tableau 4
Information disponible sur les écoulements
dans une zone pluviométrique comprise entre 500 et 1 200 mm

N	BASSIN	PAYS	P médiene	GEOLOGE	s	R	•	RVP	Li	Ki	Arre obs.
-		1	www.		Km2				m	=	Moděle
1	THIKARE	wu	600	Kida	22,6	20	2.75	9.73	34	5.6	1+moděle
2	DOMANGOUGOU	-	900	Outrie.	20,6	25	3.75	0.67	43	4.6	1+modêle
3	DORNERIG .	-	1000	Grissed	17.5	45	3.00	1,50	128	125	14 modéle
4	BELEKOM	•	1200	Granice	120,0	2.0	2.50	0,60	73	6.1	1+modèle
5	KOUTULA	•	550	Grên konk	24,9	2.5	3,50	0.71	47	6.5	1+moděla
6	SINKORONI	•	600	Gra.	9,6	4,0	2.00	200	96	160	3+moděle
7	KAMBO		1150	Grania	10,0	2.0	3.00*	0.67	S7	5,0	4
8	BARKANO	-	1100	Grie	251.0	3.5	3.50	1.00	80	73	2
3	KOUNBAKAI	٠	€00	Grée I	89,6	3.5	2.75	1.27	SA	9.0	3
10	KOUMBAKAZ	-	€00	Gris	30.4	25	1.75	2.00	102	17.0	2
11	олико	-	E100	Grés	\$23	20	20-	1.50	143	13.0	2
12	FARAKO	-	1150 -	Grās .	65.0	3.5	1.75*	200	184	16.0	1
13	KIFFÅ	-	900	Grên	740.0	20	3.25	0.61	36	4.0	2
14	BAZOULE	enusar.	850	Granica	12.4	2.0	4.30	0.66	21	25	2
15	косно	-	750	Gre + Sohi	84.7	20	3.50	0.57	22	3.0	3
16	KOGHWERE	- :	750	Granic	320	20	3.25	0.61	34	45	3
17	MEANOROPH	- 1	850	Granica	19,1	3,0	3.00	1,00	76	9.0	3
16	ZAGTOUU	•	850	Graniko	6.7	3.5	3.00	1,17	93	11.0	2
12	SELOGEN	-	2 00	Granita	74.0	3,5	2.00	1,75	135	15.0	3
żυ	DK414DE	-	\$20	Granice	9.1	3.0	2.00	1.50	138	15,0	3+modèle
21	ZAPTINGA	- !	520	Granica	15.1	3.0	200	1.50	138	15.0	3 .
22	LOURE	- 1	\$20	Granite	34.0	3.0	1.25	240	164	20,0	3
23	KAZANGA	- 1	5 20	Granica	543	3.0	1.25	240	154	20.0	3
24	MEGHA	•	750	Granks	1010.0	2.0	3.50	0.57	30	4.0	3
25	OUAGA1	• ,	650 -	Granica	250	2.5	4.00	0.62	40	45	3
20	NABAGALE	-	875	Granike	470,0	2.0	2.00	1.00	59	6.7	3
27	BOULEI	-	875	Granica	125.0	2.5	2.00	1.25	70	8.0	3
28	KUNGA	-	520	Granite	\$72.0	25	1.25	2.00	150	16.3	3
29	DONSE	· -	625	Granic	1620	20	3,00	1,00	66	4.0	5
20	KAMBOENSE		850	Granic	137.0	20	4,00	0.50	26	3.0	5
31	800E02		600	Shippe	112	25	3.75	0,66	18	. 40	2
32	KOULOUGUUNA	1000	1000	Gra+Sch+GR	187,0	30	2.00	1.50	116	11.5	3
23	NADJOURIO	•	t050	Granica	212	3.5	2.00	(75	189	.18.0	1,
34	KOURAFAB		1070	Grès	962	3.0	1.50	200	182	17.0],
35	NABAPOUR		1070	Grès	61.4	3.5	2.50*		118		1-
36	RANGOROU	NIGER	\$40	Grès	17.3	3.0	4,00	0.75		11,0 5.0	3
37	GODOLA	CALER	510	Granita		4.0			42		2
38	LECEIAC	CACALLY.	820	Granita	420	5.0	2.00	2.00	162	20.0	2+modéle
29	PROKOTO		570		4.0		1.75	2.86	262	32.0	4+modéle
40				Granite	48.5	5.0	2.00	2.50	223	23.0	2+modèle
	MAYO KETTENG	****	#20	Shiete	4.0	40	2,25	1,77	184	20.0	2
41	BARLOS	tam	#00	Guerite	17.6	5.0	3.50	1.42	88	11,0	12
42		•	e 00	Granite	36,6	5.0	4.00	1.25	72	9,0	2
43	INAYOUGAN		,9 00	Granica	410	3.5	1.25	2.80	252	200	3+model
44	TOURKOUL		\$ 50	Geenite	61,3	20	275	1,09	€8	8,0	4
- 1	BECONS .	•	8 50	Granite	-742	33	3.50	1,00	59	7.0	14
40	MAS-MAS	-	500	Granke	1200,0	15	3.50	0.43	24	3.0	19

Nouvelle classification de l'a bessin sous-influence de nappo

CORRELATION ENTRE KE, R/P ET S

	TOTAL DES BASSINS	BASSINS<15km2	BASSINS>15km2
Relation R2	10.6*R/P-2.8 0.93	9.8*R/P-0.74*S+5.7 0.98	9.7*R/P-2.1 0.97
Nb d'obs.	46	35	9

Figure 6
Abaques R / P - Ke en fonction de S

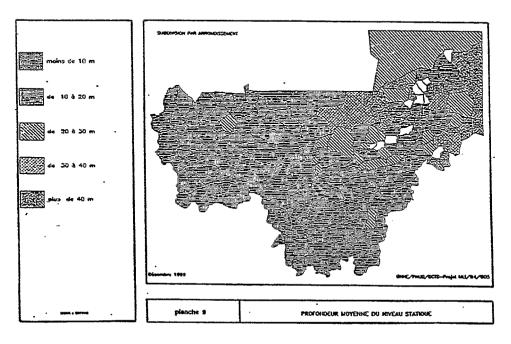


Figure 7
Schéma directeur des ressources en eau du Mali

LES RÉSULTATS

Plus de 4 000 bassins inférieurs à 200 km² ont été caractérisés quant à leurs écoulements annuels potentiels. Ces bassins couvrent la totalité de la fraction méridionale du Mali comprise entre les isohyètes 1 200 mm et 500 mm, à l'exception des grandes vallées fluviales et des zones d'inondation ou d'endoréisme important.

La figure 8 résume les résultats obtenus, avec une tentative de zonation des cœfficients d'écoulement moyens mis en relation avec les grandes tendances géomorphologiques du territoire.

Enfin, l'ensemble de ces résultats a permis de constituer une banque de données sur les petits bassins versants du Mali qui comprend :

- 40 calques de délimitation des bassins établis à partir des cartes IGN au 1/200 000;
- pour chaque carte, un fichier informatique où sont répertoriés tous les bassins inventoriés (tableau 5).

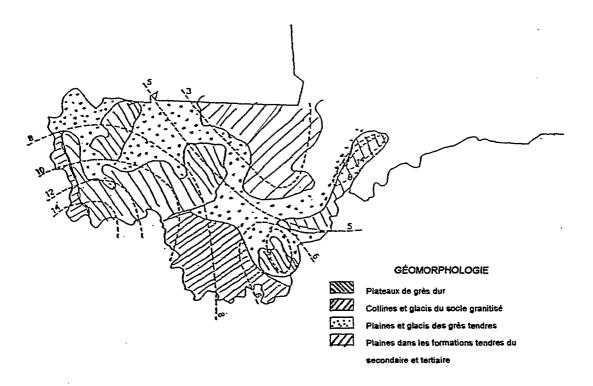


Figure 8
Isovaleurs des cæfficients d'écoulement

Tableau 5

N	NOM	RÉSEAU	S Km²	P Km	Kc	L Km	ALTM	ALTm	IG m∕k	GEOL	R	P	Ke %	P mm	Le mm	V 1000
1	Scrotone	Bani	198,6	58,0	1,16	18,5	310	250	3,2	Gk+Ar	2,0	3,50	3,4	750	- 25,6	5091,96
2	Matomo	-	37,2	22,0	1,01	8,1	280	270	1,2	Ar	1,0	4,25	0,2	750	1,2	43,1629
3	Sokoura	-	109,2	43,0	1,15	13,1	320	289	2,4	Gk	1,5	3,25	2,4	750	17,6	1925,91
4	Dobo	-	148,4	53,0	1,21	18,1	400	316	4,6	Gk	2,5	2,75	6,7	750	50,2	7454,06
5	Tébékul	-	167,8	47,0	1,01	17,3	360	320	2,3	Gk	1,5	3,25	2,4	750	17,6	2959,41
б	Toubala	-	186,2	65,2	1,34	25,3	400	360	1,6	Gb+Gk	1,5	1,75	6,2	700	43,4	8071,77
7	Daga	-	187,2	53,0	1,08	16,8	340	290	3,0	Gk	2,0	3,75	3,0	700	21,3	3994,97
8	Niadara	-	228,8	61,0	1,13	17,4	400	372	1,6	Gъ	1,5	1,50	7,6	700	53,1	12140,1
9	Wadian	-	53,2	30,2	1,16	9,5	415	320	10,0	Gb	3,5	1,25	25,1	650	162,9	8665,06
10	Diesso	-	147,06	46,0	1,06	15,4	360	300	3,9	Gk	2,0	2,75	4,9	700	34,5	5095,55
11	Bouossohui	_	114,0	45,0	1,18	14,7	340	300	2,7	Gk	2,0	2,50	5,6	650	36,6	4177,76
12	Bourasso	-	175,6	53,0	1,12	13,3	340	280	4,5	Gk	2,5	2,75	6,7	650	43,5	7644,27
13	Soukarodaga	-	94,4	39,0	1,12	9,7	320	300	2,1	Gk+Gb	1,5	2,50	3,7	650	24,0	2267,87
14	Diamakan	-	35,6	48,0	1,06	16,1	415	300	7,1	Gk+Ar	3,0	3,75	5,6	750	42,3	1505,35
15	Parako	-	58,8	32,6	1,19	10,9	360	300	5,5	Gъ	2,5	2,25	8,7	600	52,0	3054,86
16	Koumbaka	-	89,6	42,0	1,24	15,0	424	275	10,0	Gk+Gb	3,5	2,75	10,2	600	61,4	5498,67
17	Blahbougou	-	190,4	61,0	1,24	21,8	404	280	5,7	Gъ	2,5	1,50	14,1	650	91,3	17392,4
18	Balaguira	-	89,6	41,6	1,23	14,7	370	355	1,0	GЪ	1,0	3,00	1,1	600	6,6	594,944
19	Koulébala	-	30,8	22,0	1,11	6,2	429	320	17,5	Gb	4,0	1,75	20,1	600	120,4	3707,88
20	Sango	-	18,8	21,6	1,39	8,6	365	355	1,2	Gъ	1,0	2,00	2,7	600	16,4	307,38
21	Kossia	-	36,8	32,4	1,50	13,5	424	300	9,2	Gg	3,5	1,75	17,3	600	103,7	3817,63
22	Timissa	-	24,8	20,6	1,16	6,5	410	295	17,7	Gb+Gk	4,0	1,75	20,1	600	120,4	2985,57
23	Touroukoro	-	44,0	28,0	1,18	9,2	360	255	14,5	Gk+Gb	3,5	3,00	9,2	600	55,2	2428,36
24	Nioumasso	-	19,2	19,6	1,25	7,1	305	275	4,3	Ar	2,5	3,25	5,3	600	32,0	615,079
25	Konteni	-	31,6	21,8	1,09	6,8	370	300	10,4	Gb	3,5	1,25	25,1	650	162,9	5146,91
26	Diamana 1	-	12,0	13,2	1,07	4,3	400	350	11,6	Gъ	3,5	1,00	31,9	650	207,1	2484,69
27	Diamana 2	-	28,4	20,4	1,07	6,7	404	-350	8,1	Gъ	3,0	1,25	21,2	650	137,6	3908,72
28	Téculé	-	35,6	29,0	1,36	11,4	405	300	9,2	Gb	3,5	2,00	14,9	650	96,6	3439,18
29	Sékélo		30,4	21,4	1,09	6,6	320	280	6,0	Gk	3,0	2,75	8,5	650	55,0	1672,23
30	Ningodaga	-	33,6	26,0	1,26	9,5	340	295	4,7	Gk+Gb	2,5	3,00	6,0	650	38,8	1302,03
31	Massadougou	-	12,8	13,8	1,08	4,4	330	320	2,3	Gk	1,5	3,00	2,7	650	17,7	226,72
32	Tiouga	-	16,0	18,0	1,26	6,6	415	320	14,5	Gъ	4,0	2,00	17,3	650	112,4	1798,16
33	Sanakoro 1	-	18,4	16,2	1,06	5,4	410	325	15,6	Gb	4,0	1,75	20,1	650	130,4	2399,69
24	Sanakoro 2	-	12,0	13,0	1,05	4,5	420	320	22,5	Gъ	5,0	1,00	46,4	650	301,7	3620,76
35	Bororé	-	17,2	19,0	1,28	7,0	448	320	17,8	Gb	4,0	1,00	36,7	650	238,6	4104,18
36	Ouionkoro	-	16,0	15,2	1,06	5,1	400	355	8,9	Gb	3,5	1,25	25,1	700	175,4	2806,5
37	Pahandaha 💮	-	17,6	15,2	1,01	5,6	365	320	8,0	Gъ	3,0	2,75	8,5	700	59,2	1042,61
38	Pahakan	-	21,2	18,2	1,11	5,2	360	320	7,7	Gъ	3,0	2,75	8,5	650	55,0	1166,16
39	Bourèdandi	-	51,2	36,2	1,42	14,7	360	318	2,9	Gk+Gb	2,0	2,75	4,9	650	32,1	1641,31
40	Silo	- 1	28,0	28,2	1,49	11,7	335	295	3,4	Gk	2,0	2,75	4,9	650	32,1	897,591
41	Bona	- 1	29,2	22,0	1,14	6,5	370	318	8,0	Gk	3,0	2,50	9,5	700	66,7	1946,3
42	Yérakui 💮	- 1	17,6	18,4	1,23	6,5	372	322	7,7	Gk	3,0	3,00	7,6	750	56,9	1000,56
43	Bankoums	- 1	23,6	19,8	1,14	5,9	372	320	8,9	Gk	3,5	3,00	9,2	800	73,6	1736,65
44	Dabola	-	48,4	28,0	1,13	8,0	458	320	17,4	Gk	4,0	3,00	10,8	800	86,5	4188,21
45	Kouna	-	44,8	26,4	1,10	7,8	457	335	15,6	Gъ	4,0	1,25	28,9	700	202,6	9076,21
46	Doufiakui		56,8	28,0	1,04	9,8	302	280	2,2	Gk	1,5	3,50	2,0	7 50	15,2	865,389
]	RESULTATS		3089										8,1	675	54,4	167911

CONCLUSION

Estimer les potentialités des ressources en eau non pérennes à l'échelle du Mali en une seule année semblait être une gageure. Mais la méthode de régionalisation que nous proposons ici a permis une première approche des cœfficients et volumes d'écoulement que l'on peut escompter en année médiane sur l'ensemble du territoire malien à vocation agricole.

Cette étude a pour mission de constituer une aide à la décision et à la gestion des ressources dans le cadre d'un « schéma directeur de mise en valeur des ressources en eau du Mali », mais ne prétend en aucun cas remplacer une étude de terrain préalable à la construction d'un ouvrage hydraulique.

Cependant, à cause du temps limité et du peu d'informations disponibles, certains points n'ont pu être développés avec précision. Une étude plus approfondie sur ce type de ressources, initialement négligées par le schéma directeur, serait souhaitable afin d'élaborer un modèle plus performant capable en particulier de prendre en compte les relations entre eaux de surface et eaux souterraines au Mali.

On pourrait également imaginer une confrontation, à l'échelle d'un grand bassin, entre les résultats obtenus par un tel modèle sur les petits bassins versants et les volumes drainés par les cours d'eau principaux mesurés aux stations du réseau principal. Ceci constituerait une validation de la méthode et permettrait de répondre à des questions plus précises sur le devenir de l'eau et les changements d'échelle qui restent une voie de recherche toujours actuelle.

BIBLIOGRAPHIE

- Albergel J., Guiguen N., Pariente P., Pépin Y., 1991 Projet pilote « Mali sud », Bas-fonds de Kambo, rapport de synthèse : Hydrologie Hydrogéologie.
- Albergel J., Lamagat J.P., Marieu B., 1991 Exemple d'application des méthodes de prédétermination de crues décennales : le plan directeur de la haute vallée du fleuve Sénégal, *Hydrologie Continentale*. Orstom.
- BDPA-SCET-AGRI, CTFT-CIRAD, SYSAME, 1991 Projet Inventaire des Ressources Ligneuses au Mali : cartographie des formations végétales au 1/200 000 et synthèse technique.

- Berton S., 1988 Le point sur la maîtrise des crues dans les bas-fonds. Petits et micro-barrages en Afrique de l'Ouest. Éd. GRET / AFVP.
- CARN M., SONKO P.N., GAC J.Y., GUILLOT B., 1991 EPSAT : Logiciel de traitement d'images pour l'estimation de la pluviométrie à partir de l'imagerie IR-MétéoSat (planche 1 du rapport).
- CASENAVE A., VALENTIN C., 1989 Les états de surface de la zone sahélienne : influence sur l'infiltration. Didactiques. Éd. Orstom.
- DUBREUIL P., 1972 Recueil des données de base des bassins représentatifs et expérimentaux 1951-1969. Éd. Orstom.
- GIRARD G., 1975 Les modèles hydrologiques pour l'évaluation de la lame écoulée en zone sahélienne et leurs contraintes. *Cah. Orstom*, Vol. 12 (3).
- GUIGUEN N., 1991 Bassin versant de Kambo, région de Kadiolo au Mali : Rapport de campagne 1990 et synthèse des observations 1988-1989-1990 (Programme bas-fonds).
- JOIGNEREZ A., GUIGUEN N., 1991 Évaluation des ressources en eau non pérennes du Mali.

Rapport I: Prospection (avril 1991)

Rapport II: Installations du dispositif de mesure (juillet 1991)

Rapport III : Rapport de campagne (décembre 1991)

- OLIVRY J.C., 1986 Méthode simplifiée de prédétermination des crues sur petit bassin versant intertropical : l'exemple du Cameroun. Journées hydrologiques « Crues et innondations ». Strasbourg.
- Orstom / CIEH, 1965 et 1980 Recueils des précipitations journalières au Mali, de l'origine des postes à 1965 et de 1965 à 1980.
- PNUD-DCTD, 1990 Schéma directeur de mise en valeur des ressources en eau au Mali. Projet MLI / 84 / 005.
- RIBSTEIN P., 1990 Modèles de crues et petits bassins au Sahel, Études et Thèses. Éd. Orstom.

- RODIER J.A., AUVRAY C., 1965 Estimation des débits de crues décennales pour les bassins versants de superficie inférieure à 200 km² en Afrique occidentale. Éd. Orstom.
- RODIER J.A., 1975 Évaluation de l'écoulement annuel dans le Sahel tropical africain. Éd. Orstom, Travaux et documents n° 46.
- RODIER J.A., 1976 Évaluation de l'écoulement annuel dans les régions tropicales sèches d'Afrique occidentale. *Cah. Orstom*, Vol. 8 (4).
- RODIER J.A., 1982 La transposition des résultats des bassins représentatifs et ses problèmes. Cah. Orstom, série Hydrologie, Vol. 19 (4).
- RODIER J.A., RIBSTEIN P., 1988 Estimation des caractéristiques de la crue décennale pour les petits bassins versants du Sahel couvrant de 1 à 10 km² Éd Orstom
- MÉTÉOROLOGIE NATIONALE DU MALI Annuaires climatologiques.