Spatial Distribution and Mechanisms of Earthquakes in the Southern New Hebrides Arc From a Temporary Land and Ocean Bottom Seismic Network and From Worldwide Observations

E. Coudert,1,2,3 B. L. Isacks,1 M. Barazangi,1 R. E. Louat,2 R. Cardwell,1 A. Chen,3 J.-D. Dubois,2,3 G. Latham,4 and B. Pontoise2

INTRODUCTION

The New Hebrides island arc, a subduction zone located in the southwest Pacific, is part of the system of plate boundaries between the Australian and Pacific plates. The evolution of the arc is particularly interesting in respect to its late Cenozoic history of polarity reversal [e.g., Chase, 1971; Karig and Mammerickx, 1972; Gill and Gorton, 1973; Mallick, 1975; Falvey, 1975; Carney and MacFarlane, 1978]. Since at least Pliocene times the arc has been subducting the oceanic plate of the Coral Sea, and much of the Fiji Plateau may have been created by the southwestward rotation of the arc away from Fiji (see Figure 1). Although the overall geometry of the descending slab beneath the arc seems to be relatively simple, the dip of the slab is quite steep at intermediate focal depths [Santo, 1970; Dubois, 1971; Isacks and Molnar, 1971; Isacks and Barazangi, 1977; Pascal et al., 1978; Isacks et al., 1981]. In fact, the New Hebrides Benioff zone has the steepest dip known except possibly for the complex intracontinental Benioff zones beneath the Hindu Kush and Romania.

In this paper we report results of a detailed study of a part of the southern New Hebrides arc, a study based on a uniquely extensive coverage of the arc by a temporary network of seismographs located on islands and on the ocean floor during August and September 1977. To our knowledge, this is the first time that field seismological data have been acquired from land and ocean bottom (OBS) seismic stations that cover more than the total width of an active convergent plate boundary. The network spanned a distance of 350 km across the arc (see Figure 2) and extended from islands located 150 km seaward of the trench to stations in and around the Coriolis trough, a seismically active, riftlike feature [Dubois et al., 1978]. During the 6 weeks of the network's operation, numerous earthquakes were recorded and located in and near the network. Together with published and new data on the larger events recorded by the worldwide network during the preceding 17 years, the results help to define (1) the location and orientation of the plate boundary, (2) the shape, thickness, and stresses within the seismically active part of the subducted plate, and (3) the spatial distribution and mechanisms of earthquakes within the upper plate. Interpretation of the
results must take into account the limited time period sampled by the experiment. Several characteristics of the seismicity of the southern New Hebrides arc seem to be strikingly similar, however, both in the small-magnitude data recorded by the temporary network and in the data located by the worldwide network during the preceding 17 years.

In this study, homogeneous flat-layered velocity models were used for locations, even though the subduction zone almost certainly includes laterally heterogeneous structure. However, we concluded that locations within the network are sufficiently accurate to distinguish the major features on the scale of the network and of the section across the island arc. Comparisons of locations with different data sets and analysis of the travel time residuals obtained in the locations were examined carefully for effects of possible velocity anomalies associated with the structure of the arc, particularly those associated with the descending slab. The unusually wide coverage of both sides of the steeply descending slab would seem to provide a good opportunity to look for slab anomalies. The surprising result of this study was that although anomalies were detected, they were rather subtle and appear to be attenuated by offsetting effects in the shallow structure of the arc.

Focal mechanism data were considered, including solutions for the large ($M_s > 6$) events for the preceding 17-year period and limited data from first motions recorded by the temporary network. In the latter case, clear results were difficult to obtain owing to limited coverage of the focal sphere and to serious uncertainties in the calculated positions of data on the focal sphere. For shallow events the basic problem was the determination of whether the first arrival is a direct or a refracted wave. Small changes in hypocentral depth or depth of an interface in the velocity model can cause large changes in the inferred positions of data on the focal sphere and thus have very serious effects on the focal mechanism solutions.

The operation of the temporary network was a cooperative project carried out by the French Office de la Recherche Scientifique et Technique Outre-Mer (ORSTOM), Cornell University, and the Marine Science Institute of the University of
Fig. 2. Map of the southern New Hebrides arc. The squares indicate the locations of the stations of the temporary seismograph network (the land stations are denoted by three letter names, the OBS are numbered; A, B, C indicates the place of three OBS that operated for a 24-hour experiment). The bathymetric contours are in kilometers (from Daniel [1978] for 18°S to 20°S and interpolated from Mamberickx et al. [1971] for 20°S to 22°S). The cross indicates the location of the Quaternary volcano. The star shows the historically active volcano.

Texas. The ocean bottom seismographs were built by the University of Texas and are described by Ibrahim and Latham [1978]. Ibrahim et al. [1980] discussed results obtained from refraction profiling done as part of this cooperative project.

DESCRIPTION OF RECORDING NETWORK AND EARTHQUAKE LOCATION PROCEDURES

The locations of the seismic stations are given in Table 1 and shown in Figure 2. The coordinates of the ocean bottom seismographs (OBS) were obtained with the satellite positioning system of the N.O. Coriolis (CNEXO), the ship that leased the seismographs. The eight OBS units recorded the analogue signals on magnetic tapes. Many of the OBS units suffered recording failures and operated only during the first part of the period, as shown in Figure 3. The land network included both analogue and digital recorders. Four Sprengerther MEQ-800 systems and two large recording-drum systems (modified versions of those described by Ward et al. [1969] recorded the signals on smoked paper. The land network also included six digital recorders (Sprengerther DR-100). All the stations had vertical component geophones, and some of the land stations had, in addition, a single horizontal component (Figure 3). All the seismometers for both land and OBS units were Mark Products geophones with a natural frequency of 4.5 Hz. Accurate GMT (WWVH) time corrections were available for the land stations throughout the recording period. The time correction of the OBS was interpolated from the GMT (WWVH) time before and after OBS immersion. The on-board OBS chronometers were highly stable and carefully rated under conditions equivalent to the ocean bottom.

From the numerous earthquakes recorded during the experiment, only those with at least three P arrival times and one S arrival time were located. About 250 earthquakes fulfilled this condition. P and S arrival times were weighted according to the record reader's judgement of the quality of the phase onset. The uncertainty in the determination of the arrival time of a good P or S phase was estimated to be less than 0.2 s and less than 0.5 s for S arrival times read on a vertical component record.

TABLE 1. Coordinates of the Seismic Stations of the 1977 Temporary Network

<table>
<thead>
<tr>
<th>Island</th>
<th>Name</th>
<th>Latitude, °S</th>
<th>Longitude, °E</th>
<th>Water Depth, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erromango</td>
<td>ERO</td>
<td>18.82</td>
<td>169.01</td>
<td></td>
</tr>
<tr>
<td>Aniwa</td>
<td>IWA</td>
<td>19.26</td>
<td>169.59</td>
<td></td>
</tr>
<tr>
<td>Tanna</td>
<td>BUL</td>
<td>19.46</td>
<td>169.24</td>
<td></td>
</tr>
<tr>
<td>Tanna</td>
<td>INH</td>
<td>19.55</td>
<td>169.27</td>
<td></td>
</tr>
<tr>
<td>Futuna</td>
<td>FUT</td>
<td>19.52</td>
<td>170.20</td>
<td></td>
</tr>
<tr>
<td>Anatom</td>
<td>ANA</td>
<td>20.24</td>
<td>169.77</td>
<td></td>
</tr>
<tr>
<td>Lifou</td>
<td>LIF</td>
<td>20.77</td>
<td>167.24</td>
<td></td>
</tr>
<tr>
<td>Mare</td>
<td>MAR</td>
<td>21.47</td>
<td>168.04</td>
<td></td>
</tr>
</tbody>
</table>

Land Stations

OBS Stations

<table>
<thead>
<tr>
<th>OBS</th>
<th>Latitude, °S</th>
<th>Longitude, °E</th>
<th>Water Depth, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.73</td>
<td>169.81</td>
<td>1554</td>
</tr>
<tr>
<td>2</td>
<td>20.06</td>
<td>169.42</td>
<td>1408</td>
</tr>
<tr>
<td>3</td>
<td>20.26</td>
<td>169.22</td>
<td>558</td>
</tr>
<tr>
<td>4</td>
<td>19.94</td>
<td>169.05</td>
<td>1380</td>
</tr>
<tr>
<td>5</td>
<td>20.04</td>
<td>168.75</td>
<td>4770</td>
</tr>
<tr>
<td>6</td>
<td>20.32</td>
<td>168.82</td>
<td>4938</td>
</tr>
<tr>
<td>8</td>
<td>20.58</td>
<td>168.19</td>
<td>4282</td>
</tr>
<tr>
<td>A</td>
<td>19.03</td>
<td>169.91</td>
<td>3000</td>
</tr>
<tr>
<td>B</td>
<td>19.20</td>
<td>169.82</td>
<td>2800</td>
</tr>
<tr>
<td>C</td>
<td>19.02</td>
<td>169.73</td>
<td>2600</td>
</tr>
</tbody>
</table>

Fig. 3. Summary of the periods of operation of the local stations. Different symbols indicate the component of the ground motion recorded. Tanna includes INH and BUL; INH ran first, then the station was moved to the quieter site of BUL.

TABLE 2. Velocity Models Used in the Study

<table>
<thead>
<tr>
<th>Depth, km</th>
<th>Velocity, km/s</th>
<th>Depth, km</th>
<th>Velocity, km/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>5.55</td>
<td>0-12</td>
<td>5.2</td>
</tr>
<tr>
<td>15-33</td>
<td>6.44</td>
<td>12-30</td>
<td>7.2</td>
</tr>
<tr>
<td>33-150</td>
<td>7.77</td>
<td>30-100</td>
<td>8.06</td>
</tr>
<tr>
<td>150-240</td>
<td>8.20</td>
<td>100-200</td>
<td>8.13</td>
</tr>
<tr>
<td>240-280</td>
<td>8.17</td>
<td>200-240</td>
<td>8.20</td>
</tr>
</tbody>
</table>
The locations were determined using the HYPO 71 computer program [Lee and Lahr, 1975]. Inputs to this program include a horizontally layered model for P wave velocities (V_p), a value for the ratio of P wave velocity to S wave velocity (V_p/V_s), and station corrections. Two velocity models were used (Table 2): one was a modification of the Jeffreys-Bullen (J-B) model, and the other was obtained from a compilation of the available information on the structure of the region [Dubois, 1969; Kaila and Krishna, 1978; Ibrahim et al., 1980]. The second model was an attempt to find a compromise between the different structures beneath the oceanic plate, the arc-trench gap, and the arc itself. Although a clear choice between these two velocity models could not be made with the available data, the second model was chosen because it gave slightly better agreement between hypocenters determined by the local network and those determined by teleseismic data. However, the two models did provide a useful basis to explore the effects of model variations on the locations.

Many studies have shown the importance of shear wave data on the quality of the hypocentral determinations [James et al., 1969; Buland, 1976]. To use S arrival times, we estimated V_p/V_s from the slope of the function $D_t = (V_p/...
A least squares solution for 426 observations (all the earth-
mediate-depth earthquakes or for land and ocean stations did
the 95% confidence level of 0.02. For comparison, the values of
epicentral distance to the nearest station was less than the
were based
sidual at the nearest station were reasonable. Grade
Attempts to differentiate
quakes and all the station pairs) yielded Vp/Vs=1.75 with a
had a sufficent aperture that was relatively constant with re-
spends in a layer with a thickness equal to the water depth
above the station and which has a velocity equal to the veloc-
times. To the observed time, we added the time that a ray
are used together. The structure beneath these stations is, in
general, quite Werent. However, lacking sufficient informa-
are used in the combined ISC and local determinations.

The station correction is an important factor in locating
events by networks in which land and ocean bottom stations
are used together. The structure beneath these stations is, in
general, quite different. However, lacking sufficient informa-
tion, we made a simple water depth correction for the OBS
times. To the observed time, we added the time that a ray
spends in a layer with a thickness equal to the water depth
above the station and which has a velocity equal to the veloc-
ity of the first layer of the velocity model.

The accuracy of a location is also a function of the quality
of the arrival time data, the network geometry, and the posi-
tion of the hypocenter relative to the network [Peter and
Crosson, 1972; Lilwall and Francis, 1978; Chatelain et al.,
1980]. The quality of the locations of the earthquakes were
carefully graded according to these parameters. Four grades
were assigned. Grade A determinations were the best and
were based on all of the following criteria: (1) The locations
of the earthquakes were determined with abundant P and S
data, (2) the recording network had a good configuration, i.e.,
it had a sufficient aperture that was relatively constant with re-
spect to azimuth, (3) the depth of the hypocenter was com-
parable to the spacing between stations in the network, (4) the
epicentral distance to the nearest station was less than the
depth of the earthquake, and (5) the mean residual and the re-
idual at the nearest station were reasonable. Grade B deter-
minations were also considered good, but not all the condi-
tions required for grade A were fulfilled. Grade C was
assigned to shallow earthquakes with reasonably well-located
epicenters but with no near observations to constrain the
depth accurately or was assigned to intermediate-depth earth-
quakes with constraint on the depth but with less constraint
on the epicenter because of the small aperture of the locating
network relative to the depth. Grade D was assigned to the
determinations that were less reliable, such as those with in-
sufficient data or with a bad configuration of the recording
network.

Tests were performed to study the dependence of the loca-
tions on the velocity model, the ratio of Vp/Vs and station
corrections [Coudert, 1980]. Hypocenter determinations were
compared when one of these values was changed. Figure 4

![Fig. 6. Comparison of the determinations of the four events located
by both the ISC and the local network. The symbols indicate
locations obtained with different sets of data (see Table 3): The squares
indicate locations obtained with the local data and the fast velocity
model. On the bottom right, the difference between local and ISC
hypocenter determinations of the three intermediate events are
plotted on an equal area projection; the radius is normalized to the
value of the difference (10, 16, and 5 km for the events at a depth of
144, 251, and 157 km, respectively). This plot gives a three-di-
imensional view of the difference and shows that the locations have a good
depth fit. The strike of the descending plate is also shown on the focal
sphere.]

<table>
<thead>
<tr>
<th>Date</th>
<th>Origin Time, UT</th>
<th>Latitude, °S</th>
<th>Longitude, °E</th>
<th>Depth, km</th>
<th>N</th>
<th>Source of Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 13</td>
<td>0959:41.4</td>
<td>19.27</td>
<td>169.18</td>
<td>144</td>
<td>53</td>
<td>ISC and local</td>
</tr>
<tr>
<td></td>
<td>0959:42.1</td>
<td>19.27</td>
<td>169.15</td>
<td>152</td>
<td>49</td>
<td>ISC</td>
</tr>
<tr>
<td></td>
<td>0959:41.8</td>
<td>19.33</td>
<td>169.20</td>
<td>150</td>
<td>12</td>
<td>local (velocity model 2)</td>
</tr>
<tr>
<td></td>
<td>0959:42.2</td>
<td>19.35</td>
<td>169.16</td>
<td>141</td>
<td>12</td>
<td>local (velocity model 1)</td>
</tr>
<tr>
<td>August 16</td>
<td>0615:17.9</td>
<td>19.29</td>
<td>167.73</td>
<td>20*</td>
<td>102†</td>
<td>ISC and local</td>
</tr>
<tr>
<td></td>
<td>0615:18.3</td>
<td>19.26</td>
<td>167.67</td>
<td>20</td>
<td>102</td>
<td>ISC</td>
</tr>
<tr>
<td></td>
<td>0615:18.5</td>
<td>19.28</td>
<td>167.67</td>
<td>31</td>
<td>17</td>
<td>local (velocity model 2)</td>
</tr>
<tr>
<td></td>
<td>0615:17.8</td>
<td>19.28</td>
<td>167.68</td>
<td>25</td>
<td>17</td>
<td>local (velocity model 1)</td>
</tr>
<tr>
<td>August 25</td>
<td>0122:45.8</td>
<td>19.03</td>
<td>169.36</td>
<td>251</td>
<td>59</td>
<td>ISC and local</td>
</tr>
<tr>
<td></td>
<td>0122:48.5</td>
<td>19.02</td>
<td>169.32</td>
<td>256</td>
<td>52</td>
<td>ISC</td>
</tr>
<tr>
<td></td>
<td>0122:48.6</td>
<td>19.16</td>
<td>169.32</td>
<td>250</td>
<td>8</td>
<td>local (velocity model 2)</td>
</tr>
<tr>
<td></td>
<td>0122:49.8</td>
<td>19.25</td>
<td>169.31</td>
<td>237</td>
<td>8</td>
<td>local (velocity model 1)</td>
</tr>
<tr>
<td>August 26</td>
<td>1406:17.3</td>
<td>20.49</td>
<td>169.82</td>
<td>157</td>
<td>47</td>
<td>ISC and local</td>
</tr>
<tr>
<td></td>
<td>1406:17.5</td>
<td>20.53</td>
<td>169.82</td>
<td>159</td>
<td>42</td>
<td>ISC</td>
</tr>
<tr>
<td></td>
<td>1406:17.7</td>
<td>20.56</td>
<td>169.79</td>
<td>156</td>
<td>12</td>
<td>local (velocity model 2)</td>
</tr>
<tr>
<td></td>
<td>1406:18.1</td>
<td>20.53</td>
<td>169.69</td>
<td>150</td>
<td>12</td>
<td>local (velocity model 1)</td>
</tr>
</tbody>
</table>

N is the number of stations used (see Figure 6).
†Depth is fixed.

Different Sets of Data

V_p/V_s, where D_p and D_s are the arrival time differences of P and S, respectively, from the same earthquake at two stations. A least squares solution for 426 observations (all the earthquakes and all the station pairs) yielded $V_p/V_s=1.75$ with a 95% confidence level of 0.02. For comparison, the values of the J-B velocity model are 1.66, 1.74, and 1.78 for the upper crust, the lower crust, and the uppermost mantle, respectively. Attempts to differentiate V_p/V_s for shallow- and intermediate-depth earthquakes or for land and ocean stations did not give statistically significant differences [Coudert, 1980].

The quality of the locations of the earthquakes was carefully graded according to these parameters. Four grades were assigned. Grade A determinations were the best and were based on all of the following criteria: (1) The locations of the earthquakes were determined with abundant P and S data, (2) the recording network had a good configuration, i.e., it had a sufficient aperture that was relatively constant with respect to azimuth, (3) the depth of the hypocenter was comparable to the spacing between stations in the network, (4) the epicentral distance to the nearest station was less than the depth of the earthquake, and (5) the mean residual and the residual at the nearest station were reasonable. Grade B determinations were also considered good, but not all the conditions required for grade A were fulfilled. Grade C was assigned to shallow earthquakes with reasonably well-located epicenters but with no near observations to constrain the depth accurately or was assigned to intermediate-depth earthquakes with constraint on the depth but with less constraint on the epicenter because of the small aperture of the locating network relative to the depth. Grade D was assigned to the determinations that were less reliable, such as those with insufficient data or with a bad configuration of the recording network.

Tests were performed to study the dependence of the locations on the velocity model, the ratio of V_p/V_s, and station corrections [Coudert, 1980]. Hypocenter determinations were compared when one of these values was changed. Figure 4
shows, for example, the variation of the determinations when two different velocity models were used. This test provided a way to check the quality of the determinations, and a poor quality, grade D, was assigned to the shallow epicenter determinations that varied too much (more than 10 km) when the two different velocity models were used. From such tests it was observed that when the determination was performed with enough data and the epicenters were in or near the network, the absolute positions of the hypocenters of shallow earthquakes and the relative positions of the intermediate-depth earthquakes were little dependent on a reasonable variation in the velocity model, V_p/V_s, or a station correction change.

A more important effect on the precision of the relative positions of the hypocenters was the variation in the effective configuration of the recording network during the experiment.

Fig. 8. P wave residuals as a function of hypocentral depth for several local stations. Only A and B quality locations obtained with the second velocity model of Table 2 and determined with at least nine arrival times are included. Tanna data include readings for BUL and INH.
Since the recording time of the OBS was short, and the later locations were made with mostly the land station data, several tests were made on events that occurred early in the experiment and were recorded by both land and many of the OBS stations. No systematic variations were observed in the locations determined successively with the OBS stations alone, the land stations alone, and then with the OBS and the land stations. The observed differences were mostly less than 10 km. The Maro (MAR) and Lifou (LIF) stations (see Figure 2) were installed on August 10 and were not included in the determinations of events recorded during the first few days of the experiment. Moreover, since they were distant from the active region, they did not record the small-magnitude events. Figure 5 shows that when the data of these stations are used, the determinations are systematically different (as discussed in the next section) from the determinations obtained when these data are not used. These differences are mostly less than 10 km except when few data are used.

From all the above studies the relative precision of the determinations was estimated to be about 10 km for most of the 'B' quality events. Some events had a better precision (A quality) but were not numerous enough to be considered alone. The 'C' quality locations included shallow earthquakes that had epicenters determined well to within 10 km but with an uncertainty of depth between zero and about 50 km. The 'C' quality intermediate earthquakes had depths known to within 10 km, but the epicenter was known only to within a few tens of kilometers.

All these considerations ignore the effects of laterally heterogeneous structure. In the next section, evidence is sought for such structure in terms of mislocations and travel time residuals derived from the computations with flat-layered models.

EFFECTS OF LATERAL HETEROGENEITIES ON EARTHQUAKE LOCATIONS

Comparison of Locations Based on Local and on Teleseismic Data

Because of the lateral heterogeneities associated with subducting plates a bias on the location of the earthquakes can be induced with worldwide data as well as with data from local networks [see, e.g., Mitrovicas and Isacks, 1971; Utsu, 1975; Engdahl et al., 1977; Hasegawa et al., 1978; Barazangi and Isacks, 1979]. Some of these authors note that, in general, the local determinations of hypocenters tend to show the Benioff zone steeper than it is and that this bias is reduced when a high-velocity zone associated with the subducting slab is taken into account.

During the New Hebrides experiment, several earthquakes recorded by the local network were large enough also to be located by the International Seismological Centre (ISC). These locations determined from teleseismic data can be compared with those from local data (see Table 3). In addition to the local and ISC determinations, locations were obtained using P arrival times reported by the ISC plus all the local P readings. For these relocations, the J-B travel time tables were used.

For a shallow earthquake ($Ms = 4.9$) located beneath the
trench axis, epicenters determined by the ISC, the local P and S readings, and the combined teleseismic and local P readings are all within 7 km of one another (see Figure 6). This is quite remarkable in view of the large lateral changes in structure that must exist in this active island arc. It is possible that the use of data from some of the permanent local stations of the French ORSTOM network in the New Hebrides–New Caledonia region for the ISC locations partly accounts for the smallness of the observed changes.

For the three intermediate-depth events (Table 3) the locations determined with the local P and S data, and the faster of the two velocity models (see Table 2) is in best agreement with the ISC locations. With the fast model the hypocenters differ only by distances of 10, 5, and 16 km, for the events at depths of 152, 159, and 256 km (Figure 6), respectively. The locations determined with both local and teleseismic P data differ by less than 5 km from the ISC locations and have slightly shallower depths. However, as the dip of the Benioff zone is steep in the New Hebrides, these small differences can produce variations in the dip of this zone. When located with local data, two of the three intermediate-depth events in Figure 6 show a steeper Benioff zone than that obtained from teleseismic data. This is also suggested in Figure 18, in which the seismicity obtained from local data is compared with the Benioff zone obtained from a 14-year sample of good ISC locations. At depths larger than 200 km the local data tend to show the Benioff zone to be slightly steeper than do the worldwide data. This result is similar to, but not as large as, that reported in other areas.

Lateral Heterogeneities in the Crust and Upper Mantle.

Two different kinds of lateral heterogeneities are expected in the region covered by the network. First, there are variations in the crustal structure along a cross section perpendicular to the trench [e.g., Collot and Missegue, 1977; Ibrahim et al., 1980]. Second, high-velocity anomalies of 5 to 11% are usually associated with the descending plates in the upper mantle.

No clear effect of the first kind of heterogeneity could be obtained in the present study. Figure 7 shows the residuals (observed minus computed travel times) for P arrivals at the local stations for the four events whose locations were determined with both local and worldwide data (see Table 3). These residuals are a combination of the effects of velocity anomalies and the mislocation of hypocenters. For the shallow event the maximum difference of 1 s between the observed residuals may be due to the first kind of heterogeneity (i.e., crustal). However, no simple pattern appears. For example, there is no clear difference between the residuals at stations located to the east and to the west of the trench.

Several indications of the second kind of heterogeneity were obtained. On Figure 7, the dashed line shows the anomaly produced by a model in which a 6% high-velocity zone is located at depths larger than 70 km and is associated with a 70-km-thick slab that has a 70° dip. The data for the three intermediate-depth events show some slight agreement with the predicted trends, but the noise level is rather high. Study of the local data alone gives further indication of a possible ef-
Fig. 12. Map showing focal mechanisms of shallow activity in southern New Hebrides. This figure includes all the published focal mechanisms and new solutions for the period 1963–1976. The events are numbered as in Table 4. The bathymetric contours are in kilometers. The size of the circles indicates the magnitude of the events. Slip vectors for solutions showing underthrusting (solid circles) are indicated by arrows. The poles of the nodal planes and the null axes (crosses) of these five events are reported on a lower hemisphere stereographic projection on the left side of the figure. The intraplate focal mechanism solutions are shown on stereographic projections of the lower hemisphere; the solid quadrants are compressional first arrivals. The epicenters (open circles), the strike of the high angle nodal planes, and the interpretation of the main stress are shown in map view.

Further indication of the high-velocity zone was found in the pattern of the residuals for the P arrival times of events located only by the local network. Although the pattern of residuals will be affected and perhaps confused by the variations in stations used for locations and by the least squares minimization of residuals by the location procedure, we can still find interesting patterns for several of the stations. Figure 8 shows the P residuals as a function of the depth of the earthquakes. For the land stations located near the volcanic arc (ANA, BUL, and INH) the residuals have a nearly zero mean and a standard deviation less than 0.3 s. Residuals for MAR are positive throughout the range of depths by about 0.4 s. This can be interpreted as a station effect. The standard deviations at LIF and OBS 6 are larger than the preceding ones. The location of OBS 6 and the clear variation of residual with depth suggest the effect of a high-velocity descending slab. The least squares fit of the decrease in the residual pattern with respect to depth for events between depths of 80 and 300 km gives a variation of 0.006 s/km with a 95% confidence interval of 0.001 s/km. For a medium with a velocity of 8.0 km/s, this corresponds to a high-velocity anomaly of 5% (± 1%) (Figure 9). Since the OBS 6 data were used in the locations, the residuals tend to be minimized; therefore this 5% value is a lower limit for the real velocity anomaly.

The other remarkable feature of the OBS 6 residuals is that
they are positive for depths less than 200 km. The effect of the high-velocity slab, seen in the decrease in residuals with depth, is offset by a low-velocity anomaly located at shallow depths. The source of the positive anomaly, however, is difficult to resolve. All the shallow-depth events that show clear positive residuals are located near the inferred zone of contact of the two plates (circles in Figure 9). At 50-km depth, of the three earthquakes without significant positive residuals at OBS 6, two are inside the subducting plate (crosses in Figure 9). Moreover, the residuals at OBS 6 from the large shallow earthquake (mainshock of August 16, see Table 3) and is not relatively positive. These data thus do not support a simple station correction to account for the observed positive residuals at OBS 6 for events on the arc side of the trench. All the events near the thrust zone are east of the OBS 6 station; therefore it is possible that the positive residuals for these events are due to a mislocation of the station. However, the magnitude of the station mislocation implied is improbably large. The simplest interpretation involves a low-velocity zone along the ray paths from events located in the thrust zone and at intermediate depth such that the entire curve of residuals versus depth has a positive offset. This anomaly may be related to a property of the inclined zone of thrust faulting [Louat et al., 1979] and/or to a low-velocity anomaly associated with the subducted oceanic crust. The observation of relatively low residuals at stations near the trench was also suggested in the data of Mitronovas and Isacks [1971] for the Tonga arc and was clearly observed in Japan [Suyehiro and Sacks, 1979].

In summary, although the data show evidence for a high-

velocity descending slab, the effects are subtle and do not induce a large bias in the locations. We think that the particular features of the New Hebrides arc can explain this paradox. The steep dip of the Benioff zone allows a sampling of the width of the arc without deploying a large network. Also, for a given depth, the length of the rays from intermediate-depth earthquakes is shorter in a steeply dipping slab than in a more gently dipping slab. The opportunity to have stations on both sides of the arc considerably reduces the amplitude of bias. The occurrence of a positive anomaly at shallow depth in the ray paths to the station near the trench also tends to balance the slab effect.

SPATIAL DISTRIBUTION AND MECHANISMS OF SHALLOW EARTHQUAKES

The shallow events located by the network are shown on Figure 10. The distribution of the events is quite uneven. Two clusters located north of the network correspond to after-shocks of two earthquakes with magnitudes (Ms) near 5.5 and 4.9, one located in the arc-trench zone and the other located seaward of the trench axis within the suboceanic plate. A gap in shallow activity is located to the south of the first cluster in the arc-trench region. Otherwise, epicenters are scattered beneath the arc-trench zone, with some concentration south of Anatom, and a few events are located beneath and seaward of the trench. In the back arc area, seismicity is located near and beneath the Coriolis trough.

Figure 11 shows the epicenters of moderate size events reported in the preliminary determinations of epicenters (PDE) for the period 1961–1977. The selection sought events with magnitudes (mb) larger than 5 (J.-M. Marthelot et al., manuscript in preparation, 1981). Figure 12 presents the published focal mechanisms [Johnson and Molnar, 1972; Pascal et al., 1978] and new solutions (Tables 4 and 5) of all shallow events for the period 1963–1976 large enough (Ms > 5.7 – 6) to provide sufficient long-period data for a focal mechanism solu-

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Latitude, °S</th>
<th>Longitude, °E</th>
<th>Depth, km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow Events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>March 9, 1970</td>
<td>19.07</td>
<td>168.54</td>
<td>19</td>
</tr>
<tr>
<td>28</td>
<td>Nov. 2, 1972</td>
<td>20.03</td>
<td>168.91</td>
<td>27</td>
</tr>
<tr>
<td>29</td>
<td>Dec. 7, 1968</td>
<td>20.62</td>
<td>169.32</td>
<td>68</td>
</tr>
<tr>
<td>73</td>
<td>Feb. 24, 1973</td>
<td>19.16</td>
<td>168.68</td>
<td>36</td>
</tr>
<tr>
<td>74</td>
<td>Sept. 13, 1972</td>
<td>20.33</td>
<td>168.79</td>
<td>21</td>
</tr>
<tr>
<td>75</td>
<td>Aug. 2, 1976</td>
<td>20.59</td>
<td>169.31</td>
<td>43</td>
</tr>
<tr>
<td>76</td>
<td>Dec. 9, 1973</td>
<td>19.90</td>
<td>169.67</td>
<td>26</td>
</tr>
<tr>
<td>77</td>
<td>March 3, 1974</td>
<td>20.01</td>
<td>169.77</td>
<td>14</td>
</tr>
<tr>
<td>78</td>
<td>July 28, 1976</td>
<td>20.20</td>
<td>170.07</td>
<td>5</td>
</tr>
<tr>
<td>Intermediate Events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>April 20, 1970</td>
<td>18.79</td>
<td>169.29</td>
<td>248</td>
</tr>
<tr>
<td>52</td>
<td>May 1, 1963</td>
<td>19.09</td>
<td>169.04</td>
<td>134</td>
</tr>
<tr>
<td>53</td>
<td>March 30, 1963</td>
<td>19.11</td>
<td>169.01</td>
<td>166</td>
</tr>
<tr>
<td>54</td>
<td>Dec. 21, 1966</td>
<td>19.96</td>
<td>169.74</td>
<td>228</td>
</tr>
<tr>
<td>55</td>
<td>Jan. 20, 1964</td>
<td>20.70</td>
<td>169.92</td>
<td>139</td>
</tr>
<tr>
<td>79</td>
<td>July 23, 1974</td>
<td>19.55</td>
<td>169.37</td>
<td>140</td>
</tr>
<tr>
<td>80</td>
<td>Jan. 28, 1972</td>
<td>19.38</td>
<td>169.13</td>
<td>117</td>
</tr>
<tr>
<td>81</td>
<td>Oct. 13, 1969</td>
<td>18.78</td>
<td>169.31</td>
<td>251</td>
</tr>
<tr>
<td>82</td>
<td>March 17, 1973</td>
<td>19.41</td>
<td>169.39</td>
<td>187</td>
</tr>
<tr>
<td>83</td>
<td>March 15, 1975</td>
<td>21.75</td>
<td>170.53</td>
<td>72</td>
</tr>
</tbody>
</table>

*The depths obtained by ISC from pP observations have been reported for intermediate depth events when available.
†Depth obtained from synthetic waveform of long-period P waves (after D. Chinn and B. L. Isacks, manuscript in preparation, 1981).
The combination of these data sets yields new information on the shallow activity in this part of the New Hebrides island arc.

The Thrust Zone Between the Descending and Overriding Plates

Most of the large-magnitude events that occurred beneath the trench-arc region have thrust-type focal mechanisms (Figure 12, events 73, 28, 74, 75, and 29) interpreted as occurring at the boundary between the descending and overriding plates. The focal mechanism solutions indicate a direction of convergence of the oceanic plate with respect to the island arc of 070° (±5°), which is the same direction as that found in the northern part of the arc [Pascal et al., 1978]. The surprising result from data produced by the temporary network is the very low activity located along or near the assumed interface boundary in the central and northern parts of the network. If we exclude the aftershock activity associated with the July 10 event (Ms = 5.5) located in the arc-trench gap to the north of the network, little seismic activity seems to be located along the thrust zone north of Anatom (Figure 13, section north). South of Anatom, the activity increases (Figures 10 and 13) and may be related to the thrust zone, although depths are not well-constrained.

This distribution of the activity near the thrust zone seems to be correlated with the spatial distribution of the activity of larger magnitude events. The cluster of activity seen in the PDE locations (Figure 11) beneath the 4-km isobath at about 20°S includes aftershocks of the large (Ms = 7.0) event of 1972 (event 28, Figure 12). This region was very quiet during the operation of the temporary network in 1977. In 1978 an earthquake with a magnitude (Ms) of 6 occurred in the quiet area (solid circle in Figure 11). The gap of shallow activity located in the center of the network may be a precursory phenomenon for the 1978 earthquake. However, we cannot rule out the possibility that this gap is an effect of the short recording time. The relatively high activity located in the 1977 experiment southwest of Anatom under the 2-km isobath (Figure 10) is near the August 2, 1976, earthquake (Ms = 6.9, event 75; Figure 12) and may represent long-term aftershocks of that event. These observations, combined with those made during other short-term experiments in the central New Hebrides [Isacks et al., 1981], suggest that the small-magnitude background activity does not define the plate boundary very well except in the case of aftershocks of large earthquakes. A similar result is also reported for the Aleutian convergent plate boundary by Davies and House [1979].

The locations of the large events for which focal mechanisms and reliable depths were determined are shown in Figure 13. The dips of the nodal planes inferred to be the fault planes for the three thrust events (event 73 for section 'north,' events 28 and 74 for section 'south') are also indicated. The locations and dips of the inferred slip planes of the large events, as well as the distribution of small events, provide an estimate of the location and geometry of the plate boundary, as indicated in Figure 13.

Figure 14 shows the number of events, along with the cumulative number of events, recorded at Tanna, Anatom, and OBS 6 stations plotted as a function of (S-P) times. At Tanna a change in the rate of the cumulative number of events occurs at 6-s (S-P) time. This corresponds to the shortest distance between the inferred boundary of the interplate thrust
Fig. 13. Cross sections showing the shallow activity near the thrust zone. The limits of the sections are shown on Figure 16. This is an enlargement of part of Figure 17 (see Figure 17 caption for symbols explanation). The large solid circles represent the position of the large events whose depths have been estimated from synthetic seismograms. The line that crosses these symbols indicates the direction of the fault plane of the thrust events obtained from focal mechanism study (see Figure 12). These events are numbered following Table 4. For clarity, we have not reported on the section the two swarms of shallow activity located near 19°S on Figure 10. The letters indicate the local events that have focal mechanism solutions (see Figure 15). The heavy dashed line is an interpretation of the location of the plate boundary. It is the same line for both north and south sections.

zone and Tanna and suggests that this increase in the rate is probably related to the activity along the thrust zone. However, at Anatom the observed change in the rate of the cumulative number of events occurs at 5-s (S-P) time, while the shortest distance between Anatom and the interplate thrust boundary corresponds to about 6.5-s (S-P) time. This could be interpreted as an indication of a small change (about 10 km) in the geometry of the thrust zone near Anatom. This interpretation is not favored, mainly because of all the events with (S-P) times between 4 and 7 at Anatom that are located by the local network, the majority occur in the upper plate near the Coriolis trough. Hence the observed increase in the rate of cumulative number of events at 5-s (S-P) time probably corresponds to a back arc activity in the upper plate.

The OBS 6 histogram suggests a relatively low level of activity along the interplate boundary immediately below the station. This is in agreement with the results shown in Figure 13, which indicates an increase in seismic activity located farther east and toward the island arc relative to OBS 6. The relatively low level of activity near the shallowest part of the interplate boundary near the trench is also found in other parts of the New Hebrides [Isacks et al., 1981] and in other areas [e.g., Davies and House, 1979].

Shallow Seismic Activity Within the Descending Plate

Many shallow events determined by the local network (Figure 13) appear to be clearly located beneath the plate boundary and within the subducting plate. This observation is in
agreement with the interpretation of limited first-motion data produced by the local network. Near the plate boundary, three events (a, b, and c, Figure 13) with enough first-motion data to allow a discrimination between thrust or normal faulting focal mechanisms were studied. None can be interpreted as thrust mechanisms (see Figure 15). These earthquakes have depths between 40 and 55 km. The nature of the mechanisms indicates that the microseismicity inside the subducting plate
Fig. 16. Map showing intermediate-depth activity located by the local network. The shapes of the symbols indicate the depth of the hypocenters; large triangles and circles represent A and B quality locations; small triangles and circles represent C and D quality locations. Squares represent the stations of the local network. The 2-km contour of the Coriolis Trough feature and the estimate of the trench axis (dashed line) are indicated. Limits of the cross sections of Figures 13, 17, and 19 are also shown.

One of the interesting features of the northern section (Figure 13) is the location within the subducting plate of two events (d and e) with a 50-km hypocentral depth. These are good locations and give a lower limit to the thickness of the seismically active part of the subducted plate just beneath the plate boundary. The distance between these events and the estimated zone of contact between the plates is about 40 km. This observation agrees with the estimates of the seismically active thickness of subducted plates given by Isacks and Barazangi [1977], Pascal et al. [1978], Chen and Forsyth [1978], Hasegawa et al. [1978], and others. These observations have been explained in terms of bending or unbending of the descending plate [e.g., Stauder, 1968; Isacks and Barazangi, 1977; Engdahl and Scholz, 1977]. The two earthquakes at 50-km depth can be interpreted as being produced by stress in the lower parts of the plate as it bends. It may be related either to downdip compression due to the downward bending of the plate or to horizontal extension due to the lateral bending of the plate, as indicated by the curvature of the trench in the southern New Hebrides arc. Though the first-motion data recorded by the local stations do not yield a unique focal mechanism, they are consistent with the bending hypothesis (d and e, Figure 15).

Shallow activity within the suboceanic plate but located to the west of the trench axis was also recorded during the experiment and includes primarily the August 16 event (Ms = 4.9) and its aftershocks (see Figure 10). These events are too far from the network to have well-constrained depths. However, the origin time of the mainshock was estimated from the S and P arrival times recorded at the local stations and plotted on a Wadati diagram. Different locations of the mainshock were then obtained with all available P wave (teleseismic and...

Fig. 17. The activity located by the local network projected on two cross sections that have an azimuth of N60°E. The limits of the sections are shown on Figure 16. The size of the symbols decreases with the quality of the location. Quaternary volcanoes are indicated on the zero depth line by triangles. For clarity, the two swarms of shallow events located near 19°S on Figure 10 have not been shown.
for the two clusters of activity, this part of the plate boundary has also been very quiet in terms of moderate size events during about the past 20 years. These results could be taken to indicate that the region is in a period of quiescence preceding a great earthquake. The close spatial association of interplate and intraplate events in the cluster suggests a stress concentration along the plate boundary and may correspond to a zone of rupture nucleation (event 73) and not a barrier to rupture propagation. Similar features are found in the central New Hebrides [Isacks et al., 1981].

Shallow Seismic Activity in the Upper Plate

The four focal mechanisms of large events that occurred in the upper plate (events 26, 76, 77, and 78; Figure 12) all have a component of normal faulting, although three have one of the nodal planes oriented nearly vertically. The nearly vertical nodal planes have a NW to NWNW strike in each case. If these planes are the fault planes, mainly vertical block movements are implied. This interpretation agrees with geological evidence for block movements on Erromango Island [Colley and Ash, 1971] and elsewhere in the New Hebrides [see, e.g., Taylor et al., 1980]. Colley and Ash reported two major trends of nearly perpendicular faulting. One is well-defined around N50°W; this direction is similar to the strike of the vertical planes of the focal mechanisms. All the observed faults are nearly vertical normal faults and show uplift of the island as a series of blocks. In the same way, NW-SE trending fault scarps have imposed a diagonal component on the general uplift of Aniwa [Carney, 1977] and Tanna [Carney and MacFarlane, 1977]. Thus focal mechanisms as well as geologic observations indicate that the upper plate in the region of Erromango and Tanna is cut into a series of blocks that are differentially uplifted along faults with a mainly NW-SE strike.

At depths less than 35 km, several events recorded by the 1977 network and located between Tanna and Aniwa seem associated with the upper plate (Figures 10 and 13). Among the numerous events associated with the volcanic activity at Tanna, several events were located with depths around 10 km (Figures 13 and 14). Small-magnitude events very close to the Aniwa station were recorded (Figure 14). Note that the area near Aniwa where the three larger, upper plate events occurred (events 76–78 in 1973, 1974, and 1976; Figure 12) was relatively quiet during the 1977 experiment. In contrast to the activity of moderately large events shown in Figure 12 and suggested in the PDE data shown in Figure 11, the small 1977 events located (Figure 10) show concentrations of upper plate activity beneath near the Coriolis trough.

The Coriolis trough is part of a series of riftlike features located east of the volcanic arc in the southern and northern parts of the New Hebrides arc [Dubois et al., 1978]. The narrow trough, about 2 km deep, trends approximately parallel to the arc and is located about 50 km east of the volcanic arc. During the 1977 experiment, three OBS stations (A, B, and C, Figure 2) operated for 24 hours on August 28 in the trough near Aniwa in a tripartite array with a spacing of about 20 km. The nearby station on Aniwa (IWA) operated with both continuous and event recording systems during this period. The seven well-located events recorded by this array are shown in Figure 10. Accurate depths of the five events located beneath the trough are 11, 12, 16, 22, and 22 km. These depths seem significantly greater than the depths observed beneath oceanic spreading centers. For example, Lilwall et al. [1978] report depths of mainly 7 km and always less than 11 km beneath the Mid-Atlantic Ridge. Thus the depths of the earth-
Fig. 19. The activity projected on a cross section parallel to the trench (N25°W). The circles indicate the events located by the local network; the size decreases with the quality of the locations. The crosses represent the events located by the ISC with more than 35 stations during the 1964-1977 period. The arrows show the principal axes of the stress in the subducting slab obtained from focal mechanisms of large-magnitude events located by the worldwide network. The parameters of these focal mechanisms are given in Table 4 under the reference numbers indicated on this figure.

The activity as well as the morphology of the trough suggest that the Coriolis trough is more like a continental rift zone than an actively spreading oceanic ridge. Moreover, no evidence of an anomalously thin crust localized beneath the rift was found from refraction studies [Ibrahim et al., 1980] or gravity studies [Collet et al., 1980; Oustant, 1980; J. Y. Collot and A. Malthoff, manuscript in preparation, 1981]. The estimate of the Moho discontinuity deduced from these studies is shown in Figure 23. Though high magnetic anomalies are associated with the trough [Dubois et al., 1978], study of wave propagation to the land stations of the 1977 network shows that there is no large zone of shear wave attenuation at shallow depths beneath the trough [Isacks et al., 1978].

The question remains as to what extent the Coriolis trough is a very young feature associated with the present subducting regime [Dubois et al., 1978] or a feature originating in the late Miocene reversal of arc polarity and associated with the back arc spreading that led to the development of the Fiji Plateau. In the second case, the riftlike feature of the back arc area may be comparable to a continental margin. The main focus of the seafloor spreading is now probably located several hundred kilometers to the east [e.g., Falvey, 1975]. The shallow seismicity associated with the back arc rifts may be evidence of reactivation of the rift under the current stress regime of the subducting zone.

GEOMETRY OF BENIOFF ZONE AND MECHANISMS OF INTERMEDIATE-DEPTH EARTHQUAKES

The intermediate-depth events located by the local network are not distributed regularly in space (Figure 16). Near Erromango most of the events are at depths greater than 200 km, whereas near Tanna the activity is spread out between depths of 70 to 300 km. No intermediate-depth activity was recorded between Tanna and Anatom. South of Anatom, no events at depths greater than 175 km were located. This uneven distribution makes determinations of the geometry of the Benioff zone difficult.

Pascal et al. [1978] showed that the overall distribution of intermediate-depth events along much of the New Hebrides arc is well represented by an inclined slab with a strike of N20°W and a dip of 70°. Pascal et al.'s section ended near Tanna. South of Erromango, the N20°W direction does not fit the strike of the Benioff zone defined in map view by the events at similar depths (Figure 16). The trench in this part of the New Hebrides is slightly arcuate (Figure 1) and can be approximated from 19°S to 21°S by a line striking N30°W. This trend was chosen as the direction of the strike of the inclined zone. In Figure 17 the hypocenters are projected onto two vertical sections directed perpendicular to the strike. The two sections do not present any significant difference in the shape of
the Benioff zone. All the well-located events (A and B quality) projected onto the same section define a 20-km-thick Benioff zone with a 70° dip (Figure 18). These results are in good agreement with the general shape of the Benioff zone in the New Hebrides [Isacks and Barazangi, 1977; Pascal et al., 1978].

Figure 18 also shows the intermediate-depth events located by the ISC with at least 35 P readings for the period 1964-1977. The agreement between the two sets of locations is very good for depths between 70 and 200 km. The slight difference suggested at larger depths is probably due to mislocation by the local network, as discussed in a previous section. The ISC events shown in Figure 18 are located in the region from south of Anatoom to south of Erromango. If events located beneath and somewhat north of Erromango were included, the Benioff zone would be wider. This indicates a misprojection of the activity and is in accordance with the result that near Erromango the strike of the Benioff zone is closer to N20°W than to N30°W. It is beyond the resolution of the data to determine whether this change of trend occurs as a discontinuity in the shape of the slab or as a progressive lateral bending of the Benioff zone as suggested by the shape of the trench axis.

A progressive bending of the Benioff zone is favored by interpretation of the focal mechanism solutions of intermediate-depth events. The stress axes (P and T axes) determined by the focal mechanism solutions of events large enough to be well recorded by the long-period seismographs of the WWSSN (see Tables 4 and 5, and Figure 22) are shown in Figure 20 on a front view (i.e., longitudinal section) of the Benioff zone. All the focal mechanisms have at least one of the stress axes in or near the plane of the Benioff zone (Figure 20), and though in Figure 19 the section is vertical, it is the stress axis within the plane dipping 70° that is shown. The stresses in the subducting plate show a complex variation with depth and location. North of Tanna, between 100 and 175 km depth (events 52, 53, 79, and 80) the T axes have both a down-dip and a lateral component (inclined downward toward the south) (circles in Figure 20). These mechanisms can be interpreted as the superposition of a downdip extensional stress and a lateral extensional stress. At depths greater than 175 km, the three events north of Tanna (events 51, 81, and 82) have focal mechanisms resulting from predominantly downdip extensional stress (squares in Figure 20). This is the general pattern of the intermediate-depth activity in the northern and central New Hebrides [Isacks and Molnar, 1971].

Between Anatoom and Tanna, one earthquake (event 54) shows a pattern of compression in the plane of the slab with a large lateral component. This earthquake is located in a remarkably quiet part of the Benioff zone. Very little activity has been recorded between Anatoom and Tanna since 1961 (see Figures 19 and 21). Moreover, it is the only earthquake deeper than 175 km recorded south of 19.5°S. It is conceivable (but speculative) to interpret this mechanism as a lateral compression effect on the opposite side of the descending plate from the other events (note, for example, in Figure 20, the nearly exact opposite pattern of stress of focal mechanisms for events 54 and 56).

The focal mechanism solutions of two of the events south of Anatoom (event 55, Figure 19; event 56, Table 4) have their T axes oriented nearly horizontally (triangles in Figure 20); however, event 55 also has a downdip P axis. Located farther south and at shallower depth (72 km), event 83 (Table 4 and Figures 20 and 22) also shows a mechanism of downdip compression with a lateral component.

Although the pattern of stresses shown in Figures 19 and 20 is complex, all except one of the events at depths greater than 100 km have a T axis within the dipping plate. This suggest a predominance of extensional stress with downdip as well as horizontal components. Horizontal components of stress are related to a lateral bending of the Benioff zone [e.g., Isacks and Molnar, 1971; Cardwell and Isacks, 1978]. If plate bending

![Fig. 20. Summary of the known focal mechanisms of large-magnitude intermediate-depth events located in the southern New Hebrides. The P axes (solid symbols) and T axes (open symbols) are plotted on equal area projection of the lower hemisphere of a common focal sphere. The dashed line indicates the trace of the Benioff zone. The focal mechanisms are numbered as in Table 4 and Figure 19. The different symbols refer to different sets of earthquakes, as discussed in the text.](image-url)

![Fig. 21. Position of the intermediate-depth events of Mb ≥ 5 between 1961 and 1977. The 2-km contour of the Coriolis Trough feature and the estimate of the trench axis (dashed line) are indicated.](image-url)
effects are important, then mechanisms such as that for event 54, which has reversed polarities, might be expected on the opposite side of the bending plate. Though the intermediate-depth activity located during a 4-week period is a short sample of the seismicity of the region, the pattern of the spatial distribution of the located earthquakes is remarkably similar to that obtained by the ISC or PDE for a 17-year period (see Figures 10, 11, 16, and 21). This similarity implies that over a 17-year time scale the seismicity occurs persistently in specific places in the arc and includes a large range of magnitudes. As Santo [1970] and others have described, persistent nests of activity characterize the intermediate-depth seismicity in numerous areas. Either these features slowly change over time scales longer than 17 years, or these represent features of the structure or geometry of the subducting plate. Pascal et al. [1978] showed that a prominent nest in the central New Hebrides is probably associated with the subducted portion of the d'Entrecasteaux fracture zone [see also Chung and Kanamori, 1978]. The alignment of the shallow nests of activity west of Erromango and the intermediate-depth nest beneath Erromango suggest structural control of these features as well, although there is no direct evidence for this in the bathymetry of the seaward part of the oceanic plate.

CONCLUSIONS

The following are the main conclusions of this study:

1. We observed strikingly small differences (less than about 10 km) in the locations of shallow- and intermediate-depth earthquakes located by the temporary local network.
and by the ISC using worldwide stations. These results are in marked contrast to those obtained from many other arcs and probably are partly caused by the very wide aperture of the local network and by the unique geometry of the subduction system, which includes a very narrow arc and a steeply dipping Benioff zone. We did, however, find evidence of a high-velocity zone (at least 5% higher than the surrounding mantle) associated with the subducting plate.

2. The pattern of the spatial distribution of shallow- and intermediate-depth earthquakes as determined by the short-duration temporary network is remarkably similar to that obtained (excluding aftershocks) by the PDE or by the ISC for about a 20-year period.

3. The small events located in this study poorly define the interplate thrust zone that exists between the descending and overriding plates. The thrust zone is mainly defined by the spatial distribution and mechanisms of moderate to large size events and their aftershocks. A striking observation is the narrow width (about 60 km) of the New Hebrides plate boundary as defined by the interplate thrust zone (Figure 23).

4. Considerable shallow seismic activity occurs within the suboceanic descending plate beneath the trench and beneath the interplate thrust zone (Figure 23). The spatial distribution of this activity gives a lower limit of about 40 km to the thickness of the seismically active part of the descending plate just beneath the interplate thrust zone. The focal mechanisms of some of these events can be interpreted as a consequence of bending effects of the descending plate.

5. Most focal mechanisms of moderate to large size earthquakes that occurred within the upper plate have a component of normal faulting with one of the nodal planes oriented nearly vertically. These mechanisms and geological observations on the islands suggest that the upper plate in the region of Erromango and Tanna is divided into a series of blocks that are differentially uplifted along mainly NW-SE striking faults.

6. The small events that are well-located in the upper plate during the 1977 experiment show concentrations of activity beneath the Coriolis trough (Figure 23). This trough is part of a series of riftlike features located to the east of the volcanic arc. The depths of these events (as deep as 22 km) as well as the morphology of the trough suggest that the Coriolis trough is more like a continental rift than an oceanic-type rift zone.
The focal mechanisms of moderate to large size, intermediate-depth events are best interpreted as due to effects of downdip extension and lateral bending (or unbending) in the descending plate near the southern end of the New Hebrides arc.

Acknowledgments. We thank J.-M. Mattiello for useful discussions; D. Cinni for providing us with some of his unpublished results; P. Bulacq, E. Farkas, and A. de Ramos for their help on different aspects of the paper; J. Healey for editorial assistance; and the crews and the captains of the two ships, the N.O. Vauban (CNEXO) and the Vauhan (ORSTOM), for their cooperation during the field experiment in 1977. This work was supported by National Science Foundation grants EAR 75-1481501 and EAL 79-11876, by the Office de la Recherche Scientifique et Technique Outre Mer, and by the Centre National pour l'Exploitation des Oceans. Department of Geological Sciences of Cornell University contribution 683.

REFERENCES

Ousslant, J.-L., Modeleisation a partir des donnees marines de sismique refraction et de gravimetrie: Application a quelques exemples dans

5924 COUDERT ET AL.: SEISMICITY OF THE SOUTHERN NEW HEBRIDES ARC
le Sud Ouest Pacifique, these de doctorat de 3eme cycle, Univ. Paris 6, Paris, 1980.

(Received October 31, 1980; accepted January 21, 1981.)