Oceanic plateau and island arcs of southwestern Ecuador: their place in the geodynamic evolution of northwestern South America

Cédric Reynaud a, Étienne Jaillard a,b, Henriette Lapierre a,e, Marc Mamberti a,c, Georges H. Mascle a

a UPRES, A-5025, Université Joseph Fourier; Institut Dolomieu, 15 rue Maurice-Gignoux, 38031 Grenoble cedex, France
bIRD (formerly ORSTOM), CS1, 209–213 rue La Fayette, 75480 Paris cedex 10, France
cInstitut de Minéralogie et Pétrographie, Université de Lausanne, BFSH2 (3171), 1015 Lausanne, Switzerland

Received 12 August 1997; accepted 11 March 1999
TECTONOPHYSICS

Editors-in-Chief

J.-P. BURG
ETH-Zentrum, Geologisches Institut, Sonneggstraße 5, CH-8092, Zürich, Switzerland. Phone: +41.1.632 6027; FAX: +41.1.632 1080; e-mail: jpb@erdw.ethz.ch

T. ENGELDER
Pennsylvania State University, College of Earth & Mineral Sciences, 336 Deike Building, University Park, PA 16802, USA. Phone: +1.814.865.3620/465.7208; FAX: +1.814.865.7823; e-mail: engelder@geosc.psu.edu

K.P. FURLONG
Pennsylvania State University, Department of Geosciences, 493 Deike Building, University Park, PA 16802, USA. Phone: +1.814.865.0567; FAX: +1.814.865.3191; e-mail: kafivin@geodyn.psu.edu

F. WENZEL
Universität Freiburg Karlsruhe, Geophysikalisches Institut, Hertzstraße 16, Bau 42, D-76187 Karlsruhe, Germany. Phone: +49.721.608 4431; FAX: +49.721.711173; e-mail: fwenzle@gpiwp1.physik.uni-karlsruhe.de

Honorary Editor:
S. Uyeda

Editorial Board

Z. Ben-Avraham, Tel Aviv
B.C. Burchfiel, Cambridge, MA
K.C. Burke, Houston, TX
E.B. Burov, Orléans
V. Čermák, Prague
C. Chiarabba, Rome
S. Cloetingh, Amsterdam
P.R. Cobbold, Rennes
W.D. Cunningham, Leicester
J.H. Davies, Liverpool
G.H. Eisbacher, Karlsruhe
E.R. Engdahl, Denver, CO
H. Fossen, Bergen
K. Fujita, East Lansing, MI
E. Fukuyama, Tsukuba
R. Geller, Tokyo
A.G. Green, Zürich
T. Giger, Zurich
R.H. Groshong, Jr., Tuscaloosa, AL
B. Hacker, Santa Barbara, CA
M. Handy, Giessen
A.M. Hirt, Zürich
G.A. Houseman, Clayton, Vic.
E.S. Husebye, Bergen
K. Ito, Kobe-shi
Shaocheng Ji, St. Hubert
H. Kanamori, Pasadena, CA
S. Karato, Minneapolis, MN
E. Kesling, Zürich
P.H. Lalou, Paris
R.J. Mandariga, Paris
D. Mainprice, Montpellier
J.-C. Mareschal, Montréal, Que.
S. Marshak, Urbana, IL
Y. Mart, Haifa
A. Nicolas, Montpellier
G. Cortal, Los Angeles, CA
D. Pantosti, Rome
H.N. Pollack, Ann Arbor, MI
L. Pujades, Barcelona
G. Ranalli, Ottawa, Ont.
C. Rangin, Paris
L. Ratschbacher, Würzburg
R.M. Russo, Evanston, IL
E.H. Rutter, Manchester
D.J. Sanderson, Southampton
S.M. Schmid, Basel

K. Schulmann, Prague
N. Sleep, Stanford, CA
C.A. Stein, Chicago, IL
P. Suhadolc, Trieste
M. Torigo, Barcelona
P.J. Treloar, Kingston-upon-Thames
C.I. Trifu, Kingston, Ont.
J.M. Tubia, Bilbao
J. Tullis, Providence, RI
B.A. van der Pluijm, Ann Arbor, MI
R. van der Voo, Ann Arbor, MI
I.M. Villa, Bern
R.F. Weinberg, Oxford
H.-R. Wenk, Berkeley, CA
R.W.C. Westaway, Durham
G. Westbrook, Birmingham
J.R. Wilbrans, Amsterdam
M.J.R. Wortel, Utrecht
Shi Xiaolin, Beijing
H. Zeyen, Onsay
P.A. Ziegler, Binningen

Scope of the journal

TECTONOPHYSICS is an international medium for the publication of original studies and comprehensive reviews in the field of geotectonics and the geology and physics of the earth's crust and interior. The editors will endeavour to maintain a high scientific level and it is hoped that with its international coverage the journal will contribute to the sound development of this field.

Publication information

TECTONOPHYSICS (ISSN 0040-1951). For 1999 volumes 294–309 are scheduled for publication. Subscription prices are available upon request from the publisher. Subscriptions are accepted on a prepaid basis only and are entered on a calendar year basis. Issues are sent by surface mail except to the following countries where air delivery via SAL is ensured: Argentina, Australia, Brazil, Canada, Hong Kong, India, Israel, Japan, Malayasia, Mexico, New Zealand, Pakistan, PR China, Singapore, South Africa, South Korea, Taiwan, Thailand, USA. For all other countries airmail rates are available upon request. Claims for missing issues must be made within six months of our publication (mailing) date.

Orders, claims, and product enquiries: please contact the Customer Support Department at the Regional Sales Office nearest to you:

New York: Elsevier Science, P.O. Box 945, New York, NY 10159-0945, USA; phone: (+1) (212) 633 3730; [toll free number for North American customers: 1-888-4ES-INFO (437-4630)]; fax: (+1) (212) 633 3660; e-mail: usinfo-f@elsevier.com

Amsterdam: Elsevier Science, P.O. Box 211, 1000 AE Amsterdam, The Netherlands; phone: (+31) 20 4853757; fax: (+31) 20 4853432; e-mail: ninio-f@elsevier.nl

Tokyo: Elsevier Science, 9-15, Higashi-Azabu 1-chome, Minato-ku, Tokyo 106-0044, Japan; phone: (+81) (3) 5561 5033; fax: (+81) (3) 5561 5047; e-mail: info@elsevier.co.jp

Singapore: Elsevier Science, No. 1 Temasek Avenue, #17-01 Menara Tower, Singapore 039192; phone: (+65) 434 3727; fax: (+65) 337 2230; e-mail: asiainfo@elsevier.com.sg

Rio de Janeiro: Elsevier Science, Rua Sete de Setembro 111/16 Andar, 20050-002 Centro, Rio de Janeiro - RJ, Brazil; phone: (+55) (21) 509 5340; fax: (+55) (21) 509 1951; e-mail: elsevier@campus.com.br [Note (Latin America): for orders, claims and desk information, please contact the Regional Sales Office in New York as listed above]

© The paper used in this publication meets the requirements of ANSI/ISO Z39.48-1992 (Permanence of Paper).

PRINTED IN THE NETHERLANDS
Abstract

Coastal Ecuador is made up of an oceanic igneous basement overlain by Upper Cretaceous to Lower Paleocene (≈98–60 Ma) volcaniclastic and volcanic rocks of island-arc affinities. The igneous basement, known as the Piñón Formation, locally dated at 123 Ma, consists of olivine-free basalts and dolerites. Relative to N-MORB, both types of rocks exhibit high concentrations in I% (0.3–10.75 ppm), Ta (0.03–0.67 ppm), Th (0.11–1.44 ppm), light and medium rare earth elements, and low Zr (22–105 ppm) and Hf (0.59–2.8 ppm) contents, thus showing oceanic plateau basalts affinities. Most of these oceanic plateau basalts tholeiites display rather homogeneous $\varepsilon_{Nd}(T = 123$ Ma) ratios (~7), with the exception of two rocks with higher (+10) and lower (+4.5) $\varepsilon_{Nd}(T = 123$ Ma), respectively. All these basalts plot, with one exception, within the ocean island basalts field. Their (87Sr/86Sr) ratios are highly variable (0.7032–0.7048), probably due to hydrothermal oceanic alteration or assimilation of altered oceanic crust. The rocks of the Piñón Formation are geochemically similar to the oceanic plateau tholeiites from Nauru and Ontong Java Plateaus and to the Upper Cretaceous (92–88 Ma) Caribbean Oceanic Plateau lavas. The basalts and dolerites of the Upper Cretaceous-Lower Paleocene island arcs show calc-alkaline affinities. The ε_{Nd} ratios (+6.1 to +7.1) of these arc-rocks are very homogenous and fall within the range of intra-oceanic island-arc lavas. The Upper Cretaceous–Lower Paleocene calc-alkaline and tholeiitic rocks from coastal Ecuador share similar high ε_{Nd} ratios to Cretaceous intra-oceanic arc rocks from north, central and South America and from the Greater Antilles. Since the Piñón oceanic plateau tholeiites are locally overlain by early-Late Cretaceous sediments (~98–83 Ma) and yielded locally an Early Cretaceous age, they do not belong to the late Cretaceous Caribbean Oceanic Plateau. The basement of coastal Ecuador is interpreted as an accreted fragment of an overthickened and buoyant oceanic plateau. The different tectonic units of coastal Ecuador cannot be easily correlated with those of western Colombia, excepted the late Cretaceous San Lorenzo and Ricarque island arcs. It is suggested that northwestern South America consists of longitudinally discontinuous terranes, built by repeated accretionary events and significant longitudinal displacement of these terranes. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: oceanic plateau; island arc; accretion; Western Ecuador; Cretaceous–Paleocene
1. Introduction

Subduction of oceanic plates occurred beneath the western margin of the South American continental plate since at least Early Jurassic times (e.g. James, 1971; Aspden et al., 1987; Jaillard et al., 1990). However, whereas no mafic complexes nor exotic oceanic terranes are known in central South America (Mégard, 1987), northwestern South America is characterized by the presence of mafic terranes of oceanic origin (e.g. Gansser, 1973; Toussaint and Restrepo, 1994). Recent work carried out in western Colombia has demonstrated that several accreted terranes are remnants of oceanic plateaus (Millward et al., 1984; Nivia, 1996; Kerr et al., 1996; Kerr et al., 1997a,b), the buoyancy of which may explain why they have not been subducted.

In Ecuador, a NNE-trending Late Jurassic–earliest Cretaceous ophiolitic suture has been mapped (Aspden and Litherland, 1992), which separates the crystalline basement of the Eastern Cordillera (Litherland et al., 1994) from the oceanic volcanic rocks of western Ecuador (Fig. 1). The coastal terrane was regarded as a fragment of oceanic floor (Goossens and Rose, 1973; Juteau et al., 1977), that locally possesses island-arc affinities (Goossens et al., 1977; Henderson, 1979). The volcanic rocks are intruded by doleritic and/or gabbroic stocks. The studied samples come from two distinct geological domains of coastal Ecuador.

In the northwestern area (Manabí, Figs. 1 and 2), altered and metamorphosed basalt flows of N-type MORB composition, ascribed to the Piñón Formation, yielded unreliable K–Ar ages ranging from 110 to 54 Ma (Goossens and Rose, 1973). The Piñón Formation is of pre-late Campanian age (~pre-78 Ma), since it is overlain by sediments palaeontologically dated as late Campanian and cross-cut by late Campanian intrusions (Pichler and Aly, 1983; Wallrabbe-Adams, 1990). The northwestern area seems to be separated from the central area by a NE- to NNE-trending fault system running east of Manta and southeast of Esmeraldas (Fig. 1).

In the San Lorenzo area (Fig. 1), coarse-grained greywackes and volcaniclastic conglomerates associated with basaltic flows, ash beds, dikes and scarce thin limestone beds, are interpreted as resting on the Piñón Formation. These volcanic rocks, named the San Lorenzo Formation, are related to the activity of an intra-oceanic arc (Lebrat et al., 1987). Inter-pillow sediments of the San Lorenzo Formation are dated by late Campanian and Maastrichtian microfauna (Sigal, 1969; Faucher et al., 1971; Jaillard et al., 1995; Ordoñez, 1996). Volcanic rocks yielded K–Ar ages of 85–65 Ma (Goossens and Rose, 1973; Pichler and Aly, 1983) and an 40Ar–39Ar age of 72.7 ± 1.4 Ma (Lebrat et al., 1987). This succession is then unconformably overlain by fore-arc marine sediments of Middle Eocene age (Cerro, San Mateo Formations), within which the abundance of detrital quartz indicates that this area was already accreted to the continental margin (Manabí Basin, Benítez, 1995; Jaillard et al., 1995, 1997; Fig. 2).

The central area (Guayaquil area) is a little
Fig. 1. (A) Schematic geological map of Ecuador showing the main geological and tectonic units and the location of the studied area. (B) Geological sketch of southern coastal Ecuador showing the distribution of the studied magmatic units and the location of the samples analyzed.

deformed area, where good and continuous sections can be observed, except locally, south of the Chongón–Colonche faults. In the Guayaquil out-
The Calentura Formation is stratigraphically overlain by a 2000-m-thick turbiditic series of shales, greywackes and conglomerates (Cayo Formation). The Cayo Formation, of Coniacian to Campanian age, is interpreted as the product of the erosion of an island arc (Thalmann, 1946; Wallrabbe-Adams, 1990; Benítez, 1995). It is gradually overlain by about 400 m of pelagic dark shales, cherts, siliceous tufts and subordinate thin-bedded turbidites (Guayaquil Formation, Fig. 2). The Guayaquil Formation, of Maastrichtian to early-Late Paleocene age (Thalmann, 1946; Faucher et al., 1971; Jaillard et al., 1995), is devoid of continental sediments.

South of the Chongón–Colonche fault, the Santa Elena Formation is a strongly deformed equivalent of the Guayaquil Formation (Sinclair and Berkey, 1924; Thalmann, 1946; Jaillard et al., 1995). The Santa Elena Formation is affected by gently dipping shear planes and tight folds exhibiting penetrative axial-plane cleavage, with evidence of northward thrusting. It is unconformably overlain by a 2000-m-thick series of quartz-rich megaturbidites of latest Paleocene to earliest Eocene age (Azúcar Fm., Jaillard et al., 1995). This major tectonic event of Late Paleocene age (~57 Ma) is interpreted as the result of the accretion of this area to the Andean margin (Jaillard et al., 1997).

In the whole coastal Ecuador, the Cretaceous–Paleocene volcanic and volcaniclastic rocks are unconformably overlain by a shallowing-upward sedimentary sequence of late-Early Eocene to Late Eocene age (Benítez, 1995; Jaillard et al., 1995; Fig. 2).

In this work, we shall use the same name (Piñón Formation) for the igneous basement of the Manabí and Guayaquil areas, although they are possibly not of the same age.

3. Analytical procedures and low-grade metamorphism of the igneous rocks of western Ecuador

Samples have been collected from the igneous basement (Piñón Formation), the Las Orquídeas Member and the San Lorenzo and Cayo Formations (Fig. 1). Fourteen samples were analyzed for major, minor and trace elements (Table 2). Among these samples, Nd–Sr isotopic compositions were determined on nine of the less altered ones (Table 3). The location of these samples (Fig. 1) and their petrographic characteristics are listed in Table 1.
3.1. Analytical procedures

Major and minor elements were analyzed by G. Mevelle at the Centre de Recherche Pétrographiques et Géochimiques (CRPGE) of Nancy. Trace elements, including the REE, were analyzed by ICP–MS using acid dissolution of 100 mg sample at the Laboratoire de Géochimie isotopique de l'Université Paul Sabatier in Toulouse following the procedure of M. Valladon et al. (unpubl. report). 100 mg of powdered rocks are weighed in a Pt crucible, with 320 mg Lithium metaborate and 80 mg Lithium borate (Fluka). After careful mixing of the powders, the crucible is heated for fusion at 1000°C. After cooling, 8 ml double-distilled HNO₃ (12 N) are added for the dissolution of the glass. The final dilution to 30 ml of a 15-ml aliquot, with MilliQ™ water and after addition of internal standards (In-Re), corresponds to a total dilution of 3000. Limits of detection are: REE and Y = 0.03 ppm, U, Pb and Th = 0.5 ppm, Hf and Nb = 0.1 ppm, Ta = 0.03 ppm, and Zr = 0.04 ppm. Standards used for the analyses were JB2, WSE Bir-1 and JR1. Analysis of sample EQ12 was duplicated following the procedure of Barrat et al. (1996).

For Sr and Nd isotopic analyses, samples were leached twice in a 2 N HCl–0.1 HF mixture. For Pb isotope determinations, whole rocks were successively leached in hot 2 N HCl for 20 min in an ultrasonic bath, rinsed with tri-distilled water, leached in cold 1 N HNO₃ for 20 min and rinsed with tri-distilled water in an ultrasonic bath during 15 min.

Nd and Sr isotopic compositions were determined on a Finnigan MAT 261 multicollector mass spectrometer at the Laboratoire de Géochimie isotopique de l'Université Paul Sabatier in Toulouse, using the analytical procedures of Lapierre et al. (1997). Correction of the mass discrimination effect was done by normalizing the ⁸⁷Sr/⁸⁶Sr ratio to a value of 8.3752. NBS 987 standard was measured with a ⁸⁷Sr/⁸⁶Sr ratio of 0.71025 (±22). Measured ¹⁴³Nd/¹⁴⁴Nd were normalized to a value of ¹⁴⁶Nd/¹⁴⁴Nd = 0.71219 (Wassenburg et al., 1981). Results on La Jolla standard yielded ¹⁴³Nd/¹⁴⁴Nd = 0.511850 ± 8 (mean on 39 runs) corresponding to an external reproducibility of 0.00001.

²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb and ²⁰⁸Pb/²⁰⁴Pb isotopic ratios were measured on a multicollector VG sector mass spectrometer at the Laboratoire de Géochimie isotopique de l'Université de Montpellier II (Table 3) following the analytical procedure adapted from Manhes et al. (1980). Total Pb blanks are less than 65 pg for a 100 mg sample.

3.2. Metamorphism and alteration of the igneous rocks of western Ecuador

All the igneous rocks of western Ecuador, with the exception of the arc-rocks of San Lorenzo Formation, are metamorphosed to a low-grade zeolite and prehnite–pumpellyite facies, and igneous textures are always preserved. In the analyzed samples, clinopyroxene remains fresh while orthopyroxene is replaced by smectites ± chlorites. When altered, clinopyroxene is replaced by smectites, chlorites or colourless actinolite. Plagioclase is often replaced by sericite or calcite but sometimes remains fresh. However, in the arc-lavas of the Las Orquídeas Member, plagioclase is albite. Vesicles are filled by smectite, chlorite, epidote and pumpellyite, which are also present in the groundmass which sometimes includes abundant chalcedony (EQ94-02; Table 1). Glass is systematically recrystallized in brown reddish or pale to intense green smectites.

Hydrothermal alteration of hypabyssal volcanic rocks may cause significant mobility of some major (Na, K, Ca, Si) and trace elements (Rb, Ba, Sr), while Na₂O contents (2–4 wt%; Table 2) are relatively homogeneous. K₂O (≤1.3 wt%; Table 2) and Rb (0.3 < Rb ppm < 11.8; Table 2) are more scattered and most likely express rock alteration. The weight loss on ignition (LOI) ranges between 2.1 and 7.6% (Table 2). LOI generally positively correlates with CaO abundance due to the presence of epidote and minor calcite.

In this study, alkali (K, Rb, and Na) and alkaline earth (Sr, Ba, Ca) elements and SiO₂ are only presented as background information and only the less mobile elements Ti, Nb, Th, Ta, Zr, Hf and REE are used for the geochemical discussion.

4. Basement of southern coastal Ecuador (Piñón Formation)

4.1. Petrology and mineral chemistry

The igneous components of the Piñón Formation consist of olivine-free basalts and dolerites (Table 1).
<table>
<thead>
<tr>
<th>Formation:</th>
<th>Piñón</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample:</td>
<td>EQ93.02</td>
<td>EQ1</td>
<td>EQ5</td>
<td>EQ10</td>
<td>Ca1</td>
<td>Sabaneta</td>
<td>Interstal</td>
<td>floral</td>
<td>Piñón</td>
<td>Diabase</td>
<td>Calc-alkaline Basalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location:</td>
<td>Las Piedras</td>
<td>Montecristi</td>
<td>Puerto Cayo</td>
<td>La Libertad</td>
<td>Sabaneta</td>
<td>Interstal</td>
<td>Interstal</td>
<td>floral</td>
<td>Piñón</td>
<td>Diabase</td>
<td>Calc-alkaline Basalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texture:</td>
<td>Interstal + quenched vesicular</td>
<td>Aphyric + quenched</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>floral</td>
<td>Piñón</td>
<td>Diabase</td>
<td>Calc-alkaline Basalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralogy:</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name:</td>
<td>Basalt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formation:</th>
<th>Piñón</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample:</td>
<td>EQ93.02</td>
<td>EQ1</td>
<td>EQ5</td>
<td>EQ10</td>
<td>Ca1</td>
<td>Sabaneta</td>
<td>Interstal</td>
<td>floral</td>
<td>Piñón</td>
<td>Diabase</td>
<td>Calc-alkaline Basalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location:</td>
<td>Las Piedras</td>
<td>Montecristi</td>
<td>Puerto Cayo</td>
<td>La Libertad</td>
<td>Sabaneta</td>
<td>Interstal</td>
<td>Interstal</td>
<td>floral</td>
<td>Piñón</td>
<td>Diabase</td>
<td>Calc-alkaline Basalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texture:</td>
<td>Interstal + quenched vesicular</td>
<td>Aphyric + quenched</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>floral</td>
<td>Piñón</td>
<td>Diabase</td>
<td>Calc-alkaline Basalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralogy:</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name:</td>
<td>Basalt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formation:</th>
<th>Piñón</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample:</td>
<td>EQ93.02</td>
<td>EQ1</td>
<td>EQ5</td>
<td>EQ10</td>
<td>Ca1</td>
<td>Sabaneta</td>
<td>Interstal</td>
<td>floral</td>
<td>Piñón</td>
<td>Diabase</td>
<td>Calc-alkaline Basalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location:</td>
<td>Las Piedras</td>
<td>Montecristi</td>
<td>Puerto Cayo</td>
<td>La Libertad</td>
<td>Sabaneta</td>
<td>Interstal</td>
<td>Interstal</td>
<td>floral</td>
<td>Piñón</td>
<td>Diabase</td>
<td>Calc-alkaline Basalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texture:</td>
<td>Interstal + quenched vesicular</td>
<td>Aphyric + quenched</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>floral</td>
<td>Piñón</td>
<td>Diabase</td>
<td>Calc-alkaline Basalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralogy:</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td>Plagioclase laths and microlites + augite Fe-Ti oxides Glass replaced by smectites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name:</td>
<td>Basalt</td>
</tr>
</tbody>
</table>

Table I: Location and petrographic characteristics of the Cretaceous–Paleocene igneous rocks from western Ecuador.
The basalts show intersertal (EQ93-02, Ca1, EQ11) to aphyric (EQ1) textures. The intersertal basalts consist of plagioclase laths and clinopyroxene glomero-porphric aggregates embedded in a glass-poor groundmass which contains small rounded vesicules filled with smectites + epidote ± chalcedony and quenched plume or dendritic clinopyroxene crystals. The size of the plagioclase laths is highly vari-
able and ranges from 0.1 to 1 mm. Fresh plagioclase shows a labradorite composition (An\textsubscript{66}). Fe–Ti oxides are sometimes Ti\textsubscript{2}O\textsubscript{3}-rich (24.5%). The aphyric basalts are formed of clinopyroxene aggregates either or not associated with plagioclase set in a glass-rich groundmass which includes isolated plagioclase microphenocrysts. In both lavas, Fe–Ti oxides are anhedral and the last mineral to precipitate.

The dolerites exhibit ophitic (EQ9, EQ10) to intersertal textures (EQ5) and are composed of plagioclase laths enclosed in anhedral clinopyroxene. Euhedral plagioclase is zoned with labradorite cores (An\textsubscript{69}) and oligoclase rims (An\textsubscript{12}). The dolerites differ with the size of the clinopyroxene and Fe–Ti oxides and the abundance of interstitial glass. Subhedral clinopyroxene and anhedral Fe–Ti oxides may occur as large crystals up to 1 cm and 0.5 cm, respectively. Oxides are titanomagnetites (TiO\textsubscript{2} \leq 10\%) with ulvospinel (21 < TiO\textsubscript{2}\% < 52) fine exsolution lamellae. Orthopyroxene may occur.

The weakly zoned clinopyroxene shows similar composition in the basalts and dolerites; it is an augite (W\textsubscript{039–43}, En\textsubscript{41–47} Fs\textsubscript{89–15}; Morimoto, 1988) with slightly Fe-enriched rims.

4.2. Geochemistry

The basalts and dolerites have restricted SiO\textsubscript{2}, Al\textsubscript{2}O\textsubscript{3}, and TiO\textsubscript{2} ranges (Table 2). Basalts and dolerites have similar MgO contents (Table 2; Fig. 3) with the exception of a dolerite (EQ12) which has a lower MgO content and correlative higher Fe\textsubscript{2}O\textsubscript{3}, TiO\textsubscript{2}, Nb and Y abundances (Fig. 3). This rock represents the most fractionated rock of the suite (Table 2). At similar MgO levels, basalts and dolerites (except EQ12) have a large range of Zr and Y concentrations while their Nb contents range only between 3 and 5 ppm (Table 2; Fig. 3). TiO\textsubscript{2} increases while MgO decreases (Fig. 3). Both rocks show high Ti/V (19.5 < Ti/V < 23) and low La/Nb (<1) ratios.

Basalts and dolerites show flat REE patterns (0.8 < (La/Yb),CN < 1.3; Fig. 4) relative to chondrite (Sun and McDonough, 1989). However, two groups may be distinguished on the basis of the (La/Yb),N ratios. Group 1, composed of the basalts, is characterized by slightly depleted LREE patterns with (La/Yb),CN < 1 (Fig. 4A), whereas Group 2 dolerites exhibit slightly LREE-enriched patterns with (La/Yb),CN > 1 (Fig. 4B). In both groups, small negative or positive Eu anomalies (Table 2) may reflect minor plagioclase removal or accumulation, respectively.

Relative to N-type MORB (Sun and McDonough, 1989; Fig. 5), these basalts and dolerites show significant enrichments in LREE, high Nb, Ta and Th values (1.5–5 times the N-MORB values), and low levels in Zr and Hf (0.3–1 times the N-MORB values. The distinction into two groups for the igneous rocks of the Piñón Formation is also valid with respect to their N-MORB-normalized trace element patterns. Group 1 is Th-, Ta- and Nb-enriched and shows a mild depletion in Zr and Hf (Fig. 5A). Group 2 dolerites differs from Group 1 by the lack of Th enrichment (specially marked in the EQ10 and EQ12 samples) and more marked Zr and Hf negative anomalies (Fig. 5B). In both Group 1 and 2, the HREE and Y contents are more or less similar to those of N-MORB or slightly higher (3 times the N-MORB values for the most fractionated rocks). Moreover, Nb/Ta and Zr/Hf ratios of these rocks are lower than those of N-MORB but U/Th is higher (Fig. 6). The basalts and one dolerite have a rather restricted range of Nb/U ratios (38 <
4.3. Nd and Sr and Pb isotopic composition

Isotopic data on the basalts and dolerites of the Piñón Formation have been corrected for in-situ decay with an age of 123 Ma (see below the discussion on the age of the Piñón Formation).

Basalts and dolerites display variable εNd ratios which range between +4.5 (Ca1) and +10 (EQ1, Table 3; Fig. 7). Two dolerites (EQ5, MA18) and two basalts (EQ93-02, EQ11) show homogeneous εNd ratios of +7. With the exception of EQ1, being similar to N-MORB, these εNd ratios fall within the range of ocean island basalts (OIB).

All the Piñón igneous rocks display a large range of (87Sr/86Sr) ratios (0.70435 to 0.70466), except for two samples (EQ1 and EQ5) which have lower (87Sr/86Sr) ratios (0.70321 and 0.70335, respectively; Table 3; Fig. 7).

At similar Zr/Nb (∼15) and (La/Yb)CN (∼0.8–0.9) ratios the basalts and one dolerite (MA18) di-

Fig. 4. Chondrite-normalized (Sun and McDonough, 1989) rare earth elements patterns of the basalts (A) and dolerites (B) of the Piñón Formation.

Fig. 5. N-MORB-normalized (Sun and McDonough, 1989) spidergrams of the basalts (A) and dolerites (B) of the Piñón Formation.
play a large range of ε_{Nd} ratios (+10 to +4), except for dolerite EQ5 having lower Zr/Nb (5.8) and higher (La/Yb)$_{\text{CN}}$ (1.3; Fig. 7).

Initial lead isotopic compositions of whole rock and mineral separates display a large range in composition (Table 3; Fig. 8; Lapierre et al., 1999). EQ12 has the lowest $^{206}\text{Pb} / ^{204}\text{Pb}$ ratio and plots near DMM source while Ca1 has the higher $^{206}\text{Pb} / ^{204}\text{Pb}$ ratio similar to those of recent Galápagos lavas. The high $^{207}\text{Pb} / ^{204}\text{Pb}$ ratios of these rocks could indicate minor amounts of pelagic sediments (Doe, 1970) in the mantle source.

EQ1 has the highest ε_{Nd} ratio (+10), reflecting derivation from the most depleted component. However, the $(^{206}\text{Pb} / ^{204}\text{Pb})_i$ of this rock is higher (18.16) than that of the Piñón lavas, due to the high content of U relative to Th. Indeed, this rock does not plot on the Th/U correlation trend but is displaced towards the U side of the diagram (Fig. 6). This reflects the mobility of U linked to a hydrothermal event which affected EQ1. In contrast, Ca1 is characterized by the lowest ε_{Nd} (+4) and the highest $^{206}\text{Pb} / ^{204}\text{Pb}$ (18.92) ratios, suggesting derivation from a more enriched source.
4.4. Summary and comparisons

The basalts and dolerites of the Piñón Formation show flat REE patterns and Ta- and Nb-enrichments relative to N-MORB (Fig. 9). The basalts are slightly depleted in LREE, TiO₂, Ta, and Nb relative to dolerites and some basalts show higher Th contents than the dolerites. The Piñón basalts and dolerites display a rather restricted range of εNd (+7.03 to +7.76) and (²⁰⁶Pb/²⁰⁴Pb)ᵢ ratios (17.41 to 17.90), with the exception of two rocks. As a whole, they are interpreted as the products of an oceanic plateau.

Basalts and dolerites of the Piñón Formation are probably older than the Late Cretaceous (92–88 Ma) Caribbean–Colombian Oceanic Plateau Province (CCOP) basalts. In coastal Ecuador, the Piñón basalts are stratigraphically overlain by Cenomanian to Coniacian (99–87 Ma; Haq and Van Eysinga, 1998) pelagic sediments. Basalts and dolerites of the Piñón Formation are less radiogenic in Pb than the CCOP basalts and the Galápagos recent lavas (Fig. 8; Lapierre et al., 1999). This suggests that the oceanic plateau tholeiites of the Piñón Formation derived from mantle(s) source(s) depleted in isotopic Pb, compared to those of the Galápagos hotspot. So, the plume that generated the Piñón Formation oceanic plateau is likely different from, and probably older than the hotspot responsible for the formation of the CCOP and/or the Galápagos.
5. Upper Cretaceous (—Lower Paleocene?) lavas (Las Orquídeas Member, Cayo and San Lorenzo Formations)

5.1. Petrology and mineral chemistry of the lavas and volcaniclastic sediments

The igneous rocks of the Upper Cretaceous—Lower Paleocene island arcs are mafic lavas and dolerites sampled in the Las Orquídeas Member and San Lorenzo Formation (Figs. 1 and 2; Tables 1 and 2). In southern coastal Ecuador, the Cayo Formation consists solely of volcaniclastic sediments.

The basalts from the Las Orquídeas Member are plagioclase—pyroxene phryic (Table 1). EQ94-01 consists of plagioclase, orthopyroxene and clinopyroxene pseudomorphs set in a glass-rich groundmass which includes small amounts of clinopyroxene and plagioclase and very few oxides. EQ94-02 exhibits an intersertal texture with preserved clinopyroxene phenocrysts of augitic composition (Wo37–42, En49–52, Fs8–10) (Benitez, 1995). Fe–Ti oxides are included in the plagioclase and augite phenocrysts and thus represent early crystallizing crystals.

The igneous rocks of the San Lorenzo Formation are fresh compared to those of the Las Orquídeas Member. EQ2 is a dolerite (Table 1) which is formed of euhedral plagioclase and anhedral augite (En42–46, Fs20–17, Wo38–36). Both plagioclase and clinopyroxene include TiO2-rich magnetite (15 to 18%). Plagioclase occurs as large phenocrysts up to 1 cm long and small laths and exhibits a labradorite composition (An52–63) with Na-rich rims. EQ7 is a porphyritic basaltic andesite (Table 1) which is
formed of labradorite (An₆₁–₆₇) and zoned clinopyroxene phenocrysts. Plagioclase includes euhedral Ti-rich magnetite crystals and shows locally bytownite (An₇₅) cores. Clinopyroxene shows diopsidic cores (En₆₈, Fs₅₅, Wo₄₆; Morimoto, 1988) rimmed by augite (En₄₄, Fs₆₁, Wo₄₀).

The studied samples of the Cayo Formation are volcanic breccias and greywackes. The volcanic breccias (EQ93.03, EQ94.04; Fig. 1) are composed of basaltic and andesitic fragments and pyroxene phenocrysts. When preserved, the pyroxenes show clinoenstatitic (En₆₄–₇₅, Fs₂₂–₃₂, Wo₂–₄) and augitic (En₄₅–₄₄, Fs₁₅–₁₉, Wo₄₈–₄₁) compositions (Benítez, 1995) which fall in the orogenic basalt field of Leterrier et al. (1982) diagrams (not presented here). The basaltic fragments are orthopyroxene–clinopyroxene–plagioclase–phyric. The andesite differs from the basalts by the abundance of plagioclase phenocrysts. The greywackes (EQ94.03; Fig. 1) consist of basaltic fragments, and phenocrysts of augite (En₃₅–₄₄, Fs₁₅–₂₆, Wo₄₀–₄₅) and plagioclase, broken or not (Benítez, 1995).

5.2. Geochemistry

The igneous rocks of the Las Orquídeas Member and San Lorenzo Formation display calc-alkaline affinities (Fig. 10; Table 2) with the exception of EQ94.01 which exhibits an arc-tholeiitic affinity (Fig. 10; Table 2). These arc-rocks are LREE-enriched (2.31 < (La/Yb)CN = 3.57; Fig. 10A) and their N-MORB-normalized element diagrams (Sun and McDonough, 1989; Fig. 10B) are very similar to those of orogenic suites. Moreover, the Las Orquídeas and San Lorenzo lavas possess a negative Nb–Ta anomaly, similar to arc-related volcanic rocks.

The lavas of the Las Orquídeas Member differ from rocks of the San Lorenzo Formation in that they have very low levels of Y and HREE (less than 10 times the chondritic values; Table 2; Fig. 10B), suggesting the presence of residual garnet in the mantle source.

5.3. Isotopic chemistry

The ages of 100 and 75 Ma have been taken to calculate the initial ⁸⁷Sr/⁸⁶Sr and εNd ratios of the igneous rocks of the Las Orquídeas Member and San Lorenzo Formation, respectively (Table 3). The εNd ratios of these arc-rocks range between +6.1 and +7.2 (Table 3).

The (⁸⁷Sr/⁸⁶Sr)ᵢ ratios range between 0.7034 and 0.7046. This large range of (⁸⁷Sr/⁸⁶Sr)ᵢ ratios could either reflect hydrothermal alteration or involvement of subducted sediments in the source or fluids released from the hydrothermally altered subducting slab.
6. Comparisons with neighbouring areas and origin of the ‘Piñón terrane’

6.1. Comparison between the coast and the Western Cordillera of Ecuador

In the Western Cordillera, the Cretaceous–Palaeogene volcanic and sedimentary rocks are in tectonic contact with the metamorphic basement of the Andean Cordillera. The stratigraphy of these Cretaceous–Palaeogene series (Macuchi Formation s.l., Henderson, 1979, 1981) is still unclear due to a thick Tertiary volcanic cover, and because most of the lithologic units are separated by tectonic contacts (McCourt et al., 1998). The succession of the five main lithologic units may be reconstructed as follows (Faucher et al., 1971; Kehrer and Van der Kaaden, 1979; Cosma et al., 1998).

Tectonic slices of mafic and ultramafic plutonic rocks and pillow basalts are pinched along the contact between the oceanic terranes and the continental margin. On the basis of petrographic and geochemical studies, they were interpreted as belonging to the pre-Cretaceous Piñón Formation (Juteau et al., 1977; Lebrat et al., 1987; Desmet, 1994; McCourt et al., 1998). Our data support this interpretation, since trace element and isotopic chemistry show that these rocks represent the deep levels of an oceanic plateau geochemically similar to the Piñón Formation (Cosma et al., 1998; Lapierre et al., 1999). Moreover, a 123 ± 13 Ma Sm/Nd internal isochron obtained from an amphibole-bearing gabbro (Lapierre et al., 1999) is consistent with the stratigraphic data from the Guayaquil area. Therefore, according to the available data, the Piñón Formation of coastal Ecuador is assumed to be of Early Cretaceous age. For this reason, an age of 123 Ma has been used for in-situ decay corrections.

Undated tholeiitic pillow basalts and andesites cropping out in the western part of the Western Cordillera (Toachi beds) were developed in an intra-oceanic arc environment (Cosma et al., 1998). The Toachi beds are interpreted as overlaying by greywackes (Pilatón beds) bearing late Turonian to Coniacian inoceramid faunas, which can be correlated with the Cayo Formation of the Guayaquil area (Faucher et al., 1971; Kehrer and Van der Kaaden, 1979). Therefore, the Cretaceous succession of the Western Cordillera is comparable to that of the Guayaquil area of coastal Ecuador (Fig. 2), and the Toachi beds can be correlated with the Las Orquídeas Member of the Guayaquil area, of pre-Cenomanian to pre-Turonian age (Cosma et al., 1998).

The greywackes of the Pilatón beds are locally unconformably overlain by Maastrichtian shales and quartz-rich turbidites of the Yunguilla Formation (Faucher et al., 1971; Bristow and Hoffstetter, 1977; Kehrer and Van der Kaaden, 1979). Although the Yunguilla Formation is coeval with the Guayaquil Formation, the former contains abundant detrital quartz, which is absent in the latter (Fig. 2). This indicates that at least part of the Western Cordillera had been accreted to the continental margin by Maastrichtian times (Faucher et al., 1971; Kehrer and Van der Kaaden, 1979; Lebrat et al., 1987; Cosma et al., 1998). The recent dating of quartz-sandstones as Early to mid-Paleocene in the Western Cordillera supports this interpretation (McCourt et al., 1998). Therefore, the tectonic history of part of the Western Cordillera differs from that of the Guayaquil area, since, by the end of Maastrichtian times, part of the Western Cordillera was already accreted to the continental margin.

Volcaniclastic rocks and calc-alkaline andesites, dacites and breccias (Tandapi beds, Silante Formation) rest unconformably on the Yunguilla Formation. These volcanic rocks are dated by Tertiary radiolarians (Bourgois et al., 1990), scarce K–Ar ages (hornblende) ranging from 51.5 ± 2.5 Ma to 40 ± 3 Ma (Early to Middle Eocene; Wallrabbe-Adams, 1990; Van Thournout et al., 1990), and interbedded limestones and quartz-rich turbidites which yielded Middle to Late Eocene microfossils (Henderson, 1979; Bourgois et al., 1990). Since these volcanic rocks rest on the oceanic terranes of the Western Cordillera and exhibit geochemical features of a continental magmatic arc (Cosma et al., 1998), the accretion of the Western Cordillera was achieved by Early Eocene time (Fig. 2). This interpretation is supported by the fact that the Cretaceous–Palaeogene rocks of the Western Cordillera are unconformably overlain by a sedimentary sequence of Eocene age comparable to that of coastal Ecuador (Bourgois et al., 1990; Jaillard et al., 1995; Fig. 2).

In summary, because of the comparable overlying Cretaceous succession and of their similar geochem-
ical features, we follow the previous workers in admitting that the Piñón Formation of the Guayaquil area correlates with the Early Cretaceous (~123 Ma) igneous basement of the Western Cordillera, although their tectonic evolution may differ.

6.2. Comparison between western Ecuador and western Colombia

Recent studies carried out in western Colombia distinguish three distinct basaltic suites of oceanic plateau affinities (Fig. 11), i.e. the mafic igneous rocks of the Amaime Formation (>100 Ma), Volcanic Formation (90 Ma), and Serranía de Baudó (78–73 Ma), which successively accreted to the Andean margin (Marriner and Millward, 1984; McCourt et al., 1984; Desmet, 1994; Nivia, 1996; Kerr et al., 1996, 1997b; Sinton et al., 1998).

It appears difficult to correlate the oceanic plateau basement (Piñón Formation and its plutonic roots) of the Western Cordillera and coastal area of Ecuador with the basalts and their plutonic roots of the

Fig. 11. Schematic geological map of western Colombia and western Ecuador. Numbers indicate the age of oceanic plateaus (bold) and island arcs (standard).
Amaimé Formation of Colombia. Indeed, the latter formation is intruded by the Buga batholith dated at 113 ± 10 Ma (K–Ar) and 99 ± 4 Ma (Rb–Sr) (McCourt et al., 1984), indicating that the accretion of the Amaimé Formation onto the margin of NW Colombia must have occurred well before 100 Ma (Kerr et al., 1997b). Early Cretaceous ages (129–104 Ma) of high-pressure metamorphic rocks associated with the Amaimé Formation are interpreted as reflecting the late stages of accretion, which occurred most probably between 140 and 124 Ma (Aspden and McCourt, 1986; Toussaint and Restrepo, 1994). So the Amaimé Formation was probably already accreted while the Piñón Formation of Ecuador erupted. Moreover, in map view, the Western Cordillera of Ecuador is not the continuation of the suture zone of Colombia (Fig. 11). In contrast, the Colombian suture zone is likely correlatable with the Late Jurassic–earliest Cretaceous ‘oceanic suture’, exposed along the western edge of the Eastern Cordillera of Ecuador (Aspden and Litherland, 1992; Litherland et al., 1994) and/or with the ultramafic and mafic rocks of the Raspas Complex of southwestern Ecuador (Aspden et al., 1995), the high-pressure metamorphism of which has been dated at 132 Ma (K–Ar, Feininger, 1982; Fig. 11).

The age of the oceanic plateau basement of the northwestern area of coastal Ecuador (Manabi area) is pre-late Campanian because intra-oceanic arc lavas and associated pelagic sediments, both of late Campanian–Maastrichtian age, crop out in this area (Lebrat et al., 1987). Thus, this oceanic plateau may be either coeval with the early-Late Cretaceous oceanic plateau generation of western Colombia, or coeval with the Early Cretaceous oceanic plateau of the Guayaquil area and Western Cordillera of Ecuador. More radiometric dates are necessary to distinguish between these two assumptions. The late Campanian–Maastrichtian intra-oceanic arc (San Lorenzo Formation) can be correlated with the Campanian Ricaurte tholeiitic suite of southern Colombia, which seems to have no equivalent farther north (Spadea and Espinosa, 1996; Fig. 11).

Finally, no equivalent of the late-Late Cretaceous (~78–72 Ma) oceanic plateau of westernmost Colombia (Serranía de Baudó, Kerr et al., 1997b) is known so far in Ecuador. Therefore, with the possible exception of the northwestern area, the Ecuadorian oceanic plateau terranes are distinct from those accreted to the Colombian margin, and cannot be considered, as a whole, to belong to the Late Cretaceous Colombian–Caribbean Oceanic Plateau as defined by Kerr et al. (1997a).

6.3. A southeastern Pacific origin for the Early Cretaceous terrane of Ecuador

The 123 Ma isochron age suggests that the oceanic plateau of coastal Ecuador is coeval with the southern Pacific large oceanic plateaus generated during the Early Cretaceous ‘superplume’ (~125–100 Ma, Larson, 1991), i.e. Kerguelen, Nauru, Manihiki and Ontong Java Plateaus. More specifically, some of the Ecuadorian oceanic plateau fragments are coeval with the early igneous event of the Ontong Java Plateau, recorded at 123 Ma (Mahoney et al., 1993; Coffin and Eldholm, 1993). The overthickened and abnormally buoyant character of the basement of western Ecuador can explain why this oceanic terrane has been accreted to, rather than subducted beneath, the Andean margin (e.g. Cloos, 1993). Moreover, the Piñón Formation forms the basement of distinct and successive Late Cretaceous island arcs, indicating that it behaved as a buoyant upper plate in an intra-oceanic subduction system.

Very little is known about the plate kinematics before the latest Cretaceous. Based on a fixed hotspot reference frame, Duncan and Hargraves (1984) proposed a kinematic reconstruction of the direction and velocity of the northern Farallon and southern Phoenix plates since earliest Cretaceous times. According to this reconstruction, an arbitrary point passively transported by the Farallon plate between 123 and 80 Ma, age of the first accretion of the Piñón terrane to the Andean margin, travelled ~3500 km northward and more than 3000 km eastward. A point located on the present-day Galápagos 123 Ma ago would be located close to Florida on a 80 Ma reconstructed map. Although uncertainties are great in such a reconstruction, the Early Cretaceous Piñón Formation cannot have been generated by the Galápagos Hotspot, and its source must be located much farther south or southwest.

The Cretaceous migration rates of the Phoenix plate were slower than those of the Farallón plate
(Duncan and Hargraves, 1984) and accordingly, a point colliding the Ecuadorian margin 80 Ma ago must have been located about 2000 km farther south and more than 2500 km to the west, 123 Ma ago. Therefore, if passively transported by the oceanic plate, the Early Cretaceous Piñón Formation must have been generated 3000 to 4000 km southwest of Ecuador on a 80 Ma reconstructed map, that is much closer to the Sala y Gómez Hotspot (Pilger and Handschumacher, 1981) than to the Galápagos Hotspot. However, the presence of pre-Campanian island-arc products (Las Orquídeas Member, Cayo Formation, Toachi and Pilatón beds) indicates that the Piñón Formation has constituted the upper plate of an intra-oceanic subduction system, and has not been transported passively by the oceanic plate during the whole 123–80 Ma time-span. Therefore, the hotspot responsible for the generation of the Piñón Formation may have been located closer to the Ecuadorian margin. A southeastern Pacific origin of the Piñón terrane is consistent with the scarce available palaeomagnetic data, which suggest that coastal Ecuador (taken as a single terrane) originated 5° to the south of its present location (Roperch et al., 1987).

7. Summary and conclusions

(1) Petrographic, mineralogical, chemical and isotopic studies indicate that the basement of western Ecuador is made of oceanic plateau remnants of possibly different ages. Their oceanic plateau origin may explain why these rocks have been accreted to the Andean margin, and why they supported intra-oceanic island arcs.

(2) Three distinct geological domains must be distinguished in western Ecuador. (a) In the northwestern area (Manabí area), the basement is of pre-late Campanian age, an intra-oceanic arc developed in late Campanian–Maastrichtian times, and accretion occurred before the Middle Eocene. (b) In the Central area (Guayaquil area), the basement is of Early Cretaceous age, island arcs were active during the late-Early Cretaceous(?) to early-Late Cretaceous, and the accretion occurred in the Late Paleocene (~57 Ma). (c) In the Western Cordillera, the basement, preserved as slices in the suture zone, is of Early Cretaceous age (~123 Ma), intra-oceanic arcs developed during the late-Early Cretaceous(?) to early-Late Cretaceous, and accretion occurred during the Late Cretaceous (~80 Ma).

(3) No equivalent of the Early Cretaceous oceanic plateau of western Ecuador is thus far known in western Colombia. However, we cannot rule out the possibility that the basement of the northwestern area of coastal Ecuador (Manabí) is coeval to the Caribbean Plateau (~92–88 Ma). Additionally, remnants of the Late Cretaceous oceanic plateau of westernmost Colombia (~78–72 Ma) are yet unknown in Ecuador. These observations indicate that most of the oceanic terranes of western Ecuador do not belong to the Colombian–Caribbean Oceanic Plateau. The plume that generated the Early Cretaceous Piñón Plateau must have been located in the southeastern Pacific, far south of the present-day Galápagos Hotspot.

Acknowledgements

We are indebted to S. Benítez for his knowledge of the geology of coastal Ecuador and his help in the collection of samples. Field works were supported by the Institut Français de Recherches Scientifiques pour le Développement en Coopération-ORSTOM (presently: Institut de Recherche pour le Développement-IRD), which funded also the analysis, together with the UPRES A 5025 (Grenoble). Thanks are due to the Laboratoire de Géochimie (UMR 5563) of the Université Paul Sabatier of Toulouse (France) for their technical assistance and to the Institut de Minéralogie et de Géologie, Université de Lausanne (Switzerland) for the mineral chemistry. A.C. Kerr and an anonymous reviewer are acknowledged for their constructive and thorough suggestions.

References

Aspden, J.A., McCourt, W.J., 1986. Mesozoic oceanic terrane in
Kerr, A.C., Tarney, J., Marriner, G.F., Nivia, A., Saunders,

A detailed Guide for Authors is available on request. Please pay attention to the following notes:

Language
The official language of the journal is English.

Preparation of the text
(a) The manuscript should preferably be prepared on a word processor and printed with double spacing and wide margins and include an abstract of not more than 500 words.
(b) Authors should use IUGS terminology. The use of S.I. units is also recommended.
(c) The title page should include the name(s) of the author(s), their affiliations, fax and e-mail numbers. In case of more than one author, please indicate to whom the correspondence should be addressed.

References
(a) References in the text consist of the surname of the author(s), followed by the year of publication in parentheses. All references cited in the text should be given in the reference list and vice versa.
(b) The reference list should be in alphabetical order.

Tables
Tables should be compiled on separate sheets and should be numbered according to their sequence in the text. Tables can also be sent as glossy prints to avoid errors in typesetting.

Illustrations
(a) Illustrations should be submitted in triplicate. Please note that upon submission of a manuscript three sets of all photographic material printed sharply on glossy paper or as high-definition laser prints must be provided to enable meaningful review. Photocopies and other low-quality prints will not be accepted for review.
(b) Colour figures can be accepted providing the reproduction costs are met by the author. Please consult the publisher for further information.

Page proofs
One set of page proofs will be sent to the corresponding author, to be checked for typesetting/editing. The author is not expected to make changes or corrections that constitute departures from the article in its accepted form. To avoid postal delay, authors are requested to return corrections to the desk-editor, Mr. Herman E. Engelen, by FAX (+31-20-4852459) or e-mail (h.engelen@elsevier.nl), preferably within 3 days.

Reprints
Fifty reprints of each article published are supplied free of charge. Additional reprints can be ordered on a reprint order form, which will be sent to the corresponding author upon acceptance of the article.

Submission of manuscripts
Three copies should be submitted to: Editorial Office Tectonophysics, P.O. Box 3930, 1000 BX Amsterdam, The Netherlands.

Submission of an article is understood to imply that the article is original and unpublished and is not being considered for publication elsewhere. Upon acceptance of an article by the journal, the author(s) will be asked to transfer the copyright of the article to the publisher. This transfer will ensure the widest possible dissemination of information under the U.S. Copyright Law.

The indication of a fax and e-mail number on submission of the manuscript could assist in speeding communications. The fax number for the Amsterdam office is +31-20-4852696.

Authors in Japan, please note: Upon request, Elsevier Science Japan will provide authors with a list of people who can check and improve the English of their paper (before submission). Please contact our Tokyo office: Elsevier Science K.K., 1-9-15 Higashi-Azabu, Minato-ku, Tokyo 106-0044, Japan; phone: (+81-3) 5561 5033; fax: (+81-3) 5561 5047. Europe and ROW: Rachel Gresle-Farthing, The Advertising Department, Elsevier Science Ltd., The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK; phone: (+44) (1865) 843565; fax: (+44) (1865) 8435876; e-mail: r.gresle-farthing@elsevier.co.uk.

NOTE TO CONTRIBUTORS

In order to publish the paper as quickly as possible after acceptance authors are encouraged to submit the final text also on a 3.5" or 5.25" diskette. Essential is that the name and version of the wordprocessing program, type of computer on which the text was prepared, and format of the text files are clearly indicated. Authors are requested to ensure that apart from any such small last-minute corrections, the disk version corresponds exactly to the hardcopy.

If available, electronic files of the figures should also be included on a separate floppy disk.
Physics and Evolution of the Earth’s Interior

Series now complete!

Constitution of the Earth’s Interior
Edited by J. Leliwa-Kopystynski and R. Teisseyre
Physics and Evolution of the Earth’s Interior Volume 1
1984 xii + 368 pages
Dfl. 267.00 (US $ 152.50)

Seismic Wave Propagation In the Earth
By A. Hanyga
Physics and Evolution of the Earth’s Interior Volume 2
1985 xvi + 478 pages
Dfl. 318.00 (US $ 181.75)
ISBN 0-444-99611-7

Continuum Theories in Solid Earth Physics
Edited by R. Teisseyre
Physics and Evolution of the Earth’s Interior Volume 3
1986 xiv + 568 pages
Dfl. 376.00 (US $ 214.75)

Gravity and Low Frequency Geodynamics
Edited by R. Teisseyre
Physics and Evolution of the Earth’s Interior Volume 4
1989 xii + 478 pages
Dfl. 313.00 (US $ 178.75)
ISBN 0-444-98908-0

This six-volume series deals with the most important problems of solid Earth physics and presents the most general theories describing contemporary dynamical processes and the Earth’s evolution.

Six-Volume Set
Dfl. 1350.00 (US $ 771.00)
ISBN 0-444-81750-6

Evolution of the Earth and Other Planetary Bodies
Edited by R. Teisseyre, J. Leliwa-Kopystynski and B. Lang
Physics and Evolution of the Earth’s Interior Volume 5
“This volume is a competently constructed up-to-date and detailed summary of planetary evolution. It is for the planetary scientist above other fields; in this category, the book deserves a wide readership simply for its breadth of coverage. Researchers in other fields will also find this a book worth dipping into, and whole lecture courses could be based around its contents. It appears that the initial wish to discuss planetary evolution across the solar system has resulted in an intelligent, advanced level treatise that will become widely referenced itself.”

Dynamics of the Earth’s Evolution
Edited by R. Teisseyre, L. Czechowski and J. Leliwa-Kopystynski
Physics and Evolution of the Earth’s Interior Volume 6
This sixth volume in the monograph series Physics and Evolution of the Earth’s Interior presents the problems of the mature evolution of the Earth’s Interior. It provides comprehensive coverage of the present state of the mantle convection theory. The relations between paleomagnetism, plate tectonics and mantle convection theory are discussed. A more general view of the evolution based on the thermodynamics of irreversible processes is also given.

1993 480 pages
Dfl. 350.00 (US $ 200.00)
ISBN 0-444-98662-6

Elsevier Science B.V.
P.O. Box 1930
1000 BX Amsterdam
The Netherlands
P.O. Box 945
Madison Square Station
New York, NY 10160-0757

The Dutch Guilder (Dfl.) prices quoted apply worldwide. US $ prices quoted may be subject to exchange rate fluctuations. Customers in the European Community should add the appropriate VAT rate applicable in their country to the price.