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Comment on “An improved fractal equation for the soil water 
retention curve” by E. Perfect et al. 

. 

Edith Perrier,l Michel Rieu,2 Garrison Spo~ito,~ and Ghislain de Marsily4 

We wish to point out a significant conceptual error in the 
derivation of a fractal model water retention curve by Perfect et 
al. [1996]. Their derivation is based on the properties of the 
Menger sponge (see, e.g., Figure l b  in the work by Rieu and 
Sposito [1991a]), a well-known fractal model for porous media 
that exhibit length-scaling invariance [Mandelbrot, 1983, p. 
1341. A crucial step in the derivation presented by Perfect et al. 
[1996, equation (6a)l is their decision to equate the volumetric 
water content ( with the subunit porosity ( @ i . - l , j )  at one 
hierarchical level below level i, after the same number of 
iterations j of the generator. Their postulate is thus: 

(1) = Q ~ - ~ , ~  - = 1 - (b-i+j+l)D-3 1 5 i 5 j 

where D is the fractal dimension of the sponge and b is a scale 
factor which relates the length of a side of the (cubic) initiator 
of a Menger sponge to the length of a side of the (cubic) 
subunit created by the generator of the sponge. (See, e.g., work 
by Mandelbrot [1983, p. 1341 and Perfect et al. [1996] for the 
details of Menger sponge generation.) We believe that the first 
equality in (1) is incorrect, for the following reasons. 

The porosity @ i - l , j  in (1) applies to the volume of pores 
contained in (cubic) subunits whose sides scale as b‘ with that 
of the initiator and whose total volume is V,,,: 

VSUB@)i-l,j = volume of pores (2) 

By contrast, the volumetric water content applies to the 
same volume of pores but as contained in the entire Menger 
sponge, whose volume is V,: 

VTei,j = volume of pores (3) 

The ratio ( Vsu$VT)i of the total volume of porous subunits at 
the i - 1 hierarchical level to the total volume of the sponge 
thus connects to @ i - l , j  at any hierarchical level i, afterj  
iterations of the generator: 

ei,j = (VsuBWT)i@i-l,j 1 5 i 5 j (4) 

The proportionality factor in (4) can be calculated readily by 
induction. At hierarchical level i = 1 the Menger sponge has 
been divided into b3 (cubic) subunits (each of whose sides is of 
length l / b  relative to the length I of a side of the (cubic) 
initiator), and n of these subunits have been retained to form 
the solid matrix of the sponge [Perfect et al., 19961. Thus, when 
i = 1, (Vsu$VT), = n/b3 ( 1  5 y1 5 b3) .  At level i = 2 the 
n subunits of level i = 1 are again divided into b3 new 
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subunits, and n of these new subunits are retained to form the 
solid matrix. The ratio (Vs,$VT), is thus equal to ‘(n/b3)’. 
Thus, at any level i 2 O, (Vs,$V,)i = (n/b3)’. Therefore (4) 
can be expressed as - 

f3i,j = (n/b3)i-1@i-1,j 1 5 i 5 j (5) 

Equation (l), in contrast with (5), implies tacitly that the total 
volume of the sponge is simply equal to that of its solid-matrix 
subunits, a condition that is met only for the initiator before 
the removal of (b3 - n )  subunits, at a “zero level” of the 
hierarchy (i.e., set i = 1 in (5)). 

Perfect et al. [1996] employed (1) instead of (5) to derive a 
model water retention curve that turned out to have the same 
mathematical form as an qpi r ica l  equation proposed by Ross 
et al. [1991]. The model water retention curve that instead 
follows from (5) .can be found by combining (5) with the ac- 
cepted definition of ai- l,i (second equality on the right side of 
(1)) and the well-known expression for the fractal dimension of 
a Menger sponge [Mandelbrot, 1983, p. 1341, 

n = b D  (6) 

Therefore 
8, = (bD/b3)‘-1[1 - (b-i+j+’)D-3] 

= (bi-l)fl-3[1 - (b-i+jtl)D-3] 

= (bi-l)D-3 - (bj)D-3 (7) 
An expression for the water retention curve is then derived by 
noting that 

@ o , j =  1 - (b’)D-3 (8) 
is the porosity of the Menger sponge [Rieu and Sposito, 1991% 
Pefect et al., 19961 and that 

b’a $i (9) 

where $i is the water potential that is sufficient to empty pores 
created at hierarchical level i [Pefect et al., 19961. Introduction 
of (8) and (9) into (7) produces the fractal model water reten- 
tion curve: 

ei,j = (+i/+l)D-3 + - i (10) 

where I J ~  b is the water potential that is sufficient to empty 
only the largest pores (i.e., set i = 1 in (9)). We note in passing 
that the “residual” volumetric water content achieved 
after j iterations at hierarchical level j ,  can equal zero only if 
the scale factor bi t 00 when i = j in (7) or, equivalently, if 
the water potential $j t 8 when i = j in (10). In the context 
of a fractal approach this means that infinitely small pores are 
assumed to occur, and the solid phase can vanish, leaving the 
fractal model to represent solely the pore space [Perrier et al., 
19961. In this case (8) requires @ o , j  = 1, and (7) or (10) 
becomes equivalent to the fractal model of Tyler and Wheat- 
crap [1990]. 

Equation (10) previously was derived and tested successfully 
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by Rieu and Sposito [1991b] on  the basis of their fractal porous 
medium model [Rieu and Sposilo, 1991aI. It is not the same as 
the empirical equation of Ross et al. [1991]. That  (10) results 
from (5) is not surprising, since the porous medium model of 
Rieu and Sposito [1991a], like the Menger sponge, imparts 
fractal character to both the pores and the solid matrix. The  
latter is represented by the nonporous subunits that are  re- 
tained a t  the level j of the hierarchy, when the iteration process 
is ended because of the typical existence of a lower bound on 
the range of length scales over which fractal properties are  
exhibited by a porous medium. Perrier et al. [1996] have shown 
that if no assumption is made about solid matrix geometry, the 
general equation for the water retention curve in a soil exhib- 
iting a fractal pore size distribution is 

where the parameter A represents the largest value possible 
for the fractal porosity. We can readily verify that (10) is the 
particular case of (11) whereinA is set equal to 1. 
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Reply 
E. Perfect,l N. B. McLaughlin,Z B. D. Kay? and G. C. Topp2 

We appreciate the comments by Bird [this issue] and Pertier 
et al. [this issue] pointing out an error in the derivation of (12) 
of Perfect et al. [1996]. As these authors discuss, this error was 
the result of confusion between the porosity (and thus volu- 
metric water content) for a single cubic subunit at the ith level 
after j iterations of the Menger sponge generator and the ìth 
level porosity (and thus ith level volumetric water content) for 
the entire Menger sponge after j iterations of the generator. 
Having acknowledged this error, we will now proceed to 
rederive (12) of Pegect et al. [1996] using the correct expression 
for the ith level volumetric water content and to explore some 
of the physical implications of the resulting equation. 

From (7) of Perrier et al. [this issue] the ith level volumetric 
water content after j iterations of the Menger sponge genera- 
tor, Oi,jr is given by 

(1) i-1 0-3 - ( b j ) D - 3  
Oi,j  = (b ) 

where b is the scaling factor, D is the mass fractal dimension, 
and 1 5 i 5 j is the number of iterations of the generator. The 
saturated water content, O , , j ,  is obtained by setting i = 1 in 
(l), that is, 

O l , j =  1 - ( b j ) D - 3  (2) 

Assuming the smallest voids do not drain, the residual water 
content, Oi,j, can be obtained by setting i = j in (l), that is, 

= ( b j - 9 D - 3  - ( b 9 D - 3  (3) 

Following Brooks and Corey [1964], we can define an effec- 
tive saturation, Se, for the Menger sponge as 

S e  = - O j , j ) / ( O i , j  - 0j. j)  (4) 

By substituting (l), (2), and (3) into (4), we obtain the follow- 
ing expression for the effective saturation as a function of b': 

(5) Se = [ ( b i ) D - 3  - ( b j ) D - ' ] / [ ( b ' ) D - 3  - ( b j ) D - ' ]  

The b' is related to the soil water tension at the ith level, qj, by 
[Perfect et al., 19961 

bi = kGi ( 6 )  

S e  = - ( + j ) D - 3 1 / t ( + J D - 3  - (+j)D-31 (7) 

where k is a constant. Finally, substituting (6) into (5) yields 

Recall that the Ross et al. [1991] empirical equation for the 
soil water retention curve is given by 

s = ($-' - $a')/($;" - 9;') (8) 
where S is relative saturation, $o is the air entry value, +d is 
the tension at dryness, and c is LI constant. Assuming Se = S 
(Le., 4 O in (4)), then (7) is equal to (S), and the following 
relations hold between the parameters of the two equations: 

D = 3 - c  (9a) 

$1 = $0 (9b) 

$j = $d (9c) 

These equivalencies are the same as those obtained by Pegect 
et al. [1996], with the impprtant exception that D = 3 - c and 
not 3 + c .  If we substitute our original estimates for c into 
(Sa), we obtain a range of 2.91-4.37 for the fractal dimension, 
with 91% of the D values > 3. 

We have shown the fractal nature of (8) is still valid. Thus all 
of the nonlinear fits and estimates of and by Perfect et al. 
[1996] are also still valid. The estimates of D in Tables 4-6 of 
Perfect et al. [1996], however, are incorrect. The correct values 
can be obtained, as noted by Bird [this issue], with the simple 
transformation D = 6 - D(14a), where is the fractal 
dimension calculated from c using the erroneous equation 
(14a) of Pegect et al. [1996]. This transformation results in a 
negative correlation between the fractal dimension and poros- 
ity, as observed by Bird [this issue]. 

Values of D > 3 are not physically meaningful. They may be 
caused by fitting over the range O 5 $5 1.5 X lo3 Wa, instead 
of over the entire range of $ down to oven dryness (E. Perfect, 
Estimation of soil mass fractal dimensions from water reten- 
tion data, submitted to Water Resources Research, 1997). It is 
also possible that (7) is not a good theoretical model 'for the 
water retention properties of natural porous media or that 
some of the assumptions used in its derivation are not valid. 

In deriving (7) it was assumed that b' can be related to $i by 
(6), the well-known Young-Laplace equation. While this equa- 
tion is commonly assumed to hold over the entire range of 
tensions employed [e.g., Tyler and Wheatcraf, 1990; Rìeu and 
Sposito, 19911, it is probably not valid at very large tensions, 
when water exists mainly as thin films on void surfaces. Under 
these conditions the b' and +i are better related by [Toledo et 
al., 19901 

b' = q (+J I" (10) where 
the tension that drains the smallest voids. 

is the tension that drains the largest voids and +, is 

where q is a constant and m depends on the nature of the 
forces responsible for the solid-liquid interaction. 

Substituting (10) into (5) and comparing the result with (8), 
yields (Sb), (SC), and 
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Toledo et al. [1990] report that 1 5 m 5 3, with m = 0.48 for 
their data. Using this value of m, along with the estimates of c 
from Perfect et al. [1996], in (11) results in values of D much 
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Figure 1. Residual water content of the Menger sponge, predicted using (3), as a function of j and D when 
b = 2. 

closer to 3. However, m would need to be negative for the 
majority of the D values to be less than 3. Since there is neither 
theoretical nor experimental support form < O, we conclude 
that values of D > 3 were not a result of using (6) instead of 

The equivalencies in (9) assume that the residual water 
content of the Menger sponge is so small that it is negligible. 
While this is generally true, the actual magnitude of the resid- 
ual water content depends on j ,  b, and D as described by (3). 
For any given value of b > 1, (Figure 1). 
Although the predicted curves are plotted as continuous func- 
tions, the discrete nature of the voids in the Menger sponge 
model actually produces a stepwise function. Note that €$j + O 
more slowly as D 4 3 (Figure 1). & a result, sponges with 
fractal dimensions only slightly less than 3 can have significant 
residual water contents even after many iterations of the gen- 
erator. Thus the assumption that Se = S may not always be 
valid. 

An alternative approach is to derive a fractal water retention 
curve explicitly for S instead of for Se. This can easily be done 
by dividing (2) into (1) and then substituting (6) into the result, 
yielding 

(10). 

-+ O as j -+ 

S = [ ( I / I ~ / J I ~ ) ~ - ~  -jbj)D-3]ll[1 - (b’)D-3] (12) 

Equations (12) (above) and (10) (from Pem‘er et al. [this issue]) 
are both based on the Menger sponge model and use the same 
assumptions. Therefore they should be different forms of the 
same equation. This can be seen by combining (7)-(9) of Per- 
rier et al. [this issue] to predict relative saturation, S, instead of 
volumetric water content, í3i,j. The resulting equation is iden- 
tical to (12). 

Equation (12) was fitted to the Elora data of Perf&t et al. 
[1996]. The estimates of bi ranged from 1.2 X lo4 to 7.6 X lo5, 
and were linearly related to I/Ij from (8) by the following re- 
gression equation ( R 2  = 0.47): 

b’= 6.14$j (13) 

The slope in (13) is equivalent to the constant k in (6). Good- 
ness-of-fit statistics for (12) were identical to those for (€9, as 
were the estimates of 1/11 and D.  Since (8) and (12) gave the 
same values of D ,  we conclude that the approximation Se - S 
was not responsible for estimates of D > 3. 

It appears from the above discussion that estimates of D > 
3 may be real for some soils. Such media cannot be considered 
mass fractals. We propose that the Ross et al. [1991] function 
be used to discriminate between those media that are fractal 
and those that are not. Equation (8) provides a good fit to a 
wide range of experimental water retention data (Figure 2). 
The retention curves predicted by (8) are convex for negative 
values of c ,  concave for positive values of c, and approach 
linearity on the semilog scale as c + O. We attempted to fit 
(11) of Pewier et al. [this issue] to the water retention data in 
Figure 2, but it failed to converge uniquely in both cases. 
Penier et al. [1996] encountered similar problems with this 
equation. 

In the case of nonfractal porous media, (8) must be viewed 
as entirely empirical. The c parameter will be negative and the 
water retention curve will be convex when plotted on a semilog 
scale. A potentially useful version of (8) can be obtained for 
structured or macroporous media by assuming that +e + O. 
Since c < O, this assumption results in the following relation: 

s = 1 - ( $ / I / I d ) - c  (14) 

Equation (14) is shown in Figure 2 fitted to the convex data set. 
The more negative estimate of c obtained using (14), as com- 
pared to (8), is probably attributable to the relatively poor fit of 
(14) close to saturation (Figure 2). Keep in mind that neither 
exponent can be interpreted as a fractal dimension using (9a) 
above. 

In the case of fractal porous media, c in (8) will be positive 
and the water retention curve will be concave when plotted on 
a semilog scale. Assuming c > O and I / I d  3 w, (8) simplifies 
to 
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Figure 2. Observed and predicted water retention curves for two soil cores from the Elora data set of Pegect 
et al. [1996] yielding the maximum and minimum estimates of c.  Numbers in parenthesis refer to the equations 
in this reply. Parameter estimates and residual sums of squares (RSS) were: I,!J, = 4 X lo-’  kPa, I,!Jd = 1 X 
l o 4  kPa, c = -0.28, and RSS = 0.005 for (8) (convex curve); $d = 7 X l o3  kPa, c = -0.38, and RSS = 
0.008 for (14); $, = 1 X 10-1 kPa, $d = 5 X l o4  kPa, c = 0.03, and RSS = 0.007 for (8) (concave curve); 
and I,!J, = 2 X loL1 kPa, c = 0.13, and RSS = 0.019 for (15). 

s = ($/I ,!Ja)-“ (15) 
which is equivalent to the Brooks and Corey [1964] equation 
with S = Se and A = c = 3 - D. The goodness of fit of (15) 
as compared to (8) is illustrated in Figure 2. Equations (8) and 
(15) give different estimates of c, as noted by Ross et al. [1991]. 
This means that D = 2.97 for (8), while D = 2.87 for (15). 
The lower value of D for (15) as compared to (8) is probably 
attributable to the relatively poor fit of (15) at very high ten- 
sions (Figure 2). 

References 
Bird, N. R. A., Comment on “An improved fractal equation for the soil 

water retention curve” by E. Perfect et al., Water Resour. Res., this 
issue. 

Brooks, R. H., and A. T. Corey, Hydraulic properties of porous media, 
Hydrol. Pap. 3, Colo. State Univ., Fort Collins, 1964. 

Perfect, E., N. B. McLaughlin, B. D. Kay, and G. C. Topp, An im- 
proved fractal equation for the soil water retention curve, Water 
Resour. Res., 32, 281-287, 1996. 

Perrier, E., M. Rieu, G. Sposito, and G. de Marsily, Models of the 
water retention curve for soils with a fractal pore size distribution, 
Water Resour. Res., 32, 3025-3031, 1996. 

Perrier, E., M. Rieu, G. Sposito, and G. de Marsily, Comment on “An 
improved fractal equation for the soil water retention curve” by E. 
Perfect et al., Water Resour. Res., this issue. 

Rieu, M., and G. Sposito, Fractal fragmentation, soil porosity, and soil 
water properties, I, Theory, Soil Sci. Soc. Am. J., 55, 1231-1238, 
1991. 

Ross, P. J., J. Williams, and K. L. Bristow, Equation for extending 
water-retention curves to dryness, Soil Sci. Soc. Am. J., 55, 923-927, 
1991. 

Toledo, P. G., R. A. Novy, H. T. Davis, and L. E. Scriven, Hydraulic 
conductivity of porous media at low water content, Soil Sci. Soc. 
Am. J., 54, 673-679, 1990. 

Tyler, S. W., and S. W. Wheatcraft, Fractal processes in soil water 
retention, Water Resour. Res., 26, 1047-1054, 1990. 

B. D. Kay, Department of Land Resource Science, University of 
Guelph, Guelph, Ontario N1G 2W1, Canada. 
N. B. McLaughlin and G. C. Topp, Eastern Cereal and Oilseed 

Research Centre, Agriculture and Agri-food Canada, Ottawa, Ontario 
K1A OC6, Canada. 

E. Perfect, Department of Agronomy, University of Kentucky, Lex- 
ington, KY 40546-0091. (e-mail: eperfect@ca.uky.edu) 

(Received November 11, 1996; revised October 29, 1997; 
accepted November 17, 1997.) 


