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Principal Component Analysis with respect to Instrumental Variables (PCAIV) is a 
statistical tool for exploratory analysis combining both principal component analysis 
and multivariate regression analysis. This tool is used to analyse mean fortnightly 
catches obtained by Senegalese fishermen in two ports from 1975 to 1991. The aim of 
the study is to identify significant sources of variation and to present separately the 
impact of each of them. These descriptions are used to characterize the initial data. 
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L’Analyse en Composantes Principales sur Variables Instrumentales (ACPVI) est un 
outil statistique d’analyse exploratoire faisant intervenir l’analyse en composantes 
principales et l’analyse de regression multivariée. Cet outil est utilisé ici pour l’analyse 
d’estimations bimensuelles de rendements de pêche réalisés par les pêcheurs artisans 
Séntgalais dans deux ports de 1975 i 1991. L’objet de notre étude est d’identifier des 
sources de variation influentes en présentant séparément l’impact de chacune d’entre 
elles. Ces descriptions seront ensuite utilisées afin de former une Synthese des données 
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’ initiales. 

Mots clés: analyse en composantes principales, analyse de variance multivariée, 
variables instrumentales, sélection de mod6le.s. 

Introduction 
The Centre de Recherches Océanographiques de Dakar- 
Thiaroye (CRODT) of the Institut, Sénégalais de 
Recherche Agricole (ISRA) has been collecting data for 
at  least 20 years on the artisanal fishery along the coast 
of Senegal, using a consistent sampling design (Gérard 
and Greber, 1985; Laloë, 1985). The objective of this 

stock assessment purposes. In this design, data are 
collected within strata defined by combinations of gears, 
fortnights’ and ports of landing. 

While stock assessments are generally done on a single 
species basis, questions concerning biological and 

J system is to obtáin fishing effort, and catch data used for 

’Fortnight is defined here as “ha1f.a month”, thus there are 24 
fortnights in a year. 
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technical interactions (the latter include the “effort allo- 
cation problem”, see Laurec et al., 1991) require multi- 
species approaches. To that end, data from individual 
fishing trips are usually analysed using multivariate 
methods and cluster analysis to build up typologies of 
fishing units or typologies of “métiers” (Murawski el al., 
1983; Biseau and Gondeaux, 1988). In our experience 
(Gérard and Greber, 1985; Laloë and Samba, 1990; 
Samba and Laloë, 1991; Ferraris and Samba, 1992), 
such analyses of these kinds of data clearly indicate the 
existence, even within the use of a particular gear, of 
diKerent “tactics” (Laloë and Samba, 1990) or “mitiers” 
(Laurec el al., 1991) or “technotopes” (Fay, 1994). In 
addition, the fishermen may take information from the 
“environment” into account in order to decide which 
“mktier” to use (Garrod, 1973; Hilborn, 1985; Allen 
and MacGlade, 1986; Laurec:er al., 1991; Laloë and 
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Table 1. Fish species mainly caught by hand-line in Senegalese fishery, with code numbers used on 
the figures in this paper. Ouolof is one of the national languages of Senegal. 

Code Scientific name English name Ouolof name 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Pomaromus saltatrix 
Pagrus caeruleoslictus 
Decapterus rhonchus 
Epinephelus aeneus 
Euthynnus alletteratus 
Pagellus bellotti 
Arius lotiseulatus 
Aleclis alexandrinus 
Trichiurus lepturus 
Epinephelus guaza 
Pseudoì. senegalensis 
Rliinobato spp. 
Argyrosomus rcgius 
Spliyrna spp. 
Epinephelus goreensis 
Logocephalus Iaevigatus 
Sarda sarda 
Denta  canariensis 
Diversus icnaplenus 
Coryphaena hippurur 
Istiophorus albicans 
Mustelus mustelus 
Brotula barbata 
Octopus vulgaris 
Dentes macrophtalnius 

Bluefish 
Blue spotted seabream 
False scad 
White grouper 
Little tuny 
Red pandora 
Rough-head sea catfish 
Alexandria pompano 
Largehead hairtail 
Dusky sea perch 
Cassava croaker 
Guitarfish 
Meagre 
Sharks 
Dungat grouper 
Smooth puffer 
Atlantic bonito 
Canary dentex 
Various 
Common dolphinfish 
Atlantic, sailfish 
Smooth hound 
Bearded brotula 
Common octopus 
Large eye dentex 

Ngott 
Kibaro naar 
Diaï 
Thiof 
Oualass 
Youfouf 
Dakak 
Yawal 
Tallar 
Kauthieu 
Feute 
Thiaukher 
Seukhebi 
Gaïndi Guidj 
Doï 
Boun foki 
Oual 
Kibaro ngokh 
Ndiakhas 
Ndiakhssine 
Dieunou dong 
Mâne 
Mori 
Yaranka 
Mbagne mbagntre 

Samba, 1991); the term environment here refers to the 
environment experienced by the fish as well as that 
experienced by the fishermen (Fréon, 1986; Cury and 
Roy, 1988, 1991; Samba and Laloë, 1991). 

While the time series of mean catches for a single 
species may simply reflect changes in abundances as is 
usually assumed, these changes may also be due to many 
other sources of variation and interactions. Therefore, 
we need tools to partition out these sources of variation. 
In this paper, we present an application of principal 
component analysis with respect to instrumental vari- 
ables (PCAIV Rao, 1964; Inzenman, 1980; Sabatier 

Table 2. Decomposition of the inertia according to orthogonal 
subspaces induced by instrumental variables. This variability is 
expressed in terms of inertia (see Appendix 1) which is the 
multivariate expression of the variance. 

Source of Degree of . ' Inertia 
variation freedom Inertia df 

~~ 

Port I 1.87 1.87 
Year 16 2.98 0.19 
Fortnight 23 4.89 0.21 
Port x year 16 1.33 0.08 
Port x fortnight 23 2.25 0.10 
Year x fortnight 368 6.56 0.02 
Year x port x fortnight 368 5.12 0.01 
Total , SI5 25 0.03 

et al.,  1989; Lebreton et al., 1991) to partition the 
sources of variation in the Senegalese landings data for 
handlines. This method combines features of the more 
familiar methods of multivariate regression analysis and 
principal component analysis (PCA). The partitions 
identified herein correspond to inter-annual variation, 
intra-annual variation, variation of port of landing and 
the interactions between all of these. Our approach 
emphasizes the use of graphics. 

Materials and methods 
Data 
For our analysis we used data extracted from the 
CRODT data base (Ferraris et  al., 1993), consisting of 
mean catches of fish from handlines on daily trips and 
landed in one of two ports (Saint-Louis and Kayar). 
These catch data are given by species and by fortnight 
from 1975 to 1991. The 25 species that we considered are 
listed in Table 1. In our analysis the data were in matrix 
form Z, with 816 rows and 25 columns, where each 
column (or variable) represents a species and each of the 
816 rows (2 ports x 17 years x 24 fortnights) contains 
the catch by species. Based on empirical evidence of 
skew, we transformed the data with the logarithmic 
function (Y=log(Z+ 1)). Moreover, Y has been centred 
and scaled in columns, so that the mean of each column 
is zero with variance equal to one. 

, 
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Figure 1. Principal component analysis of Y with respect to Fortnight, representation of species on the principal plane, within the 
correlation circle. 

Method 
For species 1 the data consist of a 816 element vector, Y' 
(column I of Y), with each element y'ijk of Y' being the 
transformed mean catch for port i during year j and for 
fortnight k. 

Such data are usually represented in terms of an 
analysis of variance model (see €or example Draper and 
Smith, 1981 or Arnold, 1981): This type of model is 
univariate (ANOVA) when applied to one species (Y'), 
and multivariate (MANOVA) when applied to all of the 
species (Y). The model contains three main factors 
(Port, P; Year, A and Fortnight, F), three two-way 
interactions terms (Port x Fortnight, PF; Port x Year, 
PA; Year x Fortnight, AF) and one three-way inter- 
action term (Year x Fortnight x Port, AFP). There 
is one observed catch for each combination of the 
factors (Port, Year, Fortnight) so that the design is 
balanced and the main factors and interaction terms are 
orthogonal. 

Let us consider Y' and the complete ANOVA model 
based on the three previously defined factors (i.e. includ- 
ing main and interaction terms). Because there is no 
replication the model is saturated and hence the residual 
term is null. Such a model allows us to decompose Y' 
(see Appendix 1) into additive terms, each of these being 
linked to a factor or an interaction between factors: 

Y'=Y'~+Y'~+Y'~+Y'p~+Y', ,+ya,+ya,,  (1) 

For example, Y', contains the fortnight effect of Y'. 
Moreover, due to the orthogonality we have a similar 
decomposition for the variance of Y'. 

1 = var(Y')=var(Y',) +var(Y',) + 
var(Y',)+- . .+ var (YIAFp) (2). 

Due to the initial scaling of the columns of Y, 
var(Y')=l. Thus, for example, that part of the variance 
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Figure 2. Fitted values from the first component of seasonal effect of fsfiophorirs u/l~icci~~s~ - scnsnnal effect, --- fitted VdlUcS. 

of Y' explained by the fortnight factor is expressed as 
var(Y',), the value of which will be between zero and 
one. 

Considering all the species, the saturated MANOVA 
model generalizes the.. univariate decomposition pre- 
sented above to, 

. 

(3) 

Y therefore consists of a 816 x 25 matrix which is 
decomposed in a sum of 7 fitted matrices (see Appendix 
1). Each of these contains the effects of the 25 species 
relative to a factor or interaction. Note that by consid- 
ering the It'' column of each of those matrices, we find 
again the decomposition in (1). 

Similar to (2), we have an additive decomposition for 
the variability of Y. This variability is now expressed in 
terms of inertia (see Appendix 1) which is the multivari- 
ate expression of the variance. The inertia of Y (X,) is 
defined as the sum of the variances over the columns, i.e. 
I,=Z2',= I var@'). Thus, analogous to (2), we obtain, 

25 25  25  

' . 25= xvar(Y1)= zvar(Yb)+.-f Evar(YkFp) . -  . .  - . .  
1=1  1=1 I = 1  . .  . -  

' or 

25=+Ip+ 1, + I F +  IPA f I P F f  IAI;+ IAFP- (4) 

The latter Equation (4) may be expressed as the term 
by term sum of the 25 Equations (2). For example, 
IF=Cz5,, I var(Y',) expresses the part of the inertia of Y 
explained by the fortnight factor. Furthermore, if each 

of the seven sources of variation has no systematic effect 
at all, then all the ratios of inertia to the corresponding 
degree of freedom have the same expectation. Hence, it 
is useful to consider those ratios in order to describe the 
impact of the various sources of variation. 

Being saturated, such a model is not explanatory 
because i t  contains as many parameters as we have data. 
Nevertheless, it does allow us to link the catches to 
the qualitative or instrumenta1 variables (Port, Year, 
Fortnight or their interactions) used in the sampling 
design. The method used to study the relationship 
between catches and instrumental variables was princi- 
pal component analysis with respect to instrumental 
variables, or PCAIV (Rao, 1964; Sabatier ef al., 1989). 

Principal Components Analysis (PCA) is a useful tool 
for description of global linear correlations between 
variables (see, for example, Biseau and Gondeaux, 
1988). However, particularly in the case of data collected 
according to a sampling design, it may be interesting to 
present an analysis of the correlations of the variables of 
interest conditional on the instrumental variables. 
PCAIV is suitable method for this purpose. In practice, 
a PCAIV on several variables of interest relative to an 
instrumental variable consists of carrying out a PCA on 
the fitted variables of interest after the regression on the 
instrumental variable (Sabatier et af., 1989). This analy- 
sis can be done using any software that has both general 
linear models and PCA (e.g. SAS, S-PLUS, Genstat). 

AS in (3), we decomposed Y into a sum of seven fitted 
matrices. Each of them is linked to a factor or inter- 
action between factors identified here as instrumental 
variables. Such a decomposition may be useful for 

, 
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Figure 3. (a) Fitted values from using the first component of seasonal effect of Alecfis alexundrinus (species 8 )  and Epinephelus 
guaza (species IO): (b) Fitted values from using the second component of seasonal effect of Alecfis olexundrinus (species 8)  and 
Epinephelus guuzu (species 10). (c) Fitted values from using the two first components of seasonal effect of Alectis alexundrinus 
(species 8 )  and Epinephelurguuzu (species 10). For each graph, - seasonal effect of species 10, . . . . fitted values for species 10, 
-.-. seasonal effect of species 8, --- fitted values for species 8. 

' 

interpretation purposes. For example, Y ,  contains the 
seasonal effects with respect to the yields and, due to the 
orthogonality, those effects may be discussed indepen- 
dently of other sources of variation. Hence, PCA of each 
of these arrays will allow us to describe the relations 

between yields of the species for each of the seven 
sources of variations defined by the saturated model. 

Graphical outputs are very useful for the presentation 
and interpretation of results. We shall focus on fitted 
values of the observations from multiple regression on  
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Results 
Decomposition of inertia 

Representation of the variables in the principal plane 
Each PCAIV concerns a fitted matrix whose columns 
are not reduced. Hence, their variances, which belong to 
[O, I], express the importance of the considered factor. 

First component: 50.9 % 

Figure 4. Principal component analysis of Y with respect to Year, representation of species on the principal plane, within the 
correlation circle. 

principal components (Persat and Chessel, 1989) and 
correlation of the variables of interest with the principal 
planes. These fitted values will be described in connection 
with the presentation of results of the PCA of Y ,  (i.e. the 
PCAIV of Y with respect to the factor Fortnight). 

This latter group accounts for about 47% of the total 
inertia. 

PCAIV of Y for Fortnight 

The decomposition of the inertia of Y according to 
Equation (4) is presented in Table 2. We can distinguish 
two groups here. The first one (Port, Year, Fortnight 
and interactions Port x Fortnight and Port x Year) 
characterizes terms with low degree of freedom (df), 
strong inertia and high ratio of inertia to df. The 
second group (interactions Year x Fortnight and 
Port x Year x Fortnight) comprises terms with high 
degrees of freedom, whose ratio of inertia to df is low. 

Figure 1 presents the variables in the plane of the first 
two principal components for PCAIV for Y Fortnight 
(i.e. the PCA of YF). Species are indicated by numbers (1 
to 25, see Table 1 for species names) with an associated 
line segment of length sI, where I= 1, . . ., 25. The ratio of 
(d, - s,)/d,, where d, is the distance from species number 
1 to the centre of the circle, is equal to the square root of 
the variance explained by the instrumental variable (e.g. 
for Fortnight, var(YIF)'n). Therefore the representation 

. .. . . 
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Figure 5. Principal component analysis of Y, representation of species on the principal plane, within the correlation circle. 

of the variables by the principal plane in Figure 1 
contains information about: 

(1) the quality of the representation by the principal 
plane with points closer to the circumference of the 
circle being better represented (i.e. higher corre- 
lation) and, 

(2) the influence of the instrumental variable being 
considered which is measured by the length s with 
shorter lengths indicating a higher proportion of 
the variance being explained. 

For example, let us consider (Fig. 1) species 14 
(Sphyrna spp.) and 2 (Pagrus caeruleostictus). The posi- 
tions of items 14 and 2 indicate that the seasonal effects 
of those species are well represented by the principal 
plane. However, extremity 2a is nearer to 2 than 14a to 
14. This difference corresponds to the differing impor- 
tance of fortnight variabilities. Indeed, the factor fort- 
night explains about 45% of the variance of the Pagrus 
caeruleostictus, and only 9% for the Sphyrna spp. Hence, 

I 

consideration of both extremities of the segment allows 
us to make an analysis taking into account the quanti- 
tative influence of the factor on each of the species. 

On the whole (Fig. i), many of the species have 
important fortnight effects. We distinguish an opposi- 
tion between cold season species (1, 3,  4, 5, 10, 13) and 
warm season species (7, 8, 20, 21). A positive correlation 
with the second component is interpreted here as indi- 
cating a seasonal effect which extends past the cold 
season (species 10, Epinephelus guaza) or anticipates the 
warm season (species 8, Alectis alexandrinus). This 
interpretation may be illustrated by looking at the fitted 
values from using principal components. 

. 

Fitted values from principal components 
We obtained fitted values from principal components 
by applying a multiple regression of Y', on the 
first principal components. This allows one to 
substitute a smoothed image for Y', taking into 
account the structure of all the data (Persat and 
Chessel, 1989). 
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First component: 51.9 % 

Figure 6. Principal component analysis of Y with respect to interaction Port x Fortnight, representation of species on the principal 
plane, within the correlation circle. 

The seasonal effect for Istiophorus albicans (species 21) 
is highly correlated with the first principal component 
(Fig. 1). Therefore model fitting with this component is 
very efficient (Fig. 2) and allows a clear interpretation of 
this component and of the seasonal effect for Istioplrorus 
albicans. This is also true for the seasonal effects for the 
other species that are highly correlated (positively or 
not) with the first component. This. first principal com- 
ponent is characteristic of the succession of seasons, a 
warm and rainy season from July to October (fortnights 
13-20) and a cold and dry season from December to 
May (fortnights 23, 24 and 1-10) - June (fortnights 11, 
12) and November (fortnights 21, 22) being "inter- 
seasonal". The cold and dry season is also characterized 
by the presence of an upwelling phenomenon (Rébert, 
1983). 

The seasonal effects of mean catches for Aleclis alex- 
andrinus (species 8) and Epinephelus guaza (species 10) 
are combinations of the two first principal components 
(Fig: 3a, b, c); the first species is mainly caught during 

the warm season, with high values observed in the 
inter-seasonal month of June (fortnight 11 and 12). The 
second species is mainly caught during the cold season, 
also with high values in June. This characteristic is taken 
into account by the second component which presents a 
peak during June and July (Fig. 3b). We may note on 
Figure 3a and b that the Contributions of first compo- 
nent are in opposition and that the contributions of the 
second are quite similar. 

Species whose code number.or item is not close to the 
correlation circle (Fig. 1) are not well correlated with a 
combination of the first two components. For such 
species (for example species 12, 15, 23, 25), a useful 
model fit would require more than two components. 

PCAIVof Y f o r  Year 
The principal plane (Fig. 4) explains about 75% of the 
inertia of YA. The variables whose year effect is strong 
are generally well fitted by the model. We can distinguish 
three groups of variables: species (23, 24) (with an 

. .  
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Figure 7. Fitted values from using the interaction Port x Fortnight by aid of the first component for Coryphoe,,.nrr  purl,^, 
including main effects. - interaction, ..... fitted. 

! 

12 io 1 6 12 18 24 1 6 

St Louis.Fortnight Kayar.Fortnight 
Figure 8. Fitted values from using the interaction Port x Fortnight by 
including main effects. - interaction, .I.-. fitted. 

aid of the two first components for Pomaiomus saliatrix, 

increasing year effect) are in opposition to species (1, 5, (r= - 0.06). Considering the PCA of YF (Fig. l), shows . ’  
j 7, 14) whose year effect is decreasing. These two groups that their seasonal effects are opposed (one cold season 

are orthogonal to species (12, 13, 19, 22), whose year species versus warm season species), while PCA of YA 

If we now consider the general PCA of Y (Fig. 3, and actually positively correlated. 
the PCA of Y, and YA, we may observe one of the 
interesting insights from PCAIV. On the general PCA PCAIV of Y for Port 
for example, species 1 (Poniutomus suhtrix) and 7 The qualitative variable Port having two modalities and 
(Arius lutisculutus) appear to be quite orthogonal therefore only generates a subspace of dimension 1. That 

effect first increases and then decreases. (Fig. 4) shows that their inter-annual variabilities are 
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First component: 39.1 % 

Figure 9. Principal component analysis of Y with respect to interaction Port x Year, representation of species on the principal 
plane, within the correlation circle. 

is why we do  not show the representation in the princi- 
pal plane. We can distinguish St Louis’s species (7, 1) 
from Kayar’s species (6, 20, 21, 23, 25). 

PCAIV of Y for Port x Fortnight 
The influence of this factor on species is variable (Fig. 6). 
It is difficult to interpret the interactions without taking 
into account the main effects. As an example, consider 
the following representations for species 20 (Coryphaena 
hippurus) and species. 1 (Pomatomus saltatrix). The glo- 
bal fitting of species 20 was constructed as the regression 
on first component of PCA on Fortnight, Port and 
Port x Fortnight (Fig. 7). For species 1, we observe that 
interaction Port x Fortnight is principally correlated 
with the second principal component. So, we may obtain 
fitted values (Fig. 8) for this species with first component 
of PCA of Y,, the only component of PCA o f  Y,, and 
the two first components of PCA of YPF. 

We see that the interactions may reflect different 
situations. For Coryphaena hippurus, the catches are 

I 

mainly’made at Kayar during the warm season; catches 
are quite small during the cold season in the two ports. 
For Pomatomus saltatrix, the interaction highlights a 
possibly more interesting situation, with catches made 
during a longer period of the cold season in St Louis. 
This is in agreement with available knowledge on the 
migratory pattern of that species (Champagnat et al., 
1983). 

PCAIV of Yfor  Year x Port 
The influence of this interaction is weak (Fig. 9). Only 
species 24 (Octopus vulgaris) has a significant inter- 
action. Indeed, the exploitation of this species is quite 
recent and takes place mainly at  Kayar. 

PCAIV for  Y for Year x Fortnight and Port x 
Fortnight x Year 
Inertias corresponding to these effects are strong, but 
with a low ratio inertiddf (Table 2). Contrary to pre- 
vious PCAIV, inertia is spread out over the principal 
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Figure 10. Principal component analysis of Y with respect to interaction Year x Fortnight, representation of species on the 
principal plane, within the correlation circle. 

components and no one or two of the components 
dominate enough to represent typical' behaviours (Figs 
10 and 11). 

A global model 
In preceding sections, partial models for fitted values 
obtained from the principal components were consid- 
ered. Taking into account a small number of principal 
components, we may fit the model in a quite satisfying 
way with each term of the decomEosition as giten in 
Equation (3). I t  is important to look at the data i.e. at 
the matrix Y itself. This may be done by pooling the 
partial results and by summing the result: for each fitted 
matrix. For example, using the one component for the 
Port effect and three components for the six other 
sources of variation (Table 3). We present this model fit 
with species 1 (Pomatomus saltatrix) in Figure 12b. Such 
a model fit may be done for each species. This kind of 

model should be considered to be a non-parametric 
model because it was constructed as a linear combi- 
nation of a limited number of smoothed series (i.e. 
principal components). 

As an alternative to the above, a parametric model 
may be obtained by fitting multivariate linear models. 
The best-fitting model can be selected among a greater 
number of possibilities using a criterion derived from the 
Akaike's information criterion (Hurvitch and Tsai, 
1989; Sakamoto et al., 1986) and adapted for multi- 
variate models (Bedrick and Tsai, 1994; see Appendix 2). 
Among 165 possible linear models, we selected the 
following expression: 

Y=Port+P(A)+H3+Port x P(A)+Port x H3 
+P(A) x H3+Port x P(A) X H ~ + E  

where H3 is a set of six sine and cosine functions on the 
fortnight number of respective periods 24, 12 and 8; 

. . . .  . .  , . . '  . . . .  . . . . . . . .  . . . .  . .  . .  
" '  . . .  . . . . . . . . . . . . .  . .,_.. 
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Figure 11. Principal component analysis of Y with respect to interaction Port x Year x Fortnight, representation of species on the 
principal plane, within the correlation circle. 

Table 3. Decomposition of the inertia according to orthogonal 
subspaces induced by principal components. This variability is 
expressed in terms of inertia (see Appendix 1) which is the 
multivariate expression of the variance. 

Source of 
variation 

Port 
Year 
Fortnight 
Port x year 
Port x fortnight 

' Year x fortnight 
Year x port x fortnight 

Number of 
components Inertia 

Inertidinitial 
inertia 

1 1.87 
3 2.42 
3 .4.13 
3 0.92 
3 1.87 
3 2.06 
3 1.47 

1 
0.81 
0.84 
0.69 
0.83 
0.3 1 
0.29 

P(A) is a polynomial of degree 6 on the year number. 
This model has 97 degrees of freedom, and the de- 
composition of sum of squares is given in Table 4. 
However, this model must be not considered as com- 

pletely optimal because assumptions of homogeneity of 
variances and normality do not hold. Fitted values from 
this model are also given for Pomatonius saltatrix on 
Figure 12b. 

The parametric and non-parametric versions of the 
analysis are compared by considering Tables 3 and 4, 
and Figure 12b. Furthermore, values obtained by the 
two methods are similar for each species, as shown by 
the quite high correlation values (Table 5). 

The versatility of the two methods is illustrated in 
Figure 12 where we present the original data set, the 
fitted values described above and the results of two 
partial models, of potential interest for Ponzatoi?zus 
saltatrix. In Figure 12c we show the fitted values using 
one component for the Port effect and three components 
for the two other main effects and interaction 
Port x Fortnight. We also present in Figure 12c the 
fitted values obtained from the linear model: 

Y=Port+P(A)+H3+Port x H3 + E 

. .  - .  : . . . . . . .  
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Figure 12. Yields of Pomafornus sultarrix. Fitted values from principal components (continuous lines) and fitted values with linear 
models (dotted lines). (a) Observed yields. (b) Fitted yields from PCAIV and the linear model with all the sources of variations (see 
text). (c) Fitted yields from PCAIV and the linear model with the three main effects and interaction Port x Fortnight. (d) Fitted 
yields from PCAIV and the linear model with the three main effects only. 

Table 4. Decomposition of the inertia according to orthogonal subspaces induced by the selected 
model. This variability is expressed in terms of inertia (see Appendix 1) which is the multivariate 
expression of the variance. 

Source of 
variation Df 

Port 

H3 (fortnight) 

Port x H3 
P(A) X H3 
P(A) x port X H3 
Residuals 

P(4 (year) 

Port x P(A) 

1 
6 
6 
6 
6 
36 
36 
718 

Inertidinitial 
Inertia Inertiddf inertia 

1.87 
2.43 
4.56 
0.99 
2.02 
2.22 
1.48 
9.43 

1.87 1 
0.40 0.82 
0.76 0.93 
0.17 0.74 
0.33 0.89 
0.06 0.33 
0.04 0.28 
0.01 

Total 815 25 0.03 

Figure 12c includes the previously discussed (see Fig. 8) 
results on the difference between intra-annual yield 
patter& in Kayar and Saint-Louis, together with the 
inter-annual trend of those yields. 

The results given in Figure 12d were obtained by 
dropping the components relative to the interaction 
Port x Fortnight in the model fitting procedure for the 

principal components and the term Port x H3 in the 
linear model. 

Both methods give quite similar results in the three 
cases. Results presented in Figure 12 may be used 
to illustrate the nature of what is taken into account 
from the original data when using one source or a 
combination of sources of variation. 
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Table 5. Correlation for each species between adjusted variables 
for both models (first column); between adjusted variables for 
the parametric model and initiai data (second column); between 
adjusted variables for the non parametric model and initial data 
(third column). 

Species Cor(Yp, Ynp)  Cor(Yp, Y) Cor(Ynp, Y) 

1 0.92 0.9 1 ’ 0.89 
2 0.86 0.86 0.79 
3 0.83 0.82 0.76 
4 0.83 0.8 1 0.86 
5 0.80 0.76 0.88 
6 0.88 0.88 0.82 
7 0.92 0.8 I 0.78 
8 0.88 0.79 0.73 
9 0.84 0.80 0.74 

10 0.73 0.70 0.79 
11 0.86 0.77 0.71 
12 0.76 0.77 0.66 
13 0.77 0.66 0.66 
14 0.86 0.86 0.77 
15 0.60 0.62 0.83 
16 0.75 0.65 0.69 
17 0.65 0.64 0.75 
18 0.70 0.66 0.74 
19 0.85 0.77 0.79 
20 0.91 0.80 0.74 
21 0.94 0.89 0.84 
22 0.87 0.78 0.77 
23 0.86 0.88 0.83 
24 0.73 0.95 0.72 
25 0.85 0.83 0.82 

Our intention is not to choose one model over the 
other. Indeed, the non-parametric model can be consid- 
ered to be a more parsimonious summary of the data 
than the parametric model. However, the components of 
the non-parametric model are linear combinations of the 
yields fitted using instrumental variables. Hence, they 
form a summary of the influences of those factors. Such 
a summary may be considered an “ad hoc smoothed” 
transformation of the factors. So, principal components 
cannot be considered regressor variables in the usual 
sense and we cannot consider the non-parametric model 
as to be a classical multiple regression model with 19 
independent variables. 

Discussion and conclusion. 
Descriptions made by means of PCAIV helped identify 
the most important sources of variation among those 
defined by the sampling design. Such sources of vari- 
ation have been described by fitting the model with the 
major factors.with the aid of principal components. 

The initial data set Y may be described in a satisfying 
way by using a few components in the model. A similar 
model fit may also be obtained by selecting a parametric 
model from a family of candidate models. Both appear 

to be equivalent in the sense that principal data 
characteristics are taken into account. 

Such models may be considered with some criticism 
with respect to violations of assumptions usually 
required for classical inference (independence of the 
residuals, homogeneity of their variances). However, 
because they capture some major characteristics of our 
initial data set, we can think that they have been 
formulated according to the principle expressed by 
Lebreton et al. (1992): 

“We approach data analysis in this spirit: we want 
to find an useful model that correctly represents the 
biologically important structure that is real in the 
data. We may be unable to ferret out the correct 
form of the more subtle structure in the data. In this 
case, we believe it is appropriate to sweep this 
residual structure into the model error component.” 

The analysis presented in this paper is exploratory, 
not explanatory. It does not result in a model of 
population dynamics nor of fleet dynamics. We have 
only tried to give a parsimonious synthesis of the 
spatio-temporal variability. This variability represents 
many sources of variation in environmental conditions 
of fish species and fishermen and from interactions 
between such sources. Hence, further models are needed 
and the results presented here should be considered as 
possible frameworks for analysis of outputs of simu- 
lation models. The use of “multi-species-multi-fleet” 
models appears to be necessary in the context of many 
fisheries (Garrod, 1973; Gulland and Garcia, 1984; 
Hilborn, 1985) and such models have been used in the 
Senegalese case (Laloë and Samba, 1990, 1991; Lefur, 
1995). Model outputs have to be compared with avail- 
able data sets for tuning and validation purposes, and 
the methods presented here offer tools for describing the 
salient features of the available data. 
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Appendix 1: the decomposition of matrix 
Y and the inertia 
Let us consider Y’. The complete model based on the 
three previously defined factors (i.e. including main and 
interaction terms) may be written as an addition of 
effects: 

where i= l ,  2 refers to the port; j=1, . . ., 17 refers to the 
year; k=l ,  . . ., 24 refers to the fortnight. 

With usual notations, estimators of parameters are 
(cf. Draper and Smith, 1981, p. 446) 
h 

$ = Y . .  . 
jyi=yi.. - Y . .  . 
â;=u. j . - Y .  . . 

$’,=Y, . -Yi . . - Y .  .+Y. . . 
pfIik=Yi. , - Y i ,  . - Y .  . ,+Y. .  . 
af\,=Y . j k - Y . j .  - Y .  .,+Y. . _  
paf’ij,=Yij, -Y, . - Y i .  - Y . jk+Yi . . + Y .  .+ 
Y . .  ,-Y.. . 

?’,=Y. ~ k - Y . . . 

h 

(note that $=Y.. . equals zero because Y‘ has been 
centred.) 

I 

t 
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Now, each of the seven matrices in decomposition Appendix 2: the AICC criterion 

47 

Y=Yp+Y,+Y,+YpA+Y,,+Y,,+y,,, 

is obtained by the estimations of the effects given above. 
For example, the element of line ijk and column I of 

matrix Y, 

y'Fijk=flk=x! k, j 

The total inertia is obtained from: 

1 (Yf jk - Y!..) 

Inertia for each source of variation is obtained in a 
similar way. For example we have for foitnights: 

Let us consider the multivariate regression model: 

Y=XB+U 

where Y, corresponds to p response variables on 
each of n individuals, X,,, is a known matrix of 
covariate values, and Bmxp is a matrix of unknown 
regression parameters. The rows of the error matrix 
U, are assumed to be independent, with identical 
N,(O,X). Maximum likelihood estimators for B and 
C are B=(X'X)- 'XY, and %=Y'(I - X(XX)- 'X) 
Yln. 

The AICc value for model (1) is then defined as: 

(Y!..k-Y!..)2 - AICc=n log Ikl+dp(n+m) 

where d=n/(n - (m+p+ 1)). 
&=I[ I ijk c 816 - 

Note that the additivity of inertias (cf. Equation 4) 
stems from that of the sum of squares decomposition in . .  
a balanced design. 
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