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Use of Princii)al Component Analysis with Instrumental = -
Variables (PCAIV) to analyse fisheries catch data

‘ Nicolas Pech and Francis/Laloé

. Pech, N.; and Lalog, F. 1997. Use of Principal Component Analysis with Instrumental
. Variables (PCAIV) to analyse fisheries catch data. — ICES Journal of Marine Science,
54: 32-47.

Principal Component Analysis with respect to Instrumental Variables (PCAIV) is a
statistical tool for cxploratory analysis combmmg both principal component analysis
and multivariate regression analysis. This tool is used to analyse mean fortmghtly
catches obtained by Senegalese fishermen in two ports from 1975 to 1991. The aim of
the study is to identify significant sources of variation and to present separately the
impact of each of them. These descriptions are used to characterize the initial data.
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L’Analyse en Composantes Principales sur Variables Instrumentales (ACPVI) est un
outil statistique d’analyse exploratoire faisant intervenir I'analyse en composantes
prmCIpales et Panalyse de regression multivariée. Cet outil est utilisé ici pour I'analyse
d’estimations bimensuelles de rendements de péche réalisés par les pécheurs artisans
Sénégalais dans deux ports de 1975 4 1991. L’objet de notre étude est d’identifier des
sources de variation influentes en présentant séparément I'impact de chacune d’entre
elles. Ces descriptions seront ensuite utilisées afin de former une synthese des données
initiales.
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technical interactions (the latter include the “effort allo-
cation problem”, see Laurec et al., 1991) require multi-
species approaches. To that end, data from individual

Introduction

The Centre de Recherches Océanographiques de Dakar-
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Thiaroye (CRODT) of the Institut, Sénégalais de
Recherche Agricole (ISRA) has been collecting data for
at least 20 years on the artisanal fishery along the coast
of Senegal, using a consistent sampling design (Gérard
and Greber, 1985; Lalog, 1985). The objective of this
system is to obtain fishing effort and catch data used for
stock assessment purposes. In this design, data are
collected within strata defined by combinations of gears,
fortnights' and ports of landing.

While stock assessments are generally done on a single
species basis, questions concerning biological and

'Fortnight is defined here as “half a month”, thus there are 24
fortnights in a year.
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fishing trips are usually analysed using multivariate
methods and cluster analysis to build up typologies of
fishing units or typologies of “métiers” (Murawski ez al.,
1983; Biseau and Gondeaux, 1988). In our experience
(Gérard and Greber, 1985; Laloé and Samba, 1990;
Samba and Lalog, 1991; Ferraris and Samba, 1992),
such analyses of these kinds of data clearly indicate the
existence, even within the use of a particular gear, of
different “tactics™ (Laloé and Samba, 1990) or “métiers”
(Laurec er al., 1991) or “technotopes” (Fay, 1994). In
addition, the fishermen may take information from the
“environment” into account in order to decide which
“métier” to use (Garrod, 1973; Hilborn, 1985; Allen
and MacGlade, 1986; Laurec:et al,, 1991; Lalo& and
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Use of Principal Component Analysis with Instrumental Variables 33

Table 1. Fish species mainly caught by hand-line in Senegalese fishery, with code numbers used on
the figures in this paper. Ouolof is one of the national languages of Senegal.

Code Scientific name English name Ouolof name
1 Pomatomus saltatrix Bluefish Ngott
2 Pagrus caeruleostictus Blue spotted seabream Kibaro naar
3 Decapterus rhonchus False scad Diaf
4 Epinephelus aeneus White grouper “Thiof
5 Euthynnus alletteratus Little tuny Qualass
6 Pagellus bellotti Red pandora Youfouf
7 Arius latisculatus Rough-head sea catfish Dakak
8 Alectis alexandrinus Alexandria pompano Yawal
9 Trichiurus lepturus Largehead hairtail Tallar
10 Epinephelus guaza Dusky sea perch Kauthieu
11 Pseudot. senegalensis Cassava croaker Feute
12 Rhincbato spp. Guitarfish Thiaukher
13 Argyrosomus regius Meagre Seukhebi
14 Sphyrna spp. Sharks Gaindé Guédj
15 Epinephelus goreensis Dungat grouper Doi
16 Lagocephalus laevigatus Smooth puffer Boun foki
17 Sarda sarda Atlantic bonito Oual
18 Dentex canariensis Canary dentex Kibaro ngokh
19 Diversus ienaplenus Various Ndiakhas
20 Coryphaena hippurus Common dolphinfish Ndiakhssine
21 Istiophorus albicans Atlantic sailfish Dieunou dong
22 Mustelus mustelus Smooth hound Mane
23 Brotula barbata Bearded brotula Mori
24 Octopus vulgaris Common octopus Yaranka
25 Dentex macrophtalimus Large eye dentex Mbague mbagnére

Samba, 1991); the term environment here refers to the
environment experienced by the fish as well as that
experienced by the fishermen (Fréon, 1986; Cury and
Roy, 1988, 1991; Samba and Lalog, 1991).

While the time series of mean catches for a single
species may simply reflect changes in abundances as is
usually assumed, these changes may also be due to many
other sources of variation and interactions. Therefore,
we need tools to partition out these sources of variation.
In this paper, we present an application of principal
component analysis with respect to instrumental vari-
ables (PCAIV: Rao, 1964; Inzenman, 1980; Sabatier

v

Table 2. Decomposition of the inertia according to orthogonal
subspaces induced by instrumental varjables. This variability is
expressed in terms of inertia (see Appendix 1) which is the
multivariate expression of the variance.

Degree of -

Source of Inertia
variation freedom Inertia df
Port 1 1.87 1.87
Year 16 2.98 0.19
Fortnight 23 4.89 0.21
Port x year 16 1.33 0.08
Port x fortnight 23 225 0.10
Year x fortnight 368 6.56 0.02
Year x port x fortnight 368 5.12 0.01
0.03

Total o 815 25

et al, 1989; Lebreton et al, 1991) to partition the
sources of variation in the Senegalese landings data for
handlines. This method combines features of the more
familiar methods of multivariate regression analysis and
principal component analysis (PCA). The partitions
identified herein correspond to inter-annual variation,
intra-annual variation, variation of port of landing and
the interactions between all of these. Our approach
emphasizes the use of graphics.

Materials and methods
Data

For our analysis we used data' extracted from the
CRODT data base (Ferraris e al, 1993), consisting of
mean catches of fish from handlines on daily trips and
landed in one of two ports (Saint-Louis and Kayar).
These catch data are given by species and by fortnight
from 1975 to 1991. The 25 species that we considered are
listed in Table 1. In our analysis the data were in matrix
form Z, with 816 rows and 25 columns, where each
column (or variable) represents a species and each of the
816 rows (2 ports x 17 years x 24 fortnights) contains
the catch by species. Based on empirical evidence of
skew, we transformed the data with the logarithmic
function (Y=log(Z+1)). Moreover, Y has been centred
and scaled in columns, so that the mean of each column
is zero with variance equal to one.
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Figure 1. Principal component analysis of Y with respect to Fortnight, representation of species on the principal plane, within the

correlation circle.

Method

For species | the data consist of a 816 element vector, Y!
(column 1 of Y), with each element y'; of Y' being the
transformed mean catch for port i during year j and for
fortnight k. ’

Such data are usually represented in terms of an
analysis of variance model (see for example Draper and
Smith, 1981 or Arnold, 1981). This type of model is
univariate (ANOVA) when applied to one species (Y?),
and multivariate (MANOVA) when applied to all of the
species (Y). The model contains three main factors
(Port, P; Year, A and Fortnight, F), three two-way
interactions terms (Port x Fortnight, PF; Port X Year,
PA; Year x Fortnight, AF) and one three-way inter-
action term (Year x Fortnight X Port, AFP). There
is one observed catch for each combination of the
factors (Port, Year, Fortnight) so that the design is
balanced and the main factors and interaction terms are
orthogonal.

Let us consider Y' and the complete ANOVA model
based on the three previously defined factors (i.e. includ-
ing main and interaction terms). Because there is no
replication the model is saturated and hence the residual
term is null. Such a model allows us to decompose Y'
(see Appendix 1) into additive terms, each of these being
linked to a factor or an interaction between factors:

Y=Yt YA+ Yt Yoy + Y et Yiar + Yiare M
For example, Y’ contains the fortnight effect of Y.
Moreover, due to the orthogonality we have a similar

decomposition for the variance of Y'..

1=var(Y)=var(Y'p)+var(Y', )+
var(Y'g)+- - -+ var (Y'sep) @

Due to the initial scaling of the columns of Y,
var(Y)=1. Thus, for example, that part of the variance
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Figure 2. Fitted values from the first component of seasonal effect of Istiophorus afbicans, —— seasonal effect, — —— fitted values.

of Y' explained by the fortnight factor is expressed as
var(Y's), the value of which will be between zero and
one. ‘

Considering all the species, the saturated MANOVA
model generalizes the. univariate decomposition pre-
sented above to,

Y=Ypt Yo+ Y et YpatYert Yart Yaps. (3)

Y therefore consists of a 816 x 25 matrix which is
decomposed in a sum of 7 fitted matrices (see Appendix
1). Bach of these contains the effects of the 25 species
relative to a factor or interaction. Note that by consid-
ering the I' column of each of those matrices, we find
again the decomposition in (1).

Similar to (2), we have an additive decomposition for
the variability of Y. This variability is now expressed in
terms of inertia (see Appendix 1) which is the multivari-
ate expression of the variance. The inertia of Y (Iy) is
defined as the sum of the variances over the columns, i.e.
1y=2%2%_, var(Y"). Thus, analogous to (2), we obtain,

25 25 25
25= Y var(Y')= Y var(Yp)+--+ ¥, var(Yhee)
1=1

=1 =1

T or

25 =Yy =Tp+ L\ +Tp+Toa+ Ioe+ Iap + Tapp- @

The latter Equation (4) may be expressed as the term
by term sum of the 25 Equations (2). For example,
1.=2%_, var(Y'y) expresses the part of the inertia of Y
explained by the fortnight factor. Furthermore, if each

of the seven sources of variation has no systematic effect
at all, then all the ratios of inertia to the corresponding
degree of freedom have the same expectation. Hence, it
is useful to consider those ratios in order to describe the
impact of the various sources of variation.

Being saturated, such a model is not explanatory
because it contains as many parameters as we have data.
Nevertheless, it does allow us to link the catches to
the qualitative or instrumental variables (Port, Year,
Fortnight or their interactions) used in the sampling
design. The method used to study the relationship
between catches and instrumental variables was princi-
pal component analysis with respect to instrumental
variables, or PCAIV (Rao, 1964; Sabatier er.al., 1989).

Principal Components Analysis (PCA) is a useful tool
for description of global linear correlations between
variables (see, for example, Biseau and Gondeaux,
1988). However, particularly in the case of data collected
according to a sampling design, it may be interesting to
present an analysis of the correlations of the variables of
interest conditional on the instrumental variables.
PCAIV is suitable method for this purpose. In practice,
a PCAIV on several variables of interest relative to an
instrumental variable consists of carrying out a PCA on
the fitted variables of interest after the regression on the
instrumental variable (Sabatier e af., 1989). This analy-
sis can be done using any software that has both general
linear models and PCA (e.g. SAS, S-PLUS, Genstat).

As in (3), we decomposed Y into a sum of seven fitted
matrices. Each of them is linked to a factor or inter-
action between factors identified here as instrumental
variables. Such a decomposition may be useful for
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Figure 3. (a) Fitted values from using the first component of seasonal effect of dlectis afexandrinus (species 8) and Epinephelus
guaza (species 10), (b) Fitted values from using the second component of seasonal effect of Alectis alexandrinus (species 8) and
Epinephelus guaza (species 10). (¢) Fitted values from using the two first components of seasonal effect of Alectis alexandrinus

(species 8) and Epinephelus guaza (species 10). For each graph,

—-—- seasonal effect of species 8, ——~ fitted values for species 8.

interpretation purposes. For example, Yy contains the
seasonal effects with respect to the yields and, due to the
orthogonality, those effects may be discussed indepen-
dently of other sources of variation. Hence, PCA of each
of these arrays will allow us to describe the relations

seasonal effect of species 10, - - - - fitted values for species 10,

between yields of the species for each of the seven
sources of variations defined by the saturated model.
Graphical outputs are very useful for the presentation
and interpretation of results. We shall focus on fitted
values of the observations from multiple regression on
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Second component: 23.9 %

First component: 50.9 %

Figure 4. Principal component analysis of Y with respect to Year, representation of species on the principal plane, within the

correlation circle.

principal components (Persat and Chessel, 1989) and
correlation of the variables of interest with the principal
planes. These fitted values will be described in connection
with the presentation of results of the PCA of Y (i.e. the
PCAIV of Y with respect to the factor Fortnight).

Results
Decomposition of inertia

The decomposition of the inertia of Y according to
Equation (4) is presented in Table 2. We can distinguish
two groups here. The first one (Port, Year, Fortnight
and interactions Port x Fortnight and Port X Year)
characterizes terms with low degree of freedom (df),
strong inertia and high ratio of inertia to df. The
second group (interactions Year x Fortnight and
Port x Year x Fortnight) comprises terms with high
degrees of freedom, whose ratio of inertia to df is low.

This latter group accounts for about 47% of the total
inertia.

PCAIV of Y for Fortnight

Representation of the variables in the principal plane
Each PCAIV concerns a fitted matrix whose columns
are not reduced. Hence, their variances, which belong to
[0,1], express the importance of the considered factor.
Figure 1 presents the variables in the plane of the first -
two principal components for PCAIV for Y Fortnight
(i.e. the PCA of Yg). Species are indicated by numbers (1
to 25, see Table 1 for species names) with an associated
line segment of length s, where I=1, . . ., 25. The ratio of
(d; — s,)/d,, where d, is the distance from species number
1 to the centre of the circle, is equal to the square root of
the variance explained by the instrumental variable (e.g.
for Fortnight, var(X's)"?). Therefore the representation
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Second component: 12.4 %

First component: 14.7 %

Figure 5. Principal component analysis of Y, representation of species on the principal plane, within the correlation circle.

of the variables by the principal plane in Figure 1
contains information about:

(1) the quality of the representation by the principal
plane with points closer to the circumference of the
circle being better represented (i.e. higher corre-
lation) and,

(2) the influence of the instrumental variable being
considered which is measured by the length s with
shorter lengths indicating a higher proportion of
the variance being explained.

For example, let us consider (Fig. 1) species 14
{Sphyrna spp.) and 2 (Pagrus caeruleostictus). The posi-
tions of items 14 and 2 indicate that the seasonal effects
of those species are well represented by the principal
plane. However, extremity 2a is nearer to 2 than 14a to

14. This difference corresponds to the differing impor-.

tance of fortnight variabilities. Indeed, the factor fort-
night explains about 45% of the variance of the Pagrus
caeruleostictus, and only 9% for the Sphyrna spp. Hence,

consideration of both extremities of the segment allows
us to make an analysis taking into account the quanti-
tative influence of the factor on each of the species.

On the whole (Fig. 1), many of the species have
important fortnight effects. We distinguish an opposi-
tion between cold season species (1, 3, 4, 5, 10, 13) and
warm season species (7, 8, 20, 21). A positive correlation
with the second component is interpreted here as indi-

"cating a seasonal effect which extends past the cold

season (species 10, Epinephelus guaza) or anticipates the
warm season (species 8, Alectis alexandrinus). This
interpretation may be illustrated by looking at the fitted
values from using principal components.

Fitted values from principal components

We obtained fitted values from principal components
by applying a multiple regression of Yz on the
first principal components. This allows one to
substitute a smoothed image for Y'r taking into
account the structure of all the data (Persat and
Chessel, 1989).
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Figure 6. Principal component analysis of Y with respect to interaction Port x Fortnight, representation of specxes on the principal
p: Y P P

plane, within the correlation circle.

The seasonal effect for Istiophorus albicans (species 21)
is highly correlated with the first principal component
(Fig. 1). Therefore model fitting with this component is
very efficient (Fig. 2) and allows a clear interpretation of
this component and of the seasonal effect for Istiophorus
albicans. This is also true for the seasonal effects for the

other species that are highly correlated (positively or.

not) with the first component. This_first principal com-
ponent is characteristic of the succession of seasons, a
warm and rainy season from July to October (fortnights
13-20) and a cold and dry season from December to
May (fortnights 23, 24 and 1-10) — June (fortnights 11,
12) and November (fortnights 21, 22) being “inter-
seasonal”. The cold and dry season is also characterized
by the presence of an upwelling phenomenon (Rébert,
1983).

The seasonal effects of mean catches for Alectis alex-
andrinus (species 8) and Epinephelus guaza (species 10)
are combinations of the two first principal components
(Fig. 3a, b, ©); the first species is mainly caught during

the warm season, with high values observed in the
inter-seasonal month of June (fortnight 11 and 12). The
second species is mainly caught during the cold season,
also with high values in June. This characteristic is taken
into account by the second component which presents a
peak during June and July (Fig. 3b). We may note on
Figure 3a and b that the contributions of first compo-
nent are in opposition and that the contributions of the
second are quite similar.

Species whose code number or item is not close to the
correlation circle (Fig. 1) are not well correlated with a
combination of the first two components. For such
species (for example species 12, 15, 23, 25), a useful
model fit would require more than two components.

PCAIV of Y for Year

The principal plane (Fig. 4) explains about 75% of the
inertia of Y 5. The variables whose year effect is strong
are generally well fitted by the model. We can distinguish
three groups of variables: species (23, 24) (with an
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Figure 7. Fitted values from using the interaction Port x Fortnight by aid of the first component f{or Coryphuena hippurus,

including main effects.

interaction, ----- fitted.
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Figure 8. Fitted values from using the interaction Port x Fortnight by aid of the two first components for Pomatomus saltatrix,

including main effects. interaction, *---- fitted.

increasing year effect) are in opposition to species (1, 5,
7, 14) whose year effect is decreasing. These two groups
are orthogonal to species (12, 13, 19, 22), whose year
effect first increases and then decreases.

If we now consider the general PCA of Y (Fig. 5), and
the PCA of Yg and Y,, we may observe one of the
interesting insights from PCAIV. On the general PCA

" for example, species 1 (Pomatomus saltatrix) and 7
(Arius latisculatus) appear to be quite orthogonal

(r= —0.06). Considering the PCA of Y (Fig. 1), shows
that their seasonal effects are opposed (one cold season
species versus warm season species), while PCA of Y,
(Fig. 4) shows that their inter-annual variabilities are
actually positively correlated.

PCAIV of Y for Port
The qualitative variable Port having two modalities and
therefore only generates a subspace of dimension 1. That
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Figure 9. Principal component analysis of Y with respect to interaction Port X Year, representation of species on the principal

plane, within the correlation circle.

is why we do not show the representation in the princi-
pal plane. We can distinguish St Louis’s species (7, 1)
from Kayar’s species (6, 20, 21, 23, 25).

PCAIV of Y for Port x Fortnight

The influence of this factor on species is variable (Fig. 6).
It is difficult to interpret the interactions without taking
into account the main eflects. As an example, consider
the following representations for species 20 (Coryphaena
hippurus) and species.1 (Pomatomus saltatrix). The glo-
bal fitting of species 20 was constructed as the regression
on first component of PCA on Fortnight, Port and
Port x Fortnight (Fig. 7). For species 1, we observe that
interaction Port X Fortnight is principally correlated
with the second principal component. So, we may obtain
fitted values (Fig. 8) for this species with first component
of PCA of Y&, the only component of PCA. of Yy, and
the two first components of PCA of Ypg.

. We see that the interactions may reflect different
situations. For Coryphaena hippurus, the catches are

mairﬂy“made at Kayar during the warm season; catches
are quite small during the cold season in the two ports.
For Pomatomus saltatrix, the interaction highlights a

* possibly more interesting situation, with catches made

during a longer period of the cold season in St Louis.
This is in agreement with available knowledge on the
migratory pattern of that species (Champagnat et al.,
1983).

PCAIV of Y for Year x Port

The influence of this interaction is weak (Fig. 9). Only
species 24 (Octopus vulgaris) has a significant inter-
action. Indeed, the exploitation of this species is quite
recent and takes place mainly at Kayar.

PCAIV for Y for Year x Fortnight and Port X
Fortnight x Year

Inertias corresponding to these effects are strong, but
with a low ratio inertia/df (Table 2). Contrary to pre-
vious PCAIV, inertia is spread out over the principal
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Figure 10. Principal component analysis of Y with respect to interaction Year x Fortnight, representation of species on the

principal plane, within the correlation circle.

components and no one or two of the components

dominate enough to represent typical behaviours (Figs
10 and 11). .

A global model

In preceding sections, partial models for fitted values
obtained from the principal components were consid-
ered. Taking into account a small number of principal
components, we may fit the model in a quite satisfying
way with each term of the decomposition as given in
Equation (3). It is important to Yook at the data i.e. at
the matrix Y itself. This may be done by pooling the
partial results and by summing the results for each fitted
matrix. For example, using the one component for the
Port effect and three components for the six other
sources of variation (Table 3). We present this model fit
with species 1 (Pomatomus saltatrix) in Figure 12b. Such
a mode] fit may be done for each species. This kind of

model should be considered to be a non-parametric
model because it was constructed as a linear combi-
nation of a limited number of smoothed series (i.e.
principal components).

As an alternative to the above, a parametric model
may be obtained by fitting multivariate linear models.
The best-fitting model can be selected among a greater
number of possibilities using a criterion derived from the
Akaike’s information criterion (Hurvitch and Tsai,
1989; Sakamoto et al., 1986) and adapted for multi-
variate models (Bedrick and Tsai, 1994; see Appendix 2).
Among 165 possible linear models, we selected the
following expression:

Y=Port-+P(A)+H3+Port x P(A)+Port x H3
+P(A) x H3+Port x P(A) X H3+&

where H3 is a set of six sine and cosine functions on the
fortnight number of respective periods 24, 12 and §;
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Figure 11. Principal component analysis of Y with respect to interaction Port x Year x Fortnight, representation of species on the

principal plane, within the correlation circle.

Table 3. Decomposition of the inertia according to orthogonal
subspaces induced by principal components. This variability is
expressed in terms of inertia (see Appendix 1) which is the
multivariate expression of the variance.

Source of Number of Inertia/initial
variation components Inertia inertia
Port 1 1.87 1

Year 3 2.42 0.81
Fortnight 3 "4.13 0.84
Port X year 3 0.92 0.69
Port x fortnight 3 1.87 0.83
Year X fortnight . 3 2.06 0.31
Year x port x fortnight 3 1.47 0.29

P(A) is a polynomial of degree 6 on the year number.
This model has 97 degrees of freedom, and the de-
composition of sum of squares is given in Table 4.
However, this model must be not considered as com-

pletely optimal because assumptions of homogeneity of
variances and normality do not hold. Fitted values from
this model are also given for Pomatomus. saltatrix on
Figure 12b.

The parametric and non-parametric versions of the
analysis are compared by considering Tables 3 and 4,
and Figure 12b, Furthermore, values obtained by the
two methods are similar for each species, as shown by
the quite high correlation values (Table 5).

The versatility of the two methods is illustrated in
Figure 12 where we present the original data set, the
fitted values described above and the results of two
partial models, of potential interest for Pomatonus
saltatrix. In Figure 12¢ we show the fitted values using
one component for the Port effect and three components
for the two other main effects and interaction
Port x Fortnight. We also present in Figure 12c the
fitted values obtained from the linear model:

Y=Port-+P(A)+H3+Port x H3+¢
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(a)

St Louis

Kayar

Figure 12. Yields of Pomatomus saltatrix. Fitted values from principal components (continuous lines) and fitted values with linear
models (dotted lines). (a) Observed yields. (b) Fitted vields {rom PCAIV and the linear model with all the sources of variations (see
text). {(¢) Fitted yields from PCAIV and the linear model with the three main effects and interaction Port x Fortnight. (d) Fitted
yields from PCAIV and the linear model with the three main effects only.

Table 4. Decomposition of the inertia according to orthogonal subspaces induced by the selected
model. This variability is expressed in terms of inertia (see Appendix 1) which is the multivariate

expression of the variance.

Source of Inertia/initial
variation Df Inertia Inertia/df inertia
Port 1 1.87 1.87 1
P(A) (year) 6 2.43 0.40 0.82
H3 (fortnight) 6 4.56 0.76 0.93
Port x P(A4) 6 0.99 0.17 0.74
Port x H3 6 2.02 0.33 0.89
P(4)x H3 36 222 0.06 0.33
P(A4) % port x H3 36 148 0.04 0.28
Residuals : 718 943 0.01

Total 815 25

0.03

Figure 12c includes the previously discussed (see Fig. 8)
results on the difference between intra-annual yield
patterns in Kayar and Saint-Louis, together with the
inter-anoual trend of those yields.

The results given in Figure 12d ‘were obtained by
‘dropping the components relative to the interaction
Port x Fortnight in the model fitting procedure for the

principal components and the term Port X H3 in the
linear model.
Both methods give quite similar results in the three

" cases. Resulis presented in Figure 12 may be used

to illustrate the nature of what is taken into account
from the original data when using one source or a
combination of sources of variation.
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Table 5. Correlation for each species between adjusted variables
for both models (first cofumn); between adjusted variables for
the parametric model and initial data (second column); between
adjusted variables for the non parametric model and initial data
(third column).

Species Cor(Y p, Y np) Cor(Yp, ¥) Cor(Y np, Y)

1 0.92 091 " 0.89
2 0.86 0.86 0.79
3 0.83 0.82 0.76
4 0.83 0.81 0.86
5 0.80 0.76 0.88
6 0.88 0.88 0.82
7 0.92 0.81 0.78
8 0.88 0.79 0.73
9 0.34 0.80 0.74
10 0.73 0.70 0.79
11 0.86 0.77 0.71
12 0.76 0.77 0.66
13 0.77 0.66 0.66
14 0.86 0.86 0.77
15 0.60 0.62" 0.83
16 0.75 0.65 0.69
17 0.65 0.64 0.75
18 0.70 0.66 0.74
19 0.85 0.77 0.79
20 0.91 ©0.80 0.74
21 0.94 0.89 0.84
22 0.87 0.78 0.77
23 0.86 0.88 0.83
24 0.73 0.95 0.72
25 0.85 0.83 0.82

Qur intention-is not to choose one model over the
other. Indeed, the non-parametric model can be consid-
ered to be a more parsimonious summary of the data
than the parametric model. However, the components of
the non-parametric model are linear combinations of the
yields fitted using instrumental variables. Hence, they
form a summary of the influences of those factors. Such
a summary may be considered an “ad hoc smoothed”
transformation of the factors. So, principal components
cannot be considered regressor variables in the usual
sense and we cannot consider the non-parametric model
as to be a classical multiple regression model with 19
independent variables.

Discussion and conclusion -

Descriptions made by means of PCAIV helped identify
the most important sources of variation among those
defined by the sampling design. Such sources of vari-
ation have been described by fitting the model with the
major factors-with the aid of principal components.
The initial data set Y may be described in a satisfying
way by using a few components in the model. A similar
model fit may also be obtained by selecting a parametric
model from a family of candidate models. Both appear

to be equivalent in ‘the sense that principal data
characteristics are taken into account.

Such models may be considered with some criticism
with respect to violations of assumptions usually
required for classical inference (independence of the
residuals, homogeneity of their variances). However,
because they capture some major characteristics of our
initial data set, we can think that they have been
formulated according to the principle expressed by
Lebreton ez al. (1992): :

“We approach data analysis in this spirit: we want
to find an useful model that correctly represents the
biologically important structure that is real in the
data. We may be unable to ferret out the correct
form of the more subtle structure in the data. In this
case, we believe it is appropriate to sweep this
residual structure into the model error component.”

The analysis presented in this paper is exploratory,
not explanatory. It does not result in a model of
population dynamics nor of fleet dynamics. We have
only tried to give a parsimonious synthesis of the
spatio-temporal variability. This variability represents
many sources of variation in environmental conditions
of fish species and fishermen and from interactions
between such sources. Hence, further models are needed
and the results presented here should be considered as
possible frameworks for analysis of outputs of simu-
lation models. The use of “multi-species—multi-fleet”
models appears to be necessary in the context of many
fisheries (Garrod, 1973; Gulland and Garcia, 1984;
Hilborn, 1985) and such models have been used in the
Senegalese case (Laloé€ and Samba, 1990, 1991; Lefur,
1995). Model outputs have to be compared with avail-
able data sets for tuning and validation purposes, and
the methods presented here offer tools for describing the
salient features of the available data.
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Appendix 1: the decomposition of matrix
Y and the inertia

Let us consider Y'. The complete model based on the
three previously defined factors (i.e. including main and
interaction terms) may be written as an addition of
effects:

TR TR PN 1 1 1 |
Yie=p tpytay+ +pay+plytafly, +afpi+ e

where i=1, 2 refers to the port; j=1, .. ., 17 refers to the
year; k=1, ..., 24 refers to the fortnight.

With usual notations, estimators of parameters are
(cf. Draper and Smith, 1981, p. 446)

W=y, ..

pi=Y,..—Y...

A=Y, Y.
f’k=Y..k—Y...
L’)Elij=Yij-—Yi"-Y'j'+Y"'

=Y =Y — Y. +Y .

Al =Y =Y mY YL
I’)\aflijk:Yijk—Yij._'Yi.k_Y.jk+Yi..+Y-j-+
Y. . ~Y...

(note that i'=Y... equals zero because Y' has been
centred.)
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Now, each of the seven matrices in decomposition
Y=Ypt+ YA+ Yet+Ypat Yprt YaptYare

is obtained by the estimations of the effects given above.
For example, the element of line ijk and column 1 of
matrix Yg

yll-‘;jk:flk=y.l.k’j
The total inertia is obtained from:
(Yh—Y)?
I,= —_—
Y %ﬁ[% 816

Inertia for each source of variation is obtained in a
similar way. For example we have for fortnights:

(Ye—Y'L)2"

I.=
F ;[% 816

Note that the additivity of inertias (cf. Equation 4)
stems from that of the sum of squares decomposition in
a balanced design.

Appendix 2: the AICc criterion

Let us consider the multivariate regression model:
Y=XB+U

where Y, ., corresponds to p response variables on
each of n individuals, X, ., is a known matrix of
covariate values, and B,, xp is @ matrix of unknown
regression parameters. The rows of the error matrix
U, xp are assumed to be independent, with identical
Ny(0,Z). Maximum likelihood estimators for B and
T are B=XX)"'XY, and £=Y'(I—-XXX)"'X")
Y/n.
The AICc value for model (1) is then defined as:

AlCc=n log 12 +dp(n+m)

where d=n/(n — (m+p+1)).







