Original article

Efficacy of the bisbenzylisoquinoline alkaloids in acute and chronic *Trypanosoma cruzi* murine model

Alain Fournet a,*, Antonieta Rojas de Arias b, Maria Elena Ferreira b, Hector Nakayama b, Susana Torres de Ortiz b, Alicia Schinini b, Margarita Samudio b, Ninfa Vera de Bilbao b, Maria Lavault c, Frédéric Bonté d

a Institut de Recherche pour le Développement, ex-ORSTOM, UR "Santé", 213 rue La Fayette, 75480 Paris Cedex 10, France
b Instituto de Investigaciones en Ciencias de la Salud, Department of Tropical Medicine, Casilla de Correo 2511, Asunción, Paraguay
c Laboratoire de Pharmacognosie, Faculté de Pharmacie d'Angers, 16 boulevard Daviers, 49045 Angers, France
d LVMH Recherche, 25 L rue des peupliers, 92752 Nanterre, France
Aims and Scope: The International Journal of Antimicrobial Agents, the official journal of the International Society of Chemotherapy, will provide comprehensive and up-to-date peer-reviewed reference information on the physical, pharmacological, in vitro and clinical properties of individual anti-microbial agents (antiviral agents, antiparasitic agents, antibacterial agents, antifungal agents, immunotherapeutic agents, etc.). In addition, the journal will signal new trends and developments in the field through highly authoritative review articles on antimicrobial agents, immunomodulators and immunotherapy. Special attention will be given to articles providing insight into the problems of antimicrobial resistance, local as well as world-wide, both in the hospital and in the community. Papers on the underlying mechanisms and on immunomodulating agents are also welcome. Both solicited reviews by top experts in the mentioned fields as well as high-quality original research papers will be published.

Editor-in-Chief
Prof. J.D. Williams, Editorial Office IJAA, 7–9 William Road, London NW1 3ER, United Kingdom; Tel.: (+44) 171 3800933; Fax: (+44) 171 3800828; e-mail: jd.williams@grmicro.co.uk

Editorial Assistant
Dr. F.A. Drasar, Editorial Office IJAA, 7–9 William Road, London NW1 3ER, United Kingdom

Consulting Editor
Prof. J. Verhoef, Eijkman-Winkler Institute of Medical and Clinical Microbiology, Room G 04/515, University Hospital Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands; Fax: (+31-30) 2541770.

Editors
Prof. E. Bergogne-Bérénzé, Laboratory of Microbiology, C.H.U. Bichat, 46 rue Huchard, 75877 Paris, France; Tel: (+33-1) 40258500/01, Fax: (+33-1) 42289951.
Prof. I.M. Hoepelman, Dept. of International Medicine, Eijkman-Winkler Institute of Medical and Clinical Microbiology, University Hospital, P.O. Box 85500, 3508 GA Utrecht, The Netherlands; Tel.: (+31-30) 2506266, Fax: (+31-30) 2518328; e-mail: I.M. Hoepelman@digd.a2u.nl
Prof. T. Bergan, Kaptein W. Wilhelmsen og Frue, Institute of Medical Microbiology, University of Oslo and Rikshospitalet, 0027 Oslo, Norway; Tel: (+47) 22 895599; Fax: (+47) 22 200108.
Prof. W.M. Scheld, Professor of Internal Medicine and Neurosurgery, Division of Infectious Diseases, University of Virginia, Health Sciences Center, Department of Medicine, Charlottesville, VA 23290, USA; Tel.: (+1) 804 9245241; Fax: (+1) 804 924 2885.
Prof. J. Kumazawa, President, Japan Society of Chemotherapy, 2-20-8 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan; Tel.: (+81) 3 34937129; Fax: (+81) 3 54340843; e-mail: karyo@jc4.so-net.ne.jp

Review Editor
Dr. I.M. Gould, Department of Medical Microbiology, Aberdeen Royal Infirmary, Forresdeliver, Aberdeen AB25 2ZB, United Kingdom; Tel.: (+44) 1224 840668; Fax: (+44) 1224 840632

International Editorial Board

N. Aikawa (Tokyo, Japan)
E. Akalin (Istanbul, Turkey)
H.H. Balfour (Minneapolis, USA)
J.E. Bennett (Bethesda, USA)
E. De Clercq (Leuven, Belgium)
R. Feld (Toronto, Canada)
F. Hayden (Charlottesville, USA)
K. Klugman (Johannesburg, S. Africa)
H.C. Korting (Munich, Germany)
L. Mandell (Hamilton, Canada)
K.P. McAdam (Gambia, W. Africa)
J. Mills (Fairfield, Vic., Australia)
F. Mossele (London, UK)
C.H. Nightingale (Hartford, USA)
J.C. Pechère (Geneva, Switzerland)
M. Pinto (Santiago, Chile)
A. Ronald (Winnipeg, Canada)
E. Rubinstein (Tel-Hashomer, Israel)
B. Wiedemann (Bonn, Germany)
R. Wise (Birmingham, UK)
M. Yagiisawa (Tokyo, Japan)

Publication information: The International Journal of Antimicrobial Agents (ISSN 0924-8579). For 2000, volumes 15–16 are scheduled for publication. Subscription prices are available upon request from the Publisher or from the Regional Sales Office nearest you or from this journal’s website (http://www.elsevier.nl/locate/isc). Further information is available on this journal and other Elsevier Science products through Elsevier’s website: (http://www.elsevier.nl). Subscriptions are accepted on a prepaid basis only and are entered on a calendar year basis. Issues are sent by standard mail (surface within Europe, air delivery outside Europe). Priority rates are available upon request. Claims for missing issues should be made within six months of the date of dispatch.

Orders, claims and product enquiries: please contact the Customer Support Department at the Regional Sales Office nearest you: New York: Elsevier Science, PO Box 945, New York, NY 10159-0945, USA; Tel: (+1) (212) 633 3730 [toll free number for North American customers: 1-888-4ES-INFO (437-4636)]; fax: (+1) (212) 633 3680; e-mail: usinfo-f@elsevier.com Amsterdam: Elsevier Science, PO Box 211, 1000 AE Amsterdam, The Netherlands; Tel: (+31) 20 4853757; fax: (+31) 20 4853432; e-mail: ninfo-f@elsevier.nl Tokyo: Elsevier Science, 9-15 Higashi-Azabu 1-chome, Minato-ku, Tokyo 106-0044, Japan; Tel: (+81) (3) 5561 5033; fax: (+81) (3) 5561 5047; e-mail: info@elsevier.co.jp Singapore: Elsevier Science, No. 1 Temasek Avenue, #17-01 Millenia Tower, Singapore 039192; Tel: (+65) 434 3272; fax: (+65) 337 2230; e-mail: asianinfo@elsevier.com.sg Rio de Janeiro: Elsevier Science, Rua Sete de Setembro 111/16 Andar, 20050-002 Centro, Rio de Janeiro-RJ, Brazil; Tel: (+55) (21) 509 5340; fax: (+55) (21) 507 1991; e-mail: elsevier@campus.com.br [Note (Latin America): for orders, claims and help desk information, please contact the Regional Sales Office in New York as listed above]

Members of Societies affiliated to the International Society of Chemotherapy may obtain The International Journal of Antimicrobial Agents at a special rate. Please contact the Publisher for further information and conditions or visit the ISC Website at URL: http://www.elsevier.nl/locate/isc.

Back volumes: Please contact the Publisher.
Efficacy of the bisbenzylisoquinoline alkaloids in acute and chronic Trypanosoma cruzi murine model

Alain Fournet a,*, Antonieta Rojas de Arias b, Maria Elena Ferreira b, Hector Nakayama b, Susana Torres de Ortiz b, Alicia Schinini b, Margarita Samudio b, Ninfa Vera de Bilbao b, Maria Lavault c, Frédéric Bonté d,1

a Institut de Recherche pour le Développement, ex-ORSTOM, UR "Santé", 213 rue La Fayette, 75480 Paris Cedex 10, France
b Instituto de Investigaciones en Ciencias de la Salud, Department of Tropical Medicine, Casilla de Correo 2511, Asunción, Paraguay
c Laboratoire de Pharmacognosie, Faculté de Pharmacie d'Angers, 16 boulevard Daviers, 49045 Angers, France
d LVMH Recherche, 25 L rue des peupliers, 92752 Nanterre, France

Received 3 March 1999; accepted 28 June 1999

Abstract

We have shown previously that daphnoline and cepharanthine are active against Trypanosoma cruzi and inhibited trypanothione reductase. The effects of oral treatments with daphnoline, cepharanthine and benznidazole were examined in Balb/c mice infected with T. cruzi acutely and chronically. In acute infections, parasitaemia was significantly reduced in the daphnoline-treated mice compared with controls and benznidazole-treated mice. The parasitological cure rate was increased in mice treated with daphnoline. Fifty days after infection, the negative serological response in both models was significantly different for the three tested drugs. Daphnoline showed the highest negative serological rate (48%). In chronically infected mice treated with daphnoline, we were unable to detect parasites in 70% of mice. The results obtained of oral treatment of daphnoline suggest that this bisbenzylisoquinoline may be useful in the treatment of acute and chronic Chagas' disease. This was not seen with cepharanthine, an excellent trypanothione reductase inhibitor. © 2000 Elsevier Science B.V. and International Society of Chemotherapy. All rights reserved.

Keywords: Chagas’ disease; Trypanosoma cruzi; Bisbenzylisoquinoline; Daphnoline; Cepharanthine; Experimental treatment

1. Introduction

It is estimated that 16–20 million people in Latin America are infected with Trypanosoma cruzi [1], and concern has arisen lately that between 50,000 and 100,000 people are infected in the United States [2]. The absence of effective drugs to control Chagas’ disease creates a need to find active chemotherapeutic agents as an urgent priority. [3]. The present drug, benznidazole is not only toxic, but of modest efficacy even in acute infections.

We have previously reported [4] the trypanocidal activity of bisbenzylisoquinoline (BBIQ) alkaloids against epimastigote forms of T. cruzi in vitro. Later, we confirmed their trypanocidal activity against bloodstream forms of T. cruzi [5]. BBIQ alkaloids have been described as antiprotozoal [6,7] and anti-inflammatory [8] compounds. These compounds have shown interesting activity in T. cruzi-infected BALB/c mice in the acute phase when administered orally [9]. In such experiments, we obtained parasitologic cure with curine, cyclicine, isotetrandrine, lamine and pheantheme. We also found a correlation between the inhibitory activity of trypanothione reductase (an enzyme which catalyses the elimination of reactive oxygen species within T. cruzi) and the lethal concentration for the parasites [10]. The trypanocidal action of BBIQ alkaloids can

* Corresponding author. Tel.: +33-558-9806-17.
E-mail address: alain.fournet@wanadoo.fr (A. Fournet)
1 Present address: Parfums DIOR, avenue de Verdun, 45804, St Jean de Braye, France.

0924-8579/00/$ - see front matter © 2000 Elsevier Science B.V. and International Society of Chemotherapy. All rights reserved.
PII: S0924-8579(99)00117-X
also be associated with blocking of calcium channels
[11], an important mechanism for the penetration of the
parasite into the host cell [12].

The present study was designed to compare the effi-
cacies of cepharanthine and daphnoline (Fig. 1) with
benznidazole in acute and chronic T. cruzi-infected
mice. Can administration of these compounds suppress
parasitaemia, prevent death and depress the serological
response in acute and chronic infections?

2. Materials and methods

2.1. Compounds

Cepharanthine was extracted from the root bark of
Stephania cepharantha (Menispermaceae) and daphno-
line from Albertisia papuana (Menispermaceae) [13].
Physical and spectral data (proton magnetic resonance,
'H- and 13C-nuclear magnetic resonance, and mass
spectrometry) were used to determine the chemical
structure of the compounds, and compared against
reference samples and literature values. Daphnoline and
cepharanthine were used after conversion to hydrochlo-
ride form with solubility in phosphate-buffered saline
(PBS). Benznidazole (N-benzyl-1,1-nitro-1-imidazole-
acetamide) was purchased from Roche (Buenos Aires,
Argentina) and used as a comparator drug.

2.2. Mice and parasites

Female and male BALB/c were bred at the Instituto
de Investigaciones en Ciencias de la Salud (Asuncion,
Paraguay), and were 6–8 weeks of age when used.

Fig. 1. Structures of daphnoline and cepharanthine.

A clone CL of T. cruzi supplied by Dr B. Zingales
(Sao Paulo, Brazil) was used in all the experiments [14].
Maintenance of the T. cruzi strain was carried out in
BALB/c mice inoculated by intraperitoneal route every
14 days. The mice were infected intraperitoneally with
5000 trypomastigotes to produce acute infections. To
produce chronic infections, 1000 trypomastigotes of the
CL strain were used. In chronic infections, there was a
slow developing parasitaemia that attained a peak be-
tween 21 and 28 days, but was tolerated by the majority
of infected mice; 70–80% of animals survive with slow
deterioration of their general physical conditions to-
gether with a negative or inapparent parasitaemia. Each
experiment was repeated four times.

2.3. Drug treatment

2.3.1. Acute infection

In the short-term infections, the treatments were
initiated 4 days after inoculation of the parasite. The
mice were randomly divided into groups of 10 or 15. A
comparator drug, benznidazole (Roche), was selected
for all experiments. Benznidazole and the BBIQ alka-
loids, cepharanthine and daphnoline, in salt form (hy-
drochloride form), were dissolved in 50 μl PBS. The
drugs were administered to BALB/c mice by the oral
route in regimens of 25 mg/kg daily for 30 days. The
applied doses of between one-fifth and one-seventh of
LD50 were chosen for each BBIQ alkaloid as deter-
mined in our laboratory or as given in the literature.

2.3.2. Chronic infection

For the murine model of long-term infection, the
 treatment was started 60 days post-infection at a time
when no circulating parasites are found in 50% of mice.
The method of administration (dose and duration) was
as for acute infection.

2.4. Outcome of treatment

The mortality rates were recorded. Parasitaemias in
control and treated mice were determined weekly for
150 days from tail-vein blood.

Sera from acute or chronically infected mice were
tested twice by immunoblotting, 100 and 150 days
post-infection, and also by enzyme linked immunosassay
(ELISA). Concordance between the ELISA test and
immunoblotting was established using sera from non-
infecte and untreated, infected mice. A locally pro-
duced ELISA kit (Chagas test; IICS, Asunción,
Paraguay) was used following the procedure recom-
mended by the manufacturer. The optical density val-
ues were obtained using an ELISA plate reader (Titerek
Unistan 1).
2.5. Immunoblotting

T. cruzi epimastigotes were harvested, washed in phosphate-buffered saline, pelleted and then lysed in 0.5 ml sodium dodecyl sulphate (SDS) sample buffer (1% SDS, 1% 2-mercaptoethanol, 10 mM Tris, pH 6.8, and 20% glycerol) containing 1 mM phenylmethylsulphonyl fluoride. The lysate was then heated at 100°C for 3 min before electrophoresis was performed in 12.5% polyacrylamide gels using Laemmli buffer system [15]. Gel-separated polypeptides were transferred to nitrocellulose membranes following procedures described previously [16]. Non-specific sites were blocked with 5% skim milk in TBS for 1 h at room temperature (RT) with constant agitation. Membranes were then cut and treated with 1:50 diluted sera in 3% skim milk in TBS for 1 h at RT. These strips were then washed with TBS and incubated with rabbit antiserum to *T. cruzi* epimastigote conjugated to horseradish peroxidase (Dako, Denmark) diluted 1:1000 for 30 min at RT. After the strips were washed with 0.05% Tween-20 in TBS, they were developed with 0.05% 3,3-di-aminobenzidine made in TBS with 0.03% hydrogen peroxide. The reaction was stopped by washing the strips with distilled water.

The means and standard deviations were then calculated. The differences between groups were determined by using Student’s *t*-test or the Kruskal–Wallis non-parametric analysis of variance test for comparing two groups. Significance was established for *P* < 0.05.

3. Results

3.1. Acute infections treated 4 days after infection

The administration of cepharanthine did not modify the course of infection; parasitaemia levels of animals receiving this treatment were similar to the control group (Table 1). The mean value of maximum parasitaemia obtained at the 30th day post-infection was 292.45 ± 65.50 × 10^3 parasites per ml blood in controls and 488.44 ± 115.52 × 10^3 in cepharanthine-treated animals. The mean parasitaemia at day 10 for the daphnoline-treated mice was significantly reduced (*P* < 0.02 compared with controls). Increased parasitaemia was observed between 15 and 30 days post-infection. Mice receiving daphnoline treatment had maximum parasitaemia at the 30th day post-infection, a mean value similar to the control group. Parasitaemia counts between days 20 and 30 confirmed that benznidazole treatment significantly decreased parasitaemia (*P* < 0.001 and *P* < 0.02 compared with daphnoline). At day 50, there was no significant difference in parasitaemia values between controls and mice treated with benznidazole (*P* = 0.075). Prior to sacrifice at the 150th day post-infection, the parasitaemia was significantly reduced in mice treated with daphnoline compared with controls and benznidazole groups (*P* < 0.02).

The results of parasitologic cure are presented in Table 2. Significant parasitologic cures were obtained in mice treated with daphnoline (60%) compared with controls (23.3%) (*P* < 0.05). A mortality rate of 60%, however, was seen in mice treated with cepharanthine compared with controls. Sera taken at 100 days from mice treated with benznidazole or with daphnoline showed a significant serological cure (*P* < 0.05) of 34.4 and 35.5%, respectively (Table 2). These data were confirmed at 150 days post-infection in the daphnoline-treated mice (*P* < 0.002) with a serological cure of 44.0%, and a cure of 31.0% in the benznidazole-treated mice (*P* < 0.05).

3.2. Chronic infection treated 60 days post-infection

Treatment was given for 30 days. At the start of treatment, 25% of mice presented with negative parasitaemia (Table 3). After 20 days of benznidazole,
Table 2
Cure rates in mice with *T. cruzi* acute infection treated with benznidazole, cepharanthine and daphnoline, as judged by absence of parasitaemia or by negative serology

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>Absent parasitaemia/number of survivors</th>
<th>Negative serology/number of survivors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20 days post-infection</td>
<td>50 days post-infection</td>
</tr>
<tr>
<td>None (control)</td>
<td>45</td>
<td>3/44</td>
<td>6/42</td>
</tr>
<tr>
<td>Benznidazole</td>
<td>35</td>
<td>7/34</td>
<td>9/33</td>
</tr>
<tr>
<td>Cepharanthine</td>
<td>35</td>
<td>2/34</td>
<td>1/22</td>
</tr>
<tr>
<td>Daphnoline</td>
<td>45</td>
<td>8/45</td>
<td>10/34</td>
</tr>
</tbody>
</table>

a *P* <0.05 compared with control.

b *P* <0.002 compared with control.

Table 3
Cure rates in mice with T. cruzi chronic infection treated with benznidazole, cepharanthine and daphnoline, as judged by absence of parasitaemia or by negative serology.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Absent parasitaemia/number of survivors</th>
<th>Negative serology/number of survivors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 days post-treatment</td>
<td>20 days post-treatment</td>
</tr>
<tr>
<td>None (control)</td>
<td>8/34</td>
<td>14/33</td>
</tr>
<tr>
<td></td>
<td>20 days post-treatment</td>
<td>100 days post-infection</td>
</tr>
<tr>
<td></td>
<td>8/33</td>
<td>11/33</td>
</tr>
<tr>
<td></td>
<td>12/32</td>
<td>17/27</td>
</tr>
<tr>
<td></td>
<td>18/30b</td>
<td>21/30b</td>
</tr>
<tr>
<td></td>
<td>9/35</td>
<td>19/30</td>
</tr>
<tr>
<td></td>
<td>18/30p</td>
<td>21/30p</td>
</tr>
<tr>
<td></td>
<td>9/33</td>
<td>13/24</td>
</tr>
<tr>
<td></td>
<td>9/32p</td>
<td>10/27p</td>
</tr>
<tr>
<td></td>
<td>8/34</td>
<td>14/30b</td>
</tr>
<tr>
<td>Benznidazole</td>
<td>8/33</td>
<td>20/28p</td>
</tr>
<tr>
<td></td>
<td>18/27p</td>
<td>9/27p</td>
</tr>
<tr>
<td>Daphnoline</td>
<td>8/34</td>
<td>19/30</td>
</tr>
<tr>
<td></td>
<td>18/30p</td>
<td>14/30b</td>
</tr>
<tr>
<td></td>
<td>10/30p</td>
<td></td>
</tr>
<tr>
<td>Cepharanthine</td>
<td>9/35</td>
<td>12/32</td>
</tr>
<tr>
<td></td>
<td>19/32</td>
<td>10/30p</td>
</tr>
<tr>
<td></td>
<td>10/30p</td>
<td></td>
</tr>
</tbody>
</table>
| *P* < 0.05 compared with control.
| *P* < 0.01 compared with control.
| *P* < 0.005 compared with control.

cépharanthine and daphnoline, the numbers of mice without parasitaemia increased significantly to 71.4% (P < 0.05) with the benznidazole-treated mice and by 63.3%, but not significantly, with the daphnoline-treated mice. Forty days post-treatment, these differences of parasitaemia were more accentuated between the untreated-infected mice and the mice treated with benznidazole and daphnoline (P < 0.01 and P < 0.005, respectively). Prior to sacrifice at 150 days post-infection, the mice treated with daphnoline were also parasite-negative by 70.0% (P < 0.005). Over 50% of the treated mice did not present with parasites in blood. During these experiments, we observed that a higher rate of mortality occurred with benznidazole-treated mice than with other treated groups.

3.3. Serological response

The serological response was assessed by immunoblotting at 100 and 150 days post-infection (Table 3). At 100 days post-infection, the serological response rates of mice treated with benznidazole and daphnoline were significantly reduced compared with controls (P < 0.01) by 32.1 and 33.3%, respectively. At 150 days post-infection, the serological response increased for daphnoline-treated mice to 48.3% (P < 0.01).

A 100% concordance was obtained between ELISA and immunoblotting assay from both acute and chronic experimental T. cruzi infection protocols (Table 4).

4. Discussion

This work compared benznidazole, a recommended drug for the treatment of acute and congenital T. cruzi infection [17], and two bisbenzylisoquinoline alkaloids, cépharanthine and daphnoline, in the therapy of experimental Chagas' disease. Recently, we reported [10] that cépharanthine possessed an excellent ratio trypanocidal activity and inhibitory activity against trypanothione reductase, a target for a specific chemotherapy against Chagas' disease. Daphnoline presented satisfactory activity against this target and has an interesting activity against T. cruzi in the bloodstream[5]. For this evaluation, we chose a non-lethal T. cruzi strain, clone CL Brener, and a non-lethal inoculum of parasites, an option that resembles, in many aspects, the chronic behaviour of the human trypanosomial disease. It is difficult to define the criteria of cure in acute phase. It is generally recognized that persistent negative results for parasite detection and for antibodies are sufficient [18]. In the acute model, when results were compared with infected and untreated animals, the tested drugs showed little impact on the level of parasitaemia after day 50. However, the immune response in this model was more evident in those animals treated with benznidazole and the experimental drug daphnoline. For chronic phase, there is no consensus, but it seems that immunoblot assay is a useful method for the immunodiagnosis of acute and chronic Chagas' disease [19,20].

The study showed that daphnoline treatment of mice with acute T. cruzi infection increased parasitologic and serological cure compared with benznidazole treatment. Assessment of the effects of daphnoline treatment in

Table 4
Concordance between the ELISA and the immunoblotting assay from both, acute and chronic experimental T. cruzi infection protocols.

<table>
<thead>
<tr>
<th>Experimental protocol</th>
<th>Serological test</th>
<th>ELISA*</th>
<th>Positive immunoblottingb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td></td>
<td>0.182</td>
<td>0/33 (0)</td>
</tr>
<tr>
<td>Acute T. cruzi-infected mice</td>
<td></td>
<td>0.932</td>
<td>10/10 (100)</td>
</tr>
<tr>
<td>Chronic T. cruzi-infected mice</td>
<td></td>
<td>1.590</td>
<td>16/16 (100)</td>
</tr>
</tbody>
</table>

* Optical density mean ± standard deviation. Cut-off, 0.264.
* Number of positive infected mice/total of infected mice (percentage).
chronic *T. cruzi* infection was more important than in acute infection. The effectiveness of cepharanthine treatment in acute *T. cruzi* infection was limited, but in the case of chronic infection, the serological cure rate was similar to the benznidazole treatment. In chronic *T. cruzi* infection, we observed a higher rate of mortality in benznidazole-treated mice than in other groups.

The use of a quantitative test makes the serological diagnosis more objective. Criteria of *T. cruzi* serological cure after treatment is currently used, incorporating a decrease in titre as a parameter. In a qualitative test such as immunoblotting, a diminution of antibodies is more subjective. In further studies, the use of ELISA tests will allow us to incorporate the criteria of cure in treatments on experimental *T. cruzi* infections when the search for parasites is persistently negative. Excellent concordance had been found with these assays, and the incorporation of the ELISA test will be very useful due to the simple technical procedure and reduced time and cost involved. Our results of benznidazole treatment on *T. cruzi*-infected mice confirm recent studies on the therapeutic efficacy of benznidazole. This drug is active in chronic *T. cruzi* infection [17]. The chronic model presents low inapparent parasitaemia and an immune response produced by internal cycles of the parasites or by their fractions in tissues. The negative serology, when parasites cannot be detected, is considered as a criteria of cure in treatment with benznidazole [17,21]. Prompt disappearance of parasites is not necessarily followed by serological parameters. Sgambati et al. [22] described the persistence of parasite antigens captured by dentritic spleen cells in infected and treated animals. Therefore, immune response can be attributed to these antigens, without detectable parasites [23].

The mechanism of action of BBIQ alkaloids is not well known, but the interesting results obtained with daphnoline against trypanothione reductase [10] confirm, in part, its inhibitor activity against this target in acute or chronically *T. cruzi*-infected mice. This finding, however, is not seen in treatment with cepharanthine. Different studies with BBIQ have shown their capacity to block calcium channels [11,24,25]. Recent studies demonstrated Ca\(^{2+}\) changes in tissue to be an important factor in the penetration of the trypomastigote forms of *T. cruzi* into the host cell [12,26]. Other possible explanations of the biological properties of BBIQ alkaloids are the inhibitory effect on nitric oxide production [27], or on tumour necrosis factor-\(\alpha\) [28]. It is generally accepted that nitric oxide and tumour necrosis factor-\(\alpha\) [29–31] produced by activated macrophages are cytostatic or cytotoxic for *T. cruzi*. The results obtained with the oral treatment of daphnoline suggest the possible value of such a BBIQ alkaloid in the treatment of acute and chronic Chagas’ disease.

Acknowledgements

We are grateful to Dr Ivalena Guillén for standardization of ELISA kit test and we thank Dr Marisel Maldonado for assistance on the immunoblotting tests.

References

INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS

The journal “International Journal of Antimicrobial Agents” is jointly owned and published in close collaboration with the International Society of Chemotherapy. Members of societies affiliated to the ISC can obtain the journal at reduced rates for their personal use. Please contact the publisher for any details regarding the journal or consult the ISC President, Professor Tom Bergan, at fax: +47 22 200108 or tel: +47 22 869559

Authors in Japan please note: Upon request, Elsevier Science K.K. will provide authors with a list of people who can check and improve the English of their paper (before submission). Please contact our Tokyo office: Elsevier Science Japan, 1-9-15, Higashi Azabu, Minato-ku, Tokyo 106-0044, Japan. Tel.: +81 3 5561 5033; Fax: +81 3 5047 5045.

Manuscripts should be submitted to: The International Journal of Antimicrobial Agents, Editorial Office, Professor J.D. Williams, 7–9 William Road, London NW1 3ER, United Kingdom; Tel.: (+44) 171 3800933; Fax.: (+44) 171 3800828; e-mail: jd.williams@grmicro.co.uk

All questions arising after acceptance of the manuscript, especially those relating to proofs, should be directed to Elsevier Science Ireland Ltd., Elsevier House, Brookvale Plaza, East Park, Shannon, Co. Clare, Ireland, Tel. (+353-61) 709663; Fax (+353-61) 709107; e-mail: m.pearl@elsevier.ie.

No responsibility is assumed by the Publisher or the Society for statements made in the Journal or consequences arising from such statements, and no responsibility is assumed by the Publisher or the Society for any injury and/or damage to persons or property as a matter of product liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, dosages or ideas contained in the material herein. Because of rapid advances in the medical sciences, independent verification should be made of diagnosis and drug dosages, and of medical equipment and medical supplies. The Publisher recommends that consultation also be made with the Physicians’ Desk Reference (PDR) and drug package literature.

Although all advertising material is expected to conform to ethical (medical) standards, inclusion in this publication does not constitute a guarantee or endorsement of the quality or value of such product or of the claims made of it by its manufacturer.

USA mailing notice: The International Journal of Antimicrobial Agents (ISSN 0924–8579) is published eight times a year by Elsevier Science B.V. (P.O. Box 211, 1000 AE Amsterdam, The Netherlands). Annual subscription price in the USA US$ 823 (valid in North, Central and South America), including air speed delivery. Application to mail at periodical postage rate is pending at Jamaica, NY 11431.

USA POSTMASTER: Send address changes to The International Journal of Antimicrobial Agents, Publications Expediting Inc., 200 Meacham Ave, Elmont, NY 11003.

AIRFREIGHT AND MAILING in the USA by Publications Expediting Inc., 200 Meacham Avenue, Elmont, NY 11003.

The International Journal of Antimicrobial Agents has no page charges

© 2000 Elsevier Science B.V. and International Society of Chemotherapy. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher, Elsevier Science, Copyright and Permissions Department, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, England.