New Jaspamide Derivatives from the Marine Sponge *Jaspis splendans* Collected in Vanuatu

Angela Zampella,1 Clelia Giannini,2 Cécile Debitus,3 Christos Roussakis,4 and Maria Valeria D’Auria4,5

Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli, via D. Montesano 49, 80131, Napoli, Italy, ORSTOM, Centre de Nouméa, New Caledonia, and Institut des Substances et Organismes de la Mer (ISOMER), Faculté de Pharmacie, University of Nantes, 1-Rue Gaston Veil, 44035 Nantes Cedex 01, France

Received July 28, 1998

Two new jaspamide derivatives (1 and 2) along with jaspamide have been isolated from the marine sponge *Jaspis splendans* collected in Vanuatu. Their chemical structures were determined from 1D and 2D NMR studies and MS data. These two compounds inhibited the in vitro growth of the NSCLC-N6 human tumor cell lines with IC50 values in the µg/mL range.

After the discovery of the cyclic depsipeptide jaspamide (jasplakinolide) in the sponge *Jasps* cf. *johnstoni* in 1986,6,7 several reports of the presence of jaspamide from other sponge genera, including *Auleta* cf. *constricta*8 and *Hemiasterella minor*,8 appeared in the literature. Jaspaklakolide B was isolated as a very minor component in two collections of *J. cf. johnstoni*.7 The related geodiamolides were then isolated from sponges belonging to taxonomically distant orders, namely, from *Geodia* sp. (order Choriactida),9 *Cymbastela* sp. (order Axinellidae),9,10 *H. minor* (order Hadromerida),6 and *Neosiphonia superstes* (order Lithistida).11 Isolation of these compounds from taxonomically remote species has supported the hypothesis of an involvement of symbionts in the production of geodiamolides.12

As a part of an ongoing project devoted to the isolation of bioactive metabolites from Vanuatu Island sponges, we had the opportunity to investigate the sponge *Jaspis splendans*, whose crude etherol extract exhibited marked activity in cytotoxic in vitro assays. The major component of *J. splendans* was found to be jaspamide, the chemical marker within the sponges of the *Jaspis* genus. In this paper, we report the isolation of jaspamide along with two new very minor analogues, 1 and 2, which represent, to the best of our knowledge, the first examples of jaspamide derivatives with modified polyketide portions.

The lyophilized *J. splendans* sponge was extracted with methanol, and the crude extract was partitioned according to the Kupchan procedure.14 The bioactive chloroform extract (1.3 µg/mL) was chromatographed by silica gel medium-pressure liquid chromatography (MPLC) (MeOH/CH2Cl2 0–10%) followed by reversed-phase C-18 μ-Bondapak HPLC with 65% aqueous MeOH to give jaspamide, jaspamide B (1, 0.0004%, dry weight), and jaspamide C (2, 0.00039%, dry weight).

FABMS data (m/z 723–725 (1:1) (M + H)+) of jaspamide B (1) indicated a molecular weight 14 amu more than jaspamide. NMR spectra revealed that the resonances relative to the tripeptide portion of jaspamide B (1) were superimposable with those found in the parent compound. At the same time, inspection of the 1H NMR spectrum indicated a change in the polypropionate fragment. In particular, the signals relative to the trisubstituted C-4 double bond (H-5 and Me-35) were missing, whereas two one-proton singlets at δ 5.82 and 5.92 were observed, suggesting the presence of one exomethylene function. The complete structure of the polypropionate moiety of 1 was assigned on the basis of 1H–1H COSY, HMOC, and HMBC data. In particular, COSY and HMOC data allowed us to define the same C-2/C-3 and C-6/C-8 spin systems as in jaspamide while a ketone functionality (δC 217.0) was placed at C-5 in 1 on the basis of HMBC cross-peaks: H-7/C-5, H-6/C-5, Me-34/C-5. Both the olefinic methylene protons at δH 5.82 and 5.92 showed HMBC correlations with C-3 (37.5 ppm), C-4 (147.4 ppm) and C-5 (217.0) carbon signals, suggesting the presence of a conjugate enone functionality in the polyketide portion of jaspamide B (1). The similarity in the 1H and 13C NMR chemical shifts observed for the tripeptide portion of jaspamide B and jaspamide implied that, most likely, the chiral centers in alanine, N-methylbromoabrine, and β-tyrosine had the same relative configurations in both molecules.

It should be noted that the same polypropionate fragment as in 1 was also found in geodiamolide G, isolated from the Papua New Guinea sponge *Cymbastela sp*.15 Jaspamide C (2) showed pseudomolecular ions at m/z 725–727, two mass units more than jaspamide B (1). The presence, in the 1H NMR spectrum of one additional methine proton signal at δH 4.08 (1H, d, J = 5.9 Hz), which correlated in the HMOC spectrum with a signal at δC 91.5, indicated that jaspamide C was simply the C-5 dihydro derivative of 1. The HMBC cross-peaks observed within the polypropionate unit of jaspamide C (see Figure 1) substantiated the proposed structure.
Jaspamide C (2) was obtained as a colorless glass: δ [a]$^b_{D}$ +11.4° (c 0.0014, CHCl$_3$); UV (MeOH) λ_{max} (log ε) 323 (3.75), 278 (3.66) nm; IR (KBr) ν_{max} 3400, 1742, 1650, 1639 cm$^{-1}$; λ NMR (CDCl$_3$, 500 MHz) δ 8.15 (1H, s, NH-Br-Trp), 7.52 (1H, d, J = 7.3 Hz, H-21), 7.26 (1H, d, J = 7.3 Hz, H-24), 7.15 (1H, t, J = 7.3 Hz, H-23), 7.09 (1H, d, J = 7.3 Hz, H-22), 6.90 (2H, d, J = 8.3Hz, H-29), 6.35 (1H, d, J = 6.9 Hz, NH- Ala), 5.92 (1H, s, H-36a), 5.82 (1H, s, H-35b), 5.68 (1H, dd, J = 7.5, 9.0 Hz, H-13), 5.23 (1H, m, H-11), 4.76 (1H, d, J = 8.6 Hz, H-15), 3.40 (1H, dd, J = 14.7, 7.5 Hz, H-18a), 3.36 (1H, dd, J = 14.7, 9.0 Hz, H-18b), 3.12 (1H, m, H-6), 3.02 (1H, dd, J = 2.0, 1.05 Hz), 2.70 (2H, d, J = 5.7 Hz, H-10), 2.87 (1H, d, J = 12.7 3.1 Hz, H-8a), 2.50 (1H, m, H-2), 2.32 (1H, t, J = 12.7 Hz, H-3b), 1.98 (1H, m, H-7a), 1.45 (1H, m, H-7b), 1.15 (3H, d, J = 5.88 Hz, H-36), 1.15 (3H, d, J = 5.70 Hz, H-33), 1.05 (3H, d, J = 6.8 Hz, H-34), 0.85 (3H, d, J = 6.9 Hz, H-6), 13C NMR (CDCl$_3$, 150 MHz) δ 217.0 (v, C-5), 176.2 (v, C-1), 173.4 (s, C-14), 170.2 (s, C-9), 169.0 (s, C-12), 155.7 (s, C-30), 147.4 (s, C-4), 135.2 (s, C-25), 135.0 (s, C-27), 128.3 (s, C-20), 127.5 (t, C-35), 127.0 (d, C-38), 120.4 (d, C-22), 124.2 (d, C-33), 118.2 (d, C-21), 115.4 (d, C-29), 110.6 (s, C-24), 110.1 (d, C-19), 109.0 (d, C-26), 96.3 (d, C-8), 55.5 (d, C-13), 49.2 (d, C-15), 45.8 (d, C-47). Optical rotations were measured on a Perkin-Elmer 141 polarimeter. UV spectra were recorded on a Beckman DU70 spectrophotometer. IR spectroscopy was performed on an IFS 48 Bruker instrument. Reversed-phase HPLC was performed on a C$_{18}$ μ-Bondapak column (30 cm × 3.9 mm i.d.; flow rate 2 mL min$^{-1}$) using a Waters model 6000 A pump equipped with a USK injector and a differential refractometer, model 401.

Biological Material. The sponge was collected at Tongoa in the Vanuatu Islands in 1996 and identified as J. splendens (order Choristidae, family Jaspidae) by John Hooper of Queen-University of Naples. We acknowledge the undergraduate student Virginia Di Rosa for kind assistance. We thank the diving team of the ORSTOM Centre de Nouméa for the successful collection of the sponge.

cytotoxic and antiproliferative activities. In particular, it showed antifungal, plant growth regulator, insecticidal, and ichthyotoxic activities. Further studies have indicated that jaspamide possesses specific actin-binding properties and affects specific aspects of actin organization in cells.

Jaspamides B (1) and C (2) exhibited cytotoxicity against the human NSCLC-N6 cancer cell line with an IC$_{50}$ value of 3.3 μg/mL and an IC$_{50}$ value of 1.1 μg/mL, respectively. Under the same experimental conditions, jaspamide exhibited an IC$_{50}$ value of 0.36 μg/mL. Further studies aimed to determine the effect of the structural modification in the polyketide fragment on the biological activity are in progress.

Experimental Section

General Experimental Procedures. NMR spectra were obtained on a Bruker AMX-500 NMR spectrometer (1H at 500 MHz, 13C at 125 MHz), δ (ppm), δ in Hz, spectra referred to CDCl$_3$ as internal standard. Mass spectra were run on a VG AUTOSPEC instrument (Cs$^+$ ions bombardment) with a FAB source (in glycerol or glycerol-thioglycerol (3:1) matrix). Optical rotations were measured on a Perkin-Elmer 141 polarimeter. UV spectra were recorded on a Beckman DU70 spectrophotometer. IR spectroscopy was performed on an IFS 48 Bruker instrument. Reversed-phase HPLC was performed on a C$_{18}$ μ-Bondapak column (30 cm × 3.9 mm i.d.; flow rate 2 mL min$^{-1}$) using a Waters model 6000 A pump equipped with a USK injector and a differential refractometer, model 401.

Biological Material. The sponge was collected at Tongoa in the Vanuatu Islands in 1996 and identified as J. splendens (order Choristidae, family Jaspidae) by John Hooper of Queen-University of Naples. We acknowledge the undergraduate student Virginia Di Rosa for kind assistance. We thank the diving team of the ORSTOM Centre de Nouméa for the successful collection of the sponge.

Cytotoxic Assays. Experiments were performed in 96 well microtiter plates (2 × 104 cells/mL). Cell growth was estimated by colorimetric assay based on the conversion of tetrazolium dye (MTT) to a blue formazan product using live mitochondria.

Eight determinations were performed for each concentration. Control growth was estimated for 16 determinations. The optical density at 570 nm corresponding to solubilized formazan was read for each well on Thetek MultiTec II.

Acknowledgment. This contribution is part of the EC project "Marine Sciences and Technology MAST III" Contract MAS 3-CT96-0082. The authors wish to thank the ORSTOM Centre de Nouméa for the support of this work. We acknowledge the undergraduate student Virginia Di Rosa for kind assistance. We thank the ORSTOM Centre de Nouméa for the support of this work. We acknowledge the undergraduate student Virginia Di Rosa for kind assistance. We thank the ORSTOM Centre de Nouméa for the support of this work. We acknowledge the undergraduate student Virginia Di Rosa for kind assistance. We thank the ORSTOM Centre de Nouméa for the support of this work. We acknowledge the undergraduate student Virginia Di Rosa for kind assistance. We thank the ORSTOM Centre de Nouméa for the support of this work.
collection of the sponge (ORSTOM-CNRS SMIB Program) and Dr. John Hooper of the Museum of Queensland, Brisbane, Australia, for the identification of the sponge.

References and Notes

NP9803225