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Abstract 

During thellast few decades, our knowledge of psst- 1 
glacial sea-level changes has been greatly enhanced 
through studies of reef sites (Fairbanks, 1989; Bard et al., 
1990,1996; Chappell and Polach, 1991; Edwards et al., 
1993). The tropical zone offers the opportunity to exami- 
ne sea-level changes and the melting history of continen- 
tal ice sheets far from the polar zones (Bard et al., 1996). 
Among sea level indicators available in tropical areas, 
morphological or diagenetic features such as marine 
notches and terraces, peats, benches or beach-rocks (Van 
de Plassche, 1986), and occasionally archeological re- 
mains have been the principal focus (Pirazzoli, 199 1). 
Nevertheless, organic assemblages, and especially reef- 
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building coral communities, are regarded as- one of the 
most reliable sea-level markers (Liglity et al., 1978; 
Davies and Montaggioni, 1985; Hopley, 1986; Montag- 
gioni and Faure, 1997). 

Corals older than 6 ka BP are not generally directly 
accessible from rapidly subsiding (e.g. intraplate volcanic 
islands) or slowly uplifting coasts (e.g. hydro-isostasy- 
experiencing areas). As a result, the only way to recover 
Early Holocene to Late Pleistocene samples is using 
drilling methods (Macintyre et al., 1977; Hopley, 1982; 
Davies et al., 1985; Montaggioni, 1988; Fairbanks, 1989; 
Chappell and Polach, 1991; Bard et al., 1996); these 
provide opportunities to identify the paleocommunities 
involved in reef building (Marshall and Davies, 1982; 
Davies and Montaggioni, 1985; Davies et al., 1985; Mon- 
taggioni 1988; Cortés et a/., 1994; Cabioch et al., 1995; 
Kan et al., 1995). Coral assemblages and coralline algae 
as well, can characterize reef biozones, because the distri- 
bution of many species depends mainly upon light levels 
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and wave energy (Morton and Challis, 1969; Morton, 
1973; Done, 1982; Faure et al., 1982; Davies and Montag- 
gioni, 1985; Adey, 1986; Laborel, 1986). It is therefore 
relatively easy to reconstruct the successive stages of reef 
development, vertical growth and lateral accretion (Mar- 
shall and Davies, 1982; Partain and Hopley, 1989) reflect- 
ing variations in accommodation (i.e. space available for 
sedimentation; James and Bourque, 1992; Montaggioni 
and Faure, 1997). In addition to local climatic and hy- 
drodynamic conditions, the initiation and development 
of coral reefs is also controlled by geodynamic factors; 
coastal subsidence, uplift or stability yield differing reef 
morphotypes (Chappell, 1980) and growth patterns. Two 
main reef growth strategies can be distinguished (Davies 
and Montaggioni, 1985; Davies et al., 1985; Neumann 
and Macintyre, 1985): (1) A keep-up strategy, in which 
reefs are able to maintain pace with sea-level rise. The 
relevant reef assemblages are composed of shallow-water, 
high-wave energy communities. (2) A catch-up strategy, 

in which reefs are not initially able to keep pace with 
sea-level rise, but catch up prior to coevally with, or after 
sea-level stabilization. The resulting reef assemblages 
typically include relatively deeper and less wave-resistant 
communities, which are progressively replaced upwards 
by shallower water forms, forming a shoaling-upward 
sequence. 

In the frame of this study, three reef sites were selected: 
(1) Mauritius (Western Indian Ocean), a slowly subsid- 
ing, intraplate volcanic island (mean subsidence rate: 
0.03 mm yr-', Montaggioni, 1978); (2) Tahiti (French 
Polynesia), a rapidly subsiding, intraplate volcanic island 
(0.25 mm yr-', Pirazzoli and Montaggioni, 1988; Bard 
et al., 1996); and (3) New Caledonia (South West Pacific), 
a slowly subsiding passive margin (0.1 mm yr-', Coud- 
ray, 1976) (Fig. 1). The aim of this paper is to compare the 
responses of reef growth during postglacial sea-level rise 
in these different geodynamical settings, to discuss the 
validity of the paleodepth ranges determined from the 
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Fig. 1. General map of the Indo-Pacific realm, showing the reef areas studied. (A) location of the investigated sites; (B) La Pointe-au-Sable reef, 
Mauritius, western Indian Ocean; (C) Ricaudy reef, Nouméa, New Caledonia, south west Pacific Ocean; (D) Papeete reef,Tahiti, French Polynesia, 
central Pacific Ocean. 
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organic assemblages (corals, coralline algae and ver- 
metids) and, finally, to assess the accuracy of the regional 
sea-level curves inferred. 

............... .E 
0 

2. Material and methods 

Dendropoma maximus & 
Serpulorbis annulatus 

In each area, only the material cored through the 
outer part of the reefs has been taken into account, 
in order to compare equivalent data sets. The nature and 
reliability of the criteria used to identify in situ coral 
samples varies according to growth shapes. The tips of 
branching colonies or the concave surfaces of tabular 
corals are normally oriented upwards during growth. 
There is little doubt as to their growth position in cores. 
In contrast, domal and plate-shaped colonies may simu- 
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late normal growth position after displacement (Lighty 
et al., 1982). The coralline algae generally form thick 
crusts over corals or subordinate builders; so, they can- 
not easily be reworked. Examination of the associated 
sediments may provide information on possible storm- 
induced reworking. 

Identification of the organisms forming reef communi- 
ties in the cored reef sequences was performed at a speci- 
fic level. By comparing the biozonation of their modern 
counterparts (see monographs and articles by Morton 
and Challis, 1969; Pichon, 1973; Adey et al., 1982; Faure, 
1982; Richard, 1982; Delesalle et al., 1985; Adey, 1986; 
Laborel, 1986; Done and Navin, 1990; Veron, 1990), the 
different fossil assemblages were used as tools to paleoen- 
vironmental reconstruction on the basis of depth range 
and water energy (Fig. 2). 
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Samples were examined using standard petrographic, 
binocular and scanning electron microscopy (SEM), 
X-Ray diffraction and specific staining techniques. Point- 
counting from thin sections was used to determine the 
relative compositions of the framework-forming commu- 
nities. Apparently, pristine samples (i.e. devoid of algal 
encrustations, borings, marine or freshwater cements and 
containing more than 98% aragonite) were dated using 
conventional or Accelerator Mass Spectrometry (AMS) 
14C, and Thermal Ionisation Mass Spectrometer (TIMS) 
U/Th. The ages are given in calendar years BP (cal yr 
BP). The dates measured by 14C were converted to cal yr 
BP, using the calibration methods of Stuiver and Reimer 
(1993). 

3. Reef sites 

3.1. Maurìtizis 

Mauritius lies in the western Indian Ocean at latitude 
20'20's and longitude 57'30'E (Fig. 1). The climate is 
characterized by a warm rainy season from November to 
May, and a drier season from June to October. Mauritius 
is regularly affected by cyclones. Sea surface temper- 
atures (SST) range from 22°C (austral winter) to 27°C 
(austral summer). 

The site studied is the 'Pointe-au-sable' fringing reef 
1000 m wide, located on the north-west coast in a low- 
to-medium wave-energy environment. Three distinct 
zones are present along the reef margin (Montaggioni 
and Faure, 1980,1997). 

The lower section of the outer reef slope (more than 
25-20m depth) is occupied mainly by the Pachy- 
serislOulophyllia (Pachyseris speciosa, Oulophyllia crispa) 
community, characteristic of outer-reef sheltered habitats. 
The prevailing growth forms are laminar and domal. The 
species present are, in order of decreasing abundance, the 
ubiquitous Porites lutea and P. lobata, Lobophyllia 
heunprichii, Favia pallida, Echinophyllia aspera, Acropora 
granulosa, Pocillopopra damicornis (coespitosa) and Hyd- 
nophora microconos. 

The middle parts of the outer reef slope (about 20 to 
6-8 m depth) are occupied by an Acropora 'tabulate' and 
faviid community, linked to relatively sheltered or semi- 
exposed habitats. Tabular colonies include Acropora 
gr. hyacinthuslcytherea, and to a lesser extent A. tenuis. 
Other forms are domal and massive, including Porites 
lutea, P. solida, Cyphastrea microphthalma, Astreopora 
ocellata, Goniopora sp., Ouloplayllia crispa, Goniastrea 
retiformis, G. pectinata, Hydnophora microconos, Favites 
jlexuaosa, Favia speciosa, Galnxea fascieailaris, and Platy- 
gyrn daedala. Subordinate coral species are Pocillopora 
uerrucosa and P. eydoouxi, Echinopora gemniacea, 
Lobophyllia hemprichii, Echinophyllia aspera, Montipora 
sp., Favia sp., and Favites sp. 

The upper parts of the outer reef slope (less than 6 m 
depth) are inhabited by a robust-branching Acropora 
community which is dominated by Acropora robusta and 
A. danai. This community is adapted to very shallow, 
wave-exposed settings. The associated builders include 
Pocillopora uerrucosa, the hydrocoral Millepora plafy- 
phylla, Acropora hyacinthus and the massive encrusting 
Goninstrea ref ifornzis, G. pec fìnata and Favia stelligera. 

The reef crest is typified by the Acropora digitiferalA. 
hzimilis community, which is adapted to moderate-high 
water-energy. The main growth forms are characterized 
by robust branches. Other branching forms are Pocil- 
lopora damicornis ecomorph brevicornis, Acropora darmi, 
Stylophora pistillata and Galnxea fascicularis, living ìn 
association with massive or encrusting forms (Leptoria 
phuygia, Porites lutea and Montipora cf. tuberculosa). 

The backreef zone is occupied by a Pavona community, 
which is restricted to protected habitats. The dominant 
corals are foliaceous, Pavona cactus, P. divaricata, P. 
decimata, in close association with branching or domal 
colonies of Porites nigrescens, Seriatopora hystrix, Synarea 
iwayarnaensis and Porites lutea. 
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3.2. New Caledonia 

New Caledonia lies in the southwest Pacific (Fig. 1) 
between latitudes 20"-23"S, longitudes 164"-167"E. It is 
surrounded by one of the largest reef systems in the 
world. Southeastern trade winds prevail during the aus- 
tral summer from November to April (Rougerie, 1986). 
During winter, from May to October, the trade-wind 
regime is disturbed by westerlies generated by polar air 
masses. Cyclones originate in the Intertropical Conver- 
gence Zone between 8 and 18" S in the Northern Central 
and Eastern Coral Sea. Sea surface temperatures (SSTs) 
range from 23°C during the austral winter to 28°C in the 
austral summer. Fringing reefs on the southwest coasts 
enjoy relatively sheltered conditions, due to a well de- 
veloped outer barrier reef. 

The study site, Ricaudy reef, 300-400 m wide, is situ- 
ated in the Nouméa area, SW of the island. The outer reef 
flat zone is colonized dominantly by branching Acropora 
and domal Porites. Windward reef slopes, similar to that 
of Ricaudy, were investigated on neighbouring reefs in 
the Nouméa lagoon (Faure et al., 1982; Cabioch et al., 
1995). The corals on the reef crest are represented by 
Acropora digitifera, A. himzilis, A. mìllepora, A. variabilìs, 
Pocillopora verruCosa, Acropora abrotanoides and A. 
robusta. The assemblages from 1 to 2 m depth are com- 
posed of Acropora digitifera, Pocillopora damicornis, 
P. verrucosa, domal faviids and branched or tabular 
Acropora spp. From 2 to 8 m depth, the assemblages 
are dominated by Acropora hyacinthus, A. clathrata, 
A. cytherea, and various other Acropora spp., Pachyserìs 
rugosa, Pavona clavus, P. praetorta, Lobophyllia cor?/m- 
bom, Echinopora Iamellosa, Pectinia Iactuca. The 
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= I Robust-branching coral facies 

[1111 * Tabular coral facies 

Large pieces of coral colonies mixed 
with gravels and coarse sands 

Pleistocene reef unit 
D Unconformity 

assemblages, from 8 to 10 m, include domal colonies of 
Porites lutea, Platygvru daedala, Leptoria phiygiu, 
Stylophora pistillata, Pocillopova cf. danae, Acropora for- 
niosa and A. palifera. 

3.3. Tahiti 

Tahiti which forms part of French Polynesia is situated 
between latitude 17'50's and longitude 149'20'W (Fig. 1). 
The climate is subdivided into two seasons, a hot and 
rainy summer from November to April, and a drier 
season from May to October. The nutrient and fresh- 
water inputs in the backreef areas vary greatly according 
to the season and higher levels are reached during sum- 
mer time. The southeast and northeast winds influence 
the hydrological regime significantly; both generate 
strong swells, along the eastern side of the island. Thus, 
the reef site selected, facing Papeete harbour, is subject to 
high-energy-water conditions. Swells are generally up to 
2 m in amplitude. Sea surface temperatures (SSTs) range 
from 24°C in the austral winter to 29°C in the austral 
summer. 

On Papeete reef, the upper parts of the outer reef slope 
(less than Gm deep) are composed mainly of robust- 

lel 
Mauritius sea-level curve 
(after Montaggioni & Faure, 
1997) 

Ol------ 

paleodepth range 

branching Acropora spp. (dominantly, Acropora gr. 
danailrobusta), Pocillopora verrucosa, associated to Mon- 
tipora erythraea, Montastrea curta, Porites lobata and 
various domal forms (Favia and Favites sp.), occasionally 
covered by coralline algae, especially Hydr-olithon and 
Neogoniolithon. The outer parts of the reef flat are charac- 
terized seawards by the occurrence of cm-thick coralline 
algal crusts; there is no true algal ridge in the sense of 
Adey (1986). Behind the reef front rim is a zone of coral 
patches composed of branching corals, such as Acropora 
gr. danailrobusta, Acropor-a cytherea, Pocillopora ver- 
rucosa, and domal forms, Porites australiensis and 
P. lutea. The reef tract is less than GOO m wide. 

5 3 4 
I 

4. Lithology and distribution of reef communities in cores 

4. I .  Mauritius 

At Pointe-au-sable, the Holocene reef sequence over- 
lies a karstified Pleistocene coral reef. It is composed 
mainly of apparently in situ coral colonies intermingled 
with coarse-grained skeletal detritus (Fig. 3). The coral 
builders are generally branching and domal forms, 
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D (19 m) 

Fig. 3. (A) Distribution of the coral assemblage in La Pointe-au-Sable reef sequence, Mauritius island. (Bj Sea-level curve inferred from the biological 
data. 
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encrusted by coralline algae and foraminifera 
(Montaggioni, 1988; Camoin et al., 1997; Montaggioni 
and Faure, 1997). Beneath the outer reef margin, 
the sequence exhibits three main coral units, from the 
base to top. 

The lower unit consists chiefly of tabular and/or 
branching corals, Acropora gr. h~~acinthzw/cytherea, Pocil- 
lopora verrucosa, P. damicornis and Porites nigresceus. 
Associated species exhibit various growth forms; they 
include Echinophyllia aspera, Porites cf. lutea, Echinopora 
gemmacea, Leptastrea sp., Alveopora sp., Platygvra pini, 
and Montipora sp. 

The upper unit is typified by robust-branching acrop- 
orids, Acropora gr. danai/robzcsta, A. digitifera and 
A. humilis, associated with branching Pocillopora ver- 
~“iicosa and P. dainicornis and domal forms, Porites cf. 
lutea, Leptoria phvygia, Platygyra daedalea, Goriiastrea 
retiformis and Favia stelligera. Subordinate forms include 
Millepora platyphylla, Echinopora gemmacea, Cyphastrea 
sp., and Leptatstrea sp. 

New Caledonian mean 
- relative sea-level curve (i)bb/ 

- - - - - - - - - - -  --- *\ 
- \ 

\ 

4.2. New Caledonia 

The cores drilled on the Ricaudy site indicate that the 
Holocene reef sequence overlies a Pleistocene karst sur- 

lei Level (m) 
2 r  

Ricaudy reef \ 
\ growth curve . I  

face. This sequence exhibits three biofacies distributed 
within two distinct units (Fig. 4) (Cabioch et al., 1995). 
The lower unit displays a tabular branching coral facies 
with in-place Acropora gr. I~yacinthaisjcytherea, Montipova 
digitata and other acroporids. The upper unit is made up 
of domal Porites heads, alternating with Acropora rubble. 
Cores obtained from the tradewind exposed, eastern part 
of the reef are more cavernous than those recovered in 
the sheltered western part. Differences lie in the relative 
abundance of coralgal framework in the most exposed 
zones and in the prevalence of detrital beds in the most 
protected areas. An interesting feature is the absence or 
scarcity of coralline algal veneers, which are only repre- 
sented by thin Litliophyllzim crusts. Encrusting algae are 
replaced by encrusting foraminifera, which are more 
abundant in Ricaudy reef than in any other reefs drilled 
in New Caledonia (Cabioch, 1988). 

4.3. Tahiti 

Drilling through the outer barrier reef showed that it 
consists of an about 87 m thick sequence, ranging in age 
from about 14,000 cal yr BP to the present (Fig. 5) (Bard 
et al., 1996). The cores exhibit an in situ coralgal- 
stromatolite framework, locally filled by uncemented 

Robust-branching coral facies 

O Domal coral facies 

[1771 ;i: Tabular coral facies 

0 open cavities, partly infilled by skeletal detritus 
E3 Pleistocene reef unit 

D Unconformity 

Idealized sequence 
of Ricaudy reef 

\ 
paleodepth range 

O 

\ \ * 
\ 

-6 I I I I I I I I I I 
O 1 2 3  4 5 6 7  8 9  

Ages (ka cal B.P.) 
(1) : after Baltzer, 1970, Coudray et Delibrias, 1972 & Cabioch et al., 1989. 
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4 

5 
D 
6 
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Fig. 4. (A) Distribution of the coral assemblages in the Ricaudy reef sequence, New Caledonia. (B) Sea-level curve inferred from the biological data. 
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0 Domal coral facies 
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volcanic substratum - D Unconformity 
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Fig. 5. (A) Distribution of the coral assemblages in the Papeete reef sequence, Tahiti, French Polynesia. (B) Sea-level curve inferred from the biological 
data. 

skeletal deposits (Montaggioni and Camoin, 1993; 
Montaggioni et al., 1997). From the base to top, the coral 
assemblages are characterized by robust-branching 
corals, Aeropora gr. danailrobusta, A. huinilis, Pocillopora 
cf. verrucosa, with domal Porites spp. At the base, a 1 m- 
thick coral bed is dominantly formed by Acropom gr. 
daizai/robusta colonies. It is sharply replaced by a thick 
domal Porites buildup (especially Porites cf. lobata). Up- 
wards, the framework consists chiefly of robust-branch- 
ing Acr-opora gr. danailrobusta, A. lzuniilis and Pocillopora 

cf. verrucosa. Coralline algae are intermingled with the 
corals, locally forming cm-thick encrusting layers. Hydro- 
lithori onkodes is abundant, mixed with Tenarea, 
Lithoplzylluin spp. (with L. cf. nzolluccense as the com- 
monest species), Lithoporella nzelobesioides, Derma- 
tolithon cf. tesselatuin, Mesophyllunz cf. prolifer and a 
few Neogoniolithon cf. fosliei. Subordinate builders in- 
clude sessile foraminifera (homotremids, victoriellinids 
and acervulinids) and boring vermetid gastropods 
(Dendroponza). 
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5. Discussion 

5.1. Reliability of reef bioinarkers in reconstructing rela- 
tive sea-level curves 

In the Indo-Pacific province, a number of relative 
sea-level curves have been reconstructed using a variety 
of biological markers (Pirazzoli, 1991). Among these, 
tropical coralgal communities appear to be one of the 
most helpful tools (Bloom et al., 1974; Hopley, 1986; 
Montaggioni, 1988; Yonekura et al., 1988; Chappell et al., 
1996). 

Distributional patterns of reef-building organisms 
depend essentially on light intensity, wave-energy con- 
ditions, nutrient and freshwater inputs (see Morton and 
Challis, 1969; Pichon, 1973; Adey, 1975; Littler and Doty, 
1975; Adey et al., 1982; Faure, 1982; Richard, 1982; 
Bosence, 1984; Adey, 1986; Laborel, 1986; Hopley, 1989; 
Done and Navin, 1990). The relative curves based of such 
patterns vary in reliability because they depend on the 
accuracy of the estimated paleodepth ranges used. This 
implies that the species in the biota have to be correctly 
identified and related to characteristic, well-defined habi- 
tats (Fig. 6). Thus, typical forms of coral colonies (tabu- 
late, branching, domal and foliaceous) and of coralline 

algal thalli (thick or thin encrusting or branching 
veneers) can be recognized. The distribution of these 
typical coralgal forms is related to water energy, irra- 
diance and depths and can be summarized as in Fig. 7. In 
Pacific atolls which are subject to very strong hy- 
drodynamic conditions, the distribution of coral assem- 
blages around the outer rim is dominantly constrained 
by wave energy. The depth range of a given coral species 
can vary markedly from windward-to-leeward sides 
(Fig. 8) (Bablet et al., 1995). This underlines the need to 
only use biozonation obtained from reef areas close to 
drilling sites. 

In addition, it is necessary to define the status of each 
organism or community: are they in situ or have they 
undergone post-mortem transport and reworking? 

Analyses of the cores available led us to identify three 
main coralgal assemblages, on the basis of dominant 
growth forms and specific composition (Chappell, 1980; 
Montaggioni and Faure, 1997). Paleodepth ranges of 
these fossil reef communities are given by reference to 
those of their counterparts at present living in adjacent 
areas (Fig. 2). 

(1) The tabular coral facies (Fig. 6) is mainly composed 
of Acropora gr. hyacinthuslcytherea associated with Pocil- 
lopora damicornis, P. eydouxi, &font@ora digitata and 
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Fig. 6. Idealized reef profile, showing the relationships between the modern biozonation at reef margins, ambient water-energy and the distributional 
and growth patterns of the coral communities recognized in the drilled postglacial sequences. 
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Fig. 7. Schematic summary of distribution of the coralalgal assemblages identified in the modern Indo-Pacific reef environments in relation to water 
energy, irradiance and water depth. 

various other acroporids. This facies is encountered in 
the sequences studied in Mauritius and along the outer 
slopes of reef islets in Nouméa lagoon (Faure, 1982). By 
reference with the distribution of its present-day analogs, 
this assemblage is regarded as typical of open water, 
low-to-medium wave-energy settings. This is confirmed 
by underwater observations in other Pacific areas (Done, 
1982; Marshall and Davies, 1982; Veron, 1990). Thin 
coralline algal crusts, less than 5 mm, which cap corals, 
are generally composed of Hydrolitlzon onkodes, 
Litlzoplpdluin sp., Mesoplzylliini cf. prolifer and Derma- 
tolithon cf. tesselatuin, which are diagnostic of low to 
moderate wave-energy conditions (Fig. 2) (Adey et al., 
1982; Adey, 1986). The relevant habitat paleodepth 
ranges from about 6 - 15 m. When this coralgal assem- 
blage (referred to as the middle forereef, MF assemblage) 
is encountered in a core section, it indicates that, at the 
time of growth, the buildup was submerged, i.e. was 
following a catch-up growth trend (Fig. 6). 

(2) The robust-branching coral facies (Fig. 6) is usually 
formed by Acropora gr. darzailrobusta, A. humilis, A.  
digitifera, Pocillopom uerrucosa and various domal 
Porites. Compared to the modern reef zonation, this 

assemblage can be regarded as diagnostic of medium to 
high-energy, reef crest or upper forereef zone, at depths 
less than 6m below mean low tide level. This assemblage 
is a common feature on Indian Ocean and Pacific reefs 
(Faure, 1982; Faure and Laboute, 1984; Delesalle et al., 
1985; Camoin and Montaggioni, 1994). Encrusting coral- 
line algae form relatively thick veneers (up to 4 cm thick) 
over corals. These include Hvdrolithon cf. onlodes, Der- 
matolitlion cf. tesselatuni Lithopliyllurn cf. molluccense and 
Neogoniolithoiz cf. fosliei, which are abundant in the up- 
per parts of the outer reef zones and on reef edges, as 
recognized elsewhere, e.g. in the Solomon islands (Mor- 
ton, 1973) and Hawaiian islands (Adey et al., 1982). This 
community is associated commonly with vermetid gas- 
tropods such as Deizdropoina innxinius and Serpuloldis 
annulatzls, restricted to less than 3 m depth below spring 
low tides (Richard, 1982; Laborel, 1986). The robust- 
branching coral/Hydrolithon/vermetid assemblage (refer- 
red to as the reef-edge, RE assemblage) is therefore re- 
garded as characteristic of near-surface settings (0-6 m) 
(Fig. 6). It is regarded as the bathymetric counterpart of 
the Acropora palmata/Lithoplzyllunz corzgestunz/Hy- 
drolitliorz paclzyderniuin assemblage described from the 
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Fig. 8. Zonation of the main coral species living on the outer reef margin of Fangataufa atoll (modified from Bablet et al., 1995). 

Caribbean (Lighty et al., 1982). Both assemblages gener- 
ally are related to a keep-up reef growth type. 

(3) The domal coral facies (Fig. 6) includes Porites spp. 
(Porites cf. lutea and P. cf. lobata) accompanied by occa- 
sional Acropora gr. danai/robustn. By analogy with the 
environment of its modern counterpart, this assemblage is 
believed to reflect a more sheltered habitat, corresponding 
to the inner part of the reef crest or the outermost section 
of the backreef (Faure and Laboute, 1984; Bouchon, 1985; 
Kiihlman and Chevalier, 1986). The paleodepth interval of 
these paleocommunities (i.e. the upper to middle forereef 
assemblage) is presumably less than 10 m. Generally, en- 
crusting algae are not abundant. Locally, thin veneers of 
Hydrolithon cf. onlcodes or Dermatolithon cf. tesselatum are 
found (Fig. 2). This coralgal assemblage is related to reefs 
having a keep-up growth style. 

The composition and distribution of these three assem- 
blages can vary significantly from reef to reef in response 
to local environmental factors (Fig. 6). 

In Mauritius, two coralgal communities are encoun- 
tered in the Holocene sequence from base to top (Fig. 3). 
The occurrence of a bed of robust-branching coral facies 
at the base indicates a short episode of keep-up growth. 
However, this facies is replaced upward by a tabular- 
branching coral assemblage which characterizes a catch- 
up growth phase reflecting an increase in the rate of the 
sea-level rise. The communities at the top of the core 
correspond to robust-branching coral facies. These 
clearly reveals that reef growth has operated close to the 
sea surface. In the Mauritius sequence, the high-diversity 

coral assemblages include both finite sea level-markers, 
i.e. corals indicating paleobathymetry, and directional 
markers, i.e. corals providing data on paleo-reef 
geometry, in the sense of Montaggioni and Faure (1997). 
Thus, the robust-branching Acropora gr. danailrobusta, 
A.  humilis and A .  digitifera are finite indicators; they are 
considered to be the most reliable of Indo-Pacific 
paleodepth indicators, living generally within a narrow 
optimum depth interval from O to 6 m. Other coral spe- 
cies may be also finite sea-level recorders (Goniastrea 
retiformis, G. pectiizata, Favin stelligera, Stylophora pistil- 
lata, Montipora tuberculosa, and Millepora platyphylla) 
encountered at depths not greater than 10m. The re- 
maining coral species studied here, are only directional 
indicators. 

At Ricaudy (New Caledonia), the base of the Holocene 
sequence is characterized by a tabular coral facies (Fig. 4). 
This reveals that coral settlement was delayed after flood- 
ing of the Pleistocene substrate. The following phase of 
vertical accretion is typified by domal coral facies re- 
placed by a robust-branching facies, indicating changes 
in wave energy (i.e. in bathymetry), as the buildup was 
catching up to rising sea-level. The final phase of reef 
growth is characterized by an abundance of domal coral 
heads. 

In French Polynesia, the initiation of the Papeete reef 
occurred at 14calka BP (Bard et al., 1996) with the 
settlement of a robust-branching coral community, indic- 
ating the early ability of the builders to keep-up with 
sea-level (Fig. 5). However, at 13.5 cal ka BP, the rate of 

.I 
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sea level rise increased, precluding the possibility of the 
reef keeping pace with sea level rise. This event is reflec- 
ted ia the settlement of a domal coral assemblage. At 
12.0 cal ka BP, its replacement by a robust-branching 
coral facies indicates a return to a keep-up growth mode, 
which has persisted until now. 

5.2. Testing the accusacy ofpaleodeptlis iìzjewedfiom reef 
corninunities 

For each reef site studied, the calendar age of each 
dated coral sample is plotted against depth below present 
mean low tide level. The vertical bar above each point 
(Figs. 3-5) represents the paleodepth interval, defined by 
reference to its modern community counterpart (see 
above), and within which the coral could have grown. 
Samples from robust-branching and domal coral assem- 
blages reflect paleodepths of less than 6 m and less than 
10 m, respectively, while samples from tabular coral com- 
munities indicate depth-restricted habitat ranges of 
about 6-15 m. 

From the Mauritius data (Fig. 3), a minimum sea-level 
curve for the past 7500 cal yr BP can be constructed by 
drawing a line at a median position on the coral time- 
depth plot (Montaggioni and Faure, 1997). 

The accuracy of coralgal assemblages as sea-level re- 
corders can be tested in New Caledonia. In this area, 
a relative sea-level curve has already been obtained, 
based on dating of mangrove peats (Baltzer, 1970), 
notch-encrusting and emerged corals (Launay and Recy, 
1972; Coudray and Delibrias, 1972; Cabioch et al., 1989). 
This curve reveals a continuous sea level rise from 8030 
to 6360 cal yr BP, followed by an apparent fall from 
6360 cal yr BP to present (Fig. 4). This apparent sea-level 
course is though to be caused by local isostatic and 
gravitational adjustments, following the sea level rise 
18kyr ago (Clark et al., 1978; Nakada and Lambeck, 
1991). The reef-based curve obtained by drawing a line at 
a median position on the coral time-depth plot appears 
to be consistent with this curve (Fig. 4). Although no date 
older than 6400 yr cal BP is available, we infer that the 
method, based on the taxonomic identification of biolo- 
gical assemblages, is sufficiently precise to reconstruct 
any local relative sea-level envelope. This method was 
successfully applied in Tahiti (Fig. 5). The sea-level curve 
established for the last 14000 yr BP (Bard et al., 1996), is 
in good accordance with the sea-level curve obtained for 
the same period from reef material in Barbados (Fair- 
banks, 1989; Bard et al., 1990). However, it is important 
to realize that coralgal and coral assemblages may not 
record short-term or low-amplitude sea-level fluctu- 
ations or the short-term stillstands liable to occur during 
a period of general sea-level rise, due to the lag in 
response of coral growth. 

In a recent study on the Tahiti barrier reef, we used 
multivariate methods in order to determine the precise 

significance of the coralgal assemblages in terms of water 
depths (Cabioch et al., in press). We do not report details 
of the analyses herein; we just give the principal features 
and conclusions. A correspondence factor analysis (R- 
mode) was performed on 11 variables (major contribu- 
ting organisms) from 121 observations (thin-sections) ex- 
tracted from five cores (down to 90 m deep). Two groups 
can be delineated: a group related to open shallow water, 
high-to-moderate energy environments, and another 
group regarded as typical of deeper, and/or more pro- 
tected habitats, subjected to lower light intensity. The 
multivariate methods appear to be good discriminators 
of local ecological conditions, but do not give a more 
accurate differentiation of reef builders in terms of water 
depths. Similar analyses were also performed on cores 
from various reef areas; they lead to similar results 
(for instance, see Cabioch, 1988, for data sets on New 
Caledonian reefs). 

5.3. Accuracy of relative sea-level curves with respect to 
the tinzing of substrate colonization and growth patterm 

The rate of coral settlement after substrate inundation 
is one of the factors determining the characteristics of the 
internal stucture and the ability of a reef to keep-up or 
catch-up with sea level (Davies and Montaggioni, 1985; 
Davies et al., 1985; Montaggioni, 1988). Assessment of 
the precise timing of reef initiation is a prerequisite for 
any reconstruction of sea-level curve, because the delay 
in reef settlement may distort the older sections of a given 
sea-level curve. On Mauritius, for instance, the flooding 
of the inner shelf occurred at 8400-7400 cal yr BP, while 
reef initiation began within a 1OOOyr time span, at 
around 7400 cal yr BP (Montaggioni and Faure, 1997). 
In contrast, at Ricaudy, the substrate was only colonized 
as sea level reached its present position; but, growth has 
been sufficiently rapid for the reef to catch-up with sea 
level within a time span of less than 1000 yr. For many 
Indo-Pacific reefs, initiation appears to have occurred 
within the same period of 9600-7400 cal yr BP (Johnson 
et al., 1984; Davies et al., 1985; Hopley and Barnes, 1985; 
Montaggioni 1988; Partain and Hopley, 1989; Eisen- 
hauer et al., 1993; Cabioch et al., 1995; Kan et al., 1995). 
However, on the rapidly subsiding island of Tahiti (up to 
0.25 mm yr-', see Bard et al., 1996; Montaggioni et al., 
1997), and at Huon Peninsula (Papua-New-Guinea), up- 
lifting at the rate of 2 min yr- ' (Chappell and Polach, 
1991; Edwards et al., 1993), the initiation event appears 
to have occurred earlier, around 14000 cal yr BP, while 
on the rapidly uplifting Vanuatu site (up to 
5.5-6 mm yr-', see Cabioch et al., 1998), this event oc- 
curred at around 20000 cal yr BP. It is noteworthy that 
Chappell and Polach (1991) and Edwards et al. (1993) do 
not give any accurate identifications of the reef builders 
encountered in the core of Papua New Guinea and on 
their environmental significance. Consequently, their 
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curves appeared to be a simple reef growth curve. Never- 
theless, the brief description given on reef builders seems 
to indicate a keep-up reef growth strategy and, fortunate- 
ly, the reef growth curve appears to be very close to the 
sea-level curve. Given that the rates of vertical motion 
which affect reef-bearing areas are negligible compared 
to the rate of postglacial sea-level rise, the regional 
geodynamical constraints have little influence on the age 
of reef initiation. However, they can drastically control 
the thickness of postglacial reef sequences which are 
expanded in rapidly subsiding areas and condensed in 
rapidly uplifting zones. In many regions, reef growth 
appears to have initiated non-uniformly, according to 
a latitudinal gradient. Such gradients are reported from 
the Great Barrier Reef (Davies et al., 1985) and the New 
Caledonian region (Cabioch et al., 1995). One plausible 
explanation for the time offset of reef initiation in these 
areas is the occurrence of a karst surface upon which reefs 
settled (Hopley et al., 1978; Cabioch et al., 1995). The 
roughness of these ltarst surfaces may have facilitated the 
recruitment and attachment of coral larvae and success- 
fully catalyzed coral growth. We infer, therefore, that the 
best sites for using coral reefs as sea-level indicators 
should be areas in which modern reefs are settled upon 
karst substrates. 

Another cause of variation in relative sea-level curves 
can be abrupt changes in reef growth patterns. Reefs may 
become established shortly after flooding, i.e. have 
a keep-up growth type. Later, they may not be able to 
keep pace with the still rising sea level, thus passing 
briefly from keep-up to give-up growth modes, before 
again catching up with sea-level rise. This scenario has 
operated in the Tahiti barrier reef; the duration of the 
catch-up phase may be long or brief, according to envir- 
onmental conditions, for instance, the existence - or not 
- of a global cooling event (Bard et al., 1996) or of local, 
episodic ecological variations (Montaggioni et al., 1997). 
The growth pattern may also vary in time within the 
same reef. The core set from various Indo-Pacific areas 
shows that the outer parts of reefs are particularly fa- 
vourable to give an optimal picture of growth pattern, 
because open sea waters are well oxygenated and far 
from any terrestrial input (Johnson et al., 1984; Davies et 
al., 1985; Johnson and Risk, 1987; Montaggioni, 1988; 
Cortés et al., 1994; Cabioch et al., 1995). This is the case 
for the three reef sites studied here, although the Ricaudy 
reef is additionally subject to intralagoonal conditions. 

5.4. Reliability of estimate of variations in rates ofsea-level 
rise 

The identification of coralgal assemblages in cores 
provide information on water depth range only, and, 
consequently, leads to a rough estimate of changes in 
amplitude and rate of a rising sea level. In reef margins 
subjected to a keep-up growth style, due to the great 

homogeneity of the corresponding biological associ- 
ations over time, it is difficult to recognize any possible 
decrease in the rate of sea-level rise or any sea-level 
stabilization. Similarly, in the case of short-amplitude 
sea-level fluctuations (less than 5-6 m), we will only 
observe the vertical, continuous superposition of a same 
coralgal assemblage. In reef margins having developed 
according to a catch-up growth mode, if the rate and/or 
amplitude of rise in sea level has changed through time, 
the biofacies may express a decrease in water depth 
interval; deeper and shallower coralgal assemblages will 
alternate vertically in the sequence. In any cases, the 
framework supplies evidence for mean variations in sea 
level. 

5.5. Accuracy of relative sea-level curves with respect to 
regional geo+mnics 

Until now, the most complete core set providing coral 
records of the last deglaciation has come from insular arc 
areas, such as Papua New Guinea (Chappell et al., 1996), 
Barbados (Fairbanks, 1989; Bard et al., 1990) and 
Vanuatu (Cabioch et al., 1998). However, these data sets 
have three related disadvantages. 

1. The reef sequences may be discontinuous and conden- 
sed, as already emphasized above. 

2. The sequences may have been subjected to exposure, 
at least in their upper parts, resulting in diagenetic 
alteration of coral samples (Cabioch et al., 1998). 

3. The regional tectonic component must be extracted in 
order to decipher the eustatic signal (Fairbanks, 1989; 
Chappell et al., 1996). In the insular arcs of the south- 
west Pacific, it is inferred that the uplift rate has varied 
during the last 1000 or 10,000yr (Ota et al., 1993; 
Taylor et al., 1993; Cabioch et al., 1998). Conse- 
quently, it is difficult to separate the eustatic signal 
from the tectonic component. 

In contrast, reef sequences from subsiding areas pro- 
vide the following advantages: 

1. They are generally continuous and expanded. 
2. They have remained permanently under sea water. 
3. Rates of subsidence are generally negligible compared 

to rates of sea-level rise; thus, corrections of the tec- 
tonic component are unnecessary. Furthermore, in 
oceanic islands where tectonic movements are isostati- 
cally driven, subsidence rates are markedly slower 
than the rates of uplift in active convergence areas for 
the same time spans (Ota et al., 1997; Cabioch et al., 

The longest and most continuous postglacial reef se- 
quence drilled has been obtained from the subsiding 
island of Tahiti (Bard et al., 1996; Montaggioni et al., 
1997). In such rapidly subsiding areas, reef colonization 
can start earlier on shallow-water substrates. 

1998). 
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6. Conclusions 

(1) Analysis of internal reef structure using drilling on 
Mauritius, New Caledonia and Tahiti, has provided data 
on the composition of biological assemblages. By refer- 
ence to the distribution of modern coralgal communities, 
three main biofacies can be defined in the reef margin: 
(1) a lower forereef assemblage, characterized by a tabu- 
lar coral community (Acropora gr. Izyacinthus/c),tlzerea, 
Poeilloporu damicomis, P. eydouxi and/or Moiitipora 
digitatu), occasionally accompanied with domal shapes 
(various faviids) and mm-thick coralline algal crusts coin- 
posed of Hydrolithorz orikodes, Lithopliyllum sp., Mesophyl- 
luni cf. prolifer and Dermutolitlzoiz cf. tesselutunz; 
this assemblage is typical of open water, and related 
to paleodepth range from 6 to 15m; (2) an upper 
forereef - reef crest assemblage, including robust- 
branching coral facies (Acropora gr. danailrobusta 
and/or A. humilis, A. digitifera) accompanied by Faviu 
stelligera, Eclzinoporu gemnzacea and cm-thick crusts of 
Hydrolitlion cf. oriliodes or Derinutolithoiz cf. tesselatum; 
this association is flourishing in depths less than 6 m, in 
moderate to high water-energy areas; and (3) An upper 
forereef assemblage made up of domal coral colonies 
including Porites cf. lutea and P. cf. lobata and occasional 
Aeropom gr. dariailr-obusta, in depths presumably less 
than 10m. 

(2) The reef sequences analyzed show various scenarii 
of reef initiation, various patterns of biological 
composition and of growth modes. The vertical 
successions of the coralgal assemblages occur as a re- 
sponse to sea-level rise or local environmental per- 
turbations. Thus, the accuracy of reconstruction of 
regional relative sea-level curves depends in part on 
growth patterns. This is relatively easy in the keep-up reef 
margins, while in the catch-up ones, it is necessary to 
knowledge the species-levelled composition and the spa- 
tial distribution of the modern coralgal analogs. All em- 
phasizes the need to only use the modern coralgal 
zonation obtained from reef margins close to a given 
drilling site. 

(3) The accuracy of the paleodepths inferred from bio- 
logical data have been tested in New Caledonia, where 
a relative sea-level curve had already been established 
from non-reefal sea-level indicators. A good consistency 
is observed between this curve and that obtained from 
coral communities. 

(4) Due to the prevalence of the keep-up growth style, 
high-energy reefs, e.g. Papeete reef at Tahiti, seem to be 
more powerful for reconstructing local relative sea-level 
curves than medium-to-low-energy buildups (e.g. 
Mautitius and New Caledonia). 

(5) The best reef sites for obtaining more complete 
sea-level curves are rapidly subsiding areas (e.g. Tahiti), 
because they generally possess expanded postglacial se- 
quences. 
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